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1. Introduction

Motivated by work in [8] concerning the Hadamard maximal determinant problem
[16], the recent papers [6,7] considered various binomial multi-sum identities of which
the following two results are representative:
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The starting point for the current paper is the observation that these kinds of identities
are reminiscent of multiple integral evaluations due to Macdonald and Mehta. To make
this more precise, and to allow us to embed (1.1) and (1.2) into larger families of discrete
analogues of Macdonald—Mehta integrals, we first review the continuous case.

Let G be a finite reflection group consisting of m reflecting hyperplanes Hy,..., H,,
in R", see, e.g., [18]. Let a; € R” be the normal of H; normalised up to sign such that
lail|? :=a; - a; = 2. For x € R" define the polynomial

P(z) = Pg(x) = [ [ (a: - @). (1.3)

i=1

In 1982 Macdonald [30] conjectured that

I(1+diy)
|P(2)]* dp() | | ; (1.4)
/ 1=1 1 +’7

where ¢(z) is the r-dimensional Gauffian measure

o—llzll2/2
do(x) = B dzy - - dz,,
dy,...,d, are the degrees of the fundamental invariants of G, and Re(y) > —min{1/d;}.
For G = A, _; the integral (1.4) had appeared as an earlier conjecture in work of Mehta
and Dyson [33,34] and is commonly referred to as Mehta’s integral. It was first proved by
Bombieri, who obtained it as a limit of the Selberg integral [45], see [11] for details. For the
two other classical series, B, and D,., the conjecture also follows from the Selberg integral,
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as was already noted in Macdonald’s original paper.” Complete proofs of Macdonald’s
conjecture were subsequently given in [10,14,37,38].

The above-mentioned three classical series are of particular interest to us here. For
these, we have

Pa_y (@)= ] (@i-2))=A), (1.5a)

1<i<j<r

_2r/2H$ H x; —x?) and Pp (z)= H (xf—m?), (1.5b)
= 1<i<j<gr 1<i<j<r

so that, with A(z®) := A(z¢,...,z2%), we can identify these cases of (1.4) as the («,d) =
(1,0),(2,27v), (2,0) instances of the Macdonald-Mehta integral

(7,8 /|A |2*H|a:z| do(a (1.6)

It may now be recognised that (1.1) and (1.2) are discrete analogues of the Dg and Bg
Macdonald-Mehta integral for v = 1/2. This suggests that one should study the more
general binomial sums

n

Spn(0,7,8) i= Z AP H|k |5< 2n ) (1.7)

ki, kr=—

where n is a non-negative integer. It is easy to show that (1.7) is indeed a (scaled) discrete
approximation to (1.6) in the sense that

nh_)ngo g 2rmn (%n)_m(;)_‘s’"/QSnn(a,7,5) =Sr(a,7,9).
Using elements from representation theory and from the theory of elliptic hypergeometric
series, respectively, we evaluate the discrete Macdonald—Mehta integral (1.7) for v =1/2
and v = 1 and «,d corresponding to A,_1, B, and D,. By the same methods we can
evaluate four additional cases that do not appear to be related to reflection groups (or
root systems), and the total of ten evaluations is summarised in Table 1.
All of these correspond to discrete analogues of the integrals

S0 = [ T[ foe - o dela) HF1+7

B 1<i<i<r

for Re(y) > —1/r,

4 Macdonald attributes this to A. Regev, unpublished.
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Table 1
The ten closed-form evaluations
« v § G
1 1/2 0 Ar_s
1 1 0,1 A1, —
2 1/2 0,1,2 D,, By, -
2 1 0,1,2,3 Dy, -, By, —
s
So(1,1,1) = / [T Io— oI il deo(a)
R 1<i<j<r i=1
L37] [3r
_ g D4 H I (i >r (1+ 2H
- 1 1 1 ’
I'z) o I'z) i=1 5)

and

sero)= [ T lat-af" T[Il doto)

R 1<i<i<r i=1

_227 +6r/2H 1+Z'7 (%+(271)7+%5)
I(1+7) NG

for Re(y) > —1/r and Re(6/2 + (r — 1)y) > —1/2. The first of these is the actual
Mehta integral. Also the last integral (which was also considered by Macdonald in [30])
can easily be obtained as a limit of the Selberg integral by a generalisation of Regev’s
limiting procedure (cf. Footnote 4).

As a representative example of our results we state the closed-form evaluation of
Srn(2,4,0).
Proposition 1.1 (Discrete Macdonald—Mehta integral for D,.). Let v be a positive integer
and n a non-negative integer. Then

Srn(2,3,0) = Z 11 yk2—k2|H(n+k> (1.8)

..... kr=—n 1<i<j<r

— 221""—1"(7"—1) F(l + 57") F(n — 57- + §)

ré)  T(n+1)

y ﬁF(i+1) I(2n+1)T(n—i+3)
b 5 rn—i+1)T'(n—i+1)
For r = 2 this is [7, Theorem 1], for » = 3 it is (1.1) (first proved in [6, Theorem 4.1])

and for r = 4 this proves Conjecture 4.1 of that same paper. We further remark that both

sides of (1.8) trivially vanish unless n > r — 1. Indeed, all k? need to be distinct for the
summand to be nonzero, requiring n > r — 1. On the right the factor 1/T'(n—i+1)|;=r—1
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is identically zero for 0 < n < r — 2, and the poles of [[,I'(n — 3r+ 2)/I'(2n — i + 1) at
n=0,1,...,(r —3)/2 (these only arise for odd values of ) have zero residue.

