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Table 1
Summary of lower bound results.

Case Lower bound Condition

(A) general (1 − δ − (n − 1)ε)(1 − δ + ε)n−1 δ + (n − 1)ε ≤ 1
(B) δ = ε 1 − nε nε ≤ 1
(C) δ = 0 (1 − (n − 1)ε)(1 + ε)n−1 (n − 1)ε ≤ 1

Table 2
Summary of upper bound results.

Case Upper bound

(A) general ((1 + δ)2 + (n − 1)ε2)n/2

(B) δ = ε (1 + 2ε + nε2)n/2

(C) δ = 0 (1 + (n − 1)ε2)n/2

1. Introduction

Many bounds on determinants of diagonally dominant matrices have been given in the 
literature. See, for example, Bhatia and Jain [1], Elsner [5], Horn and Johnson [8], Ipsen 
and Rehman [9], Ostrowski [11–13], and Price [14]. We consider the case of a matrix 
A = I − E, where I is the n × n identity matrix and the elements eij of E are small. 
Thus, A is “close” to the identity matrix. A more general case, where A is close to a 
nonsingular diagonal matrix, can be reduced to this case by row and/or column scaling.

To make precise the sense in which E is small, we introduce two non-negative param-
eters δ and ε, and require

|eij | ≤
{
δ if i = j;
ε otherwise.

We consider three cases: (A) is the general case, (B) is when δ = ε, and (C) is when 
δ = 0. These cases are all of interest. Case (B) is the simplest, and was considered 
by Ostrowski [13] and others. Case (C) arises naturally if scaling is used to reduce the 
diagonal elements to 1. Case (A) is an obvious generalization which unifies the cases 
(B)–(C), and is required to obtain sharp results in some applications where δ and ε have 
different orders of magnitude.1

For the reader’s convenience, the lower and upper bound results are summarized in 
Tables 1–2. A comparison with previously-published bounds is given in Section 2. Our 
lower bounds are given in Section 3, and the upper bounds in Section 4.

2. Comparison with previous bounds

It is perhaps surprising that we have only found one of the six bounds (cases (A)–(C), 
lower and upper) in the literature, although their proofs use standard techniques and 
are not difficult.

1 For example, in [2, Corollary 5], an optimization problem leads to the choice δ � ε2.
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In case (B), Ostrowski [13, Eq. (5,5)] gives the lower bound

det(I − E) ≥ 1 − nε, (1)

subject to nε ≤ 1. This is best-possible, as it is attained if E = εJ , where J is the n × n

matrix of all ones. Ostrowski [13] also gives an upper bound

det(I −E) ≤ 1
1 − nε

, (2)

subject to nε < 1, but this is not best-possible. Our upper bound

det(I − E) ≤
(
1 + 2ε + nε2)n/2, (3)

which is easily proved using Hadamard’s inequality [7], and holds for arbitrary ε ≥ 0, 
is smaller than Ostrowski’s bound (2) for all ε ∈ (0, 1/n). The difference between the 
bounds is nε2 + O(ε3). The bound (3) is best-possible if a skew-Hadamard matrix of 
order n exists.2

In case (C), Ostrowski [11] gives a more general result that implies the lower bound

det(I −E) ≥
(
1 − (n− 1)ε

)n
, (4)

subject to (n − 1)ε ≤ 1, and the same bound follows from Gerschgorin’s theorem [6]. 
However, this bound is 1 −n(n −1)ε +O(ε2), whereas our bound is 1 −n(n −1)ε2/2 +O(ε3), 
which shows that the perturbation in the determinant is of order ε2, not of order ε. 
Ostrowski [12, Satz VI] gives a lower bound that reduces (under the same assumption 
on ε) to

det(I − E) ≥
(
1 − (n− 1)2ε2)�n/2�. (5)

This is better than (4) as it shows that the perturbation is of order ε2. For small ε, the 
bound (5) is 1 − (n − 1)2�n/2�ε2 +O(ε4), which is worse than our (best possible) bound 
if n ≥ 3.

A different lower bound, due to von Koch [10] (see Ostrowski [11, §2]), reduces (under 
the same assumption on ε) to

det(I − E) ≥ en(n−1)ε(1 − (n− 1)ε
)n

. (6)

For small ε von Koch’s bound is 1 − n(n − 1)2ε2/2 + O(ε3), which is worse than our 
bound if n ≥ 2.

2 This is true for n = 1, 2, all multiples of four up to and including 4 × 68, as well as infinitely many 
larger n, such as all powers of two, see [4]. Sharp bounds for small orders for which a skew-Hadamard matrix 
does not exist (e.g. n = 3) are considered in [3, §4.1].



24 R.P. Brent et al. / Linear Algebra and its Applications 466 (2015) 21–26
In case (C), Ostrowski [12, Satz VI] gives an upper bound, which reduces to

det(I −E) ≤
(
1 + (n− 1)2ε2)�n/2�, (7)

assuming that (n − 1)ε ≤ 1. Our upper bound is better if n ≥ 3, and does not require 
the condition on ε.

To illustrate the lower bounds in case (C) with some numerical values, suppose that 
n = 5 and ε = 1/8. Then Gerschgorin/Ostrowski (4) gives the bound 2−5 = 0.03125, 
von Koch (6) gives e5/2/25 ≈ 0.3807, Ostrowski (5) gives 9/16 = 0.5625, while our 
Corollary 2 gives 38/213 ≈ 0.8009, which is best-possible.

3. Lower bounds

We start with a general result, then deduce Theorem 1, which gives our lower bound 
in case (A). Our lower bounds in cases (B)–(C) are special cases of Theorem 1.

Proposition 1. Let F ∈ R
n×n, fij ≥ 0, ρ(F ) ≤ 1. If A = I−E ∈ R

n×n, where |eij | ≤ fij, 
then

det(A) ≥ det(I − F ).

Proof. A proof using the Fredholm determinant formula is given in [3, §3]. �
Theorem 1. Let A = I − E ∈ R

n×n, where |eij | ≤ ε for i �= j, |eii| ≤ δ for 1 ≤ i ≤ n, 
and δ + (n − 1)ε ≤ 1. Then

det(A) ≥
(
1 − δ − (n− 1)ε

)
(1 − δ + ε)n−1,

and the inequality is sharp.

Proof. The result is immediate if n = 1, so suppose that n ≥ 2. Define F := (δ−ε)I+εJ , 
so F is a Toeplitz matrix with diagonal entries δ and off-diagonal entries ε.

Observe that Je = ne, so J has an eigenvalue λ1(J) = n; the other n − 1 eigenvalues 
are zero since J has rank 1.

Since εJ has one eigenvalue equal to nε and n − 1 eigenvalues equal to zero, it is 
immediate that F has eigenvalues δ − ε + nε = δ + (n − 1)ε and δ − ε. Thus

ρ(F ) = max
(
δ + (n− 1)ε, |δ − ε|

)
= δ + (n− 1)ε ≤ 1.

Also, the eigenvalues of I −F are 1 − δ− (n − 1)ε with multiplicity 1, and 1 − δ+ ε with 
multiplicity n − 1, so

det(I − F ) =
(
1 − δ − (n− 1)ε

)
(1 − δ + ε)n−1.
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Thus, the inequality follows from Proposition 1. It is sharp because equality holds for 
A = I − F . �

A generalization of Theorem 1 is given in [3, Corollary 1]. The generalization, which 
follows from Theorem 1 by a scaling argument, shows that the condition |eii| ≤ δ may 
be replaced by the one-sided condition eii ≤ δ.

Corollaries 1–2 are simple consequences of Theorem 1. Corollary 1 is essentially Os-
trowski’s lower bound (1), although Ostrowski did not explicitly state that the bound is 
sharp.

Corollary 1 (Ostrowski). If A = I − E ∈ R
n×n, |eij | ≤ ε for 1 ≤ i, j ≤ n, and nε ≤ 1, 

then

det(A) ≥ 1 − nε,

and the inequality is sharp.

Proof. This is the case δ = ε of Theorem 1. The result is sharp as there is equality for 
E = εJ . �
Corollary 2. If A = I − E ∈ R

n×n, |eij | ≤ ε for 1 ≤ i, j ≤ n, eii = 0 for 1 ≤ i ≤ n, and 
(n − 1)ε ≤ 1, then

det(A) ≥
(
1 − (n− 1)ε

)
(1 + ε)n−1,

and the inequality is sharp.

Proof. This is the case δ = 0 of Theorem 1. The result is sharp as there is equality for 
E = ε(J − I). �
4. Upper bounds

The following theorem gives upper bounds in cases (B) and (C). The more general 
case (A) given in Table 2 is similar.

Theorem 2. If A = I −E ∈ R
n×n, |eij | ≤ ε for 1 ≤ i, j ≤ n, then

det(A) ≤
(
1 + 2ε + nε2)n/2. (8)

If, in addition, eii = 0 for 1 ≤ i ≤ n, then

det(A) ≤
(
1 + (n− 1)ε2)n/2. (9)
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Proof. Let the columns of A be u1, u2, . . . , un. From Hadamard’s inequality,

det(A) ≤
n∏

i=1
‖ui‖2.

However, the condition |eij | ≤ ε implies that

‖ui‖2
2 ≤ (1 + ε)2 + (n− 1)ε2 = 1 + 2ε + nε2.

Hence, the result (8) follows. The proof of (9) is similar. �
The upper bounds (A)–(C) are attained if a skew-Hadamard matrix H of order n

exists. To see this, consider A = (1 + δ)I + ε(H − I). Conversely, if the upper bound 
(C) is best-possible for all sufficiently small ε, then a skew-Hadamard matrix of order n
exists – see [3, Theorem 4] for a proof.

Acknowledgements

We thank L.N. Trefethen and the anonymous referees for their comments on an earlier 
version of this note. The first author was supported in part by Australian Research 
Council grant DP140101417.

References

[1] R. Bhatia, T. Jain, Higher order derivatives and perturbation bounds for determinants, Linear 
Algebra Appl. 431 (2009) 2102–2108.

[2] R.P. Brent, J.H. Osborn, W.D. Smith, Lower bounds on maximal determinants of binary matrices 
via the probabilistic method, arXiv:1402.6817v2, 14 Mar. 2014, 37 pp.

[3] R.P. Brent, J.H. Osborn, W.D. Smith, Bounds on determinants of perturbed diagonal matrices, 
arXiv:1401.7048v7, 2014, 18 pp.

[4] C.J. Colbourn, J.H. Dinitz, Handbook of Combinatorial Designs, 2nd edition, CRC Press, New York, 
2006.

[5] L. Elsner, Bounds for determinants of perturbed M-matrices, Linear Algebra Appl. 257 (1997) 
283–288.

[6] S. Gerschgorin, Über die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk. USSR Otd. 
Fiz.-Mat. Nauk 6 (1931) 749–754.

[7] J. Hadamard, Résolution d’une question relative aux déterminants, Bull. Sci. Math. 17 (1893) 
240–246.

[8] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
[9] I.C.F. Ipsen, R. Rehman, Perturbation bounds for determinants and characteristic polynomials, 

SIAM J. Matrix Anal. Appl. 30 (2008) 762–776.
[10] H. von Koch, Über das Nichtverschwinden einer Determinante nebst Bemerkungen über Systeme 

unendlich vieler linearer Gleichungen, Jber. Deutschen Math. Verein. 22 (1913) 285–291.
[11] A.M. Ostrowski, Sur la détermination des bornes inférieures pour une classe des déterminants, Bull. 

Sci. Math. (2) 61 (1937) 19–32.
[12] A.M. Ostrowski, Über die Determinanten mit überwiegender Hauptdiagonale, Comment. Math. 

Helv. 10 (1937) 69–96.
[13] A.M. Ostrowski, Sur l’approximation du déterminant de Fredholm par les déterminants des systèmes 

d’equations linéaires, Ark. Math. Stockholm Ser. A 26 (1938) 1–15.
[14] G.B. Price, Bounds for determinants with dominant principal diagonal, Proc. Amer. Math. Soc. 2 

(1951) 497–502.

http://refhub.elsevier.com/S0024-3795(14)00638-7/bib424As1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib424As1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib727062323537s1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib727062323537s1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib727062323538s1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib727062323538s1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib4344s1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib4344s1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib456C736E6572s1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib456C736E6572s1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib476572736368676F72696Es1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib476572736368676F72696Es1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib486164616D617264s1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib486164616D617264s1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib484As1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib4952s1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib4952s1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib4B6F6368s1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib4B6F6368s1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib4F7374726F77736B69333761s1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib4F7374726F77736B69333761s1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib4F7374726F77736B69333762s1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib4F7374726F77736B69333762s1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib4F7374726F77736B693338s1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib4F7374726F77736B693338s1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib5072696365s1
http://refhub.elsevier.com/S0024-3795(14)00638-7/bib5072696365s1

	Note on best possible bounds for determinants of matrices close to the identity matrix
	1 Introduction
	2 Comparison with previous bounds
	3 Lower bounds
	4 Upper bounds
	Acknowledgements
	References