In several instances we obtain g-analogues and/or extensions to half-integer values
of n (in which case the k; need to be summed over half-integers so that n + k; € Z).
Furthermore, when v = 1 we prove more general summations containing additional free
parameters, see Sections 6 and 7.

As a byproduct of our proofs, we obtain some new results on the enumeration of
tableaux. A particularly elegant example concerns Sundaram tableauz [47]. These are
semi-standard Young tableaux on the alphabet 1 <1 <2 <2< --- <n < < oo such
that all entries in row k are at least k and with the exceptional rule that oo may occur
multiple times in each column but at most once in each row. We denote the size (or
number of squares) of T by |T'| and the number of occurrences of the letter k by my(T).
Obviously, >, my(T) = |T| with k& summed over all 2n + 1 letters. For example,

1[1]2]5 ]
2(2(3 0
31340
5]5

is a Sundaram tableau of size 15 for all n > 5.

Theorem 1.2. The number of Sundaram tableauz of height at most n and width at most
r is given by

ﬁZH—r—lﬁH—j—i—r—l
2i—1 A1 4517

i=1 2,j=1

Similarly, the number of Sundaram tableauzx of height at most n and width at most r
such that each tableauz is given a weight (—1)IT1 (resp. (=1)m=(T)) is given by

m T i+ r—1 it j4r—1
(-1) Hi@'—i—j—l <resp. Hi@'—i—j—l .
irj=1 i

For example, when r = n = 2, there are (3-5-3-4-4-5)/(1-3-1-2-2-3) =100
tableaux, with the following break-down according to shape

-0
1 5 10 14 35 35

or according to the multiplicities moo (T):
H{T : meo(T) =0} =50, |[{T : moo(T) = 1}| =40, |{T : mso(T) = 2}| = 10.

Moreover, 1 —54+104+14—35+35 = 20 = (3-4-4-5)/(1-2-2-3), and also 50—40+10 = 20.
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Our paper is organised as follows. We begin with a short section summarising the ten
key evaluations corresponding to the binomial sums of Macdonald-Mehta-type listed
in Table 1. Then, in Section 3, we review some standard material concerning classical
group characters needed in our subsequent computations. Section 4 deals with summation
identities for orthogonal and symplectic characters. Although several such identities were
derived previously by Okada [36], his results are not sufficient for our purposes, and
more refined identities as well as identities in which the summands have alternating
signs are added to Okada’s list. In Section 5 we then apply the results from Section 4 to
, %, 0) claimed in Section 2. In most cases, we are able to also
provide g-analogues. Our evaluations of S, (e, 1,0) given in Section 2 are dealt with in

evaluate the sums S, ,(a

Sections 6 and 7. All these evaluations result from a single identity, a transformation
formula between multiple elliptic hypergeometric series originally conjectured by the
third author [48, Conj. 6.1], and proven independently by Rains [43, Theorem 4.9] and by
Coskun and Gustafson [9]. We do not present this formula in its full generality here, but
restrict ourselves to stating the relevant (g-)special case in Theorem 6.1 at the beginning
of Section 6. The remainder of that section is devoted to proving our evaluations of the
sums S;,(2,1,6), while Section 7 is devoted to proving the evaluations of the sums
Srn(1,1,6). In all cases but one, we provide g-analogues which actually contain an
additional parameter. The only exception is the sum S, ,(1,1,1), where we are “only”
able to establish a summation containing an additional parameter (see Proposition 7.2),
but for which we were not able to find a g-analogue. Moreover, in this case we needed
to take recourse to an ad hoc approach, since we could not figure out a way to use
the aforementioned transformation formula. The final section, Section 8, discusses some
further aspects of the work presented in this article, open problems, and (possible) further
avenues.

To conclude the introduction, we point out two further articles addressing the multi-
sums in [6]. First, in [28] the double sums considered in [6] are embedded into a
three-parameter family of double sums, and it is shown that all of them can be ex-
plicitly computed by using complex contour integrals or by the use of the computer
algebra package Sigma [44], thus proving in particular all the respective conjectures in
[6], including (1.2). Second, Bostan, Lairez and Salvy [3] recently presented an algorith-
mic approach to finding recurrences for multiple binomial sums of the type considered
in this paper. Interestingly, complex contour integrals are again instrumental in this ap-
proach. Among other things, it allowed them to prove automatically all the double-sum
identities from [6], again including all the conjectures from [6], such as (1.2). Moreover,
their algorithmic approach is — in principle — capable of proving any of our r-fold sum
identities for fized r. (As usual, “in principle” refers to the fact that today’s computers
may not actually be able to finish the required computations.) To come up with an au-
tomatic proof for any of our identities for generic r seems however to be currently out
of reach.



86 R.P. Brent et al. / Journal of Combinatorial Theory, Series A 144 (2016) 80-138

2. Summary of the ten primary identities

Here we summarise as succinctly as possible the ten product formulas for the discrete
Macdonald-Mehta integral S, (o, 7, d) (defined in (1.7)), corresponding to the parame-
ter choices listed in Table 1. Proofs and further generalisations are given in Sections 4—7.

For o = 2 there are a total of seven cases, given by

Srn(2,7,9) (2.1)

_ﬁF(1+i’7)_ T2n+1)T(n—i—y+x+2) (i — 1)y + 2
AT +y) Tn—i+x+D)Tn—iv+x+1)T(n—(i—1)y— 52 —y)

)
=1

where y = 1 if § = 0, and x = 0 otherwise. For a = 1 and § = 0 there are two cases,

given by
oty T4 D(1 + i) I2n+1)T(2n—i+v+2)
Srn(1,7,0) = 22m—r(r=1) : .22
n(1:7,0) Z_1:[1]."(14—7) r2n—(Gi—2)y+1)T(2n—1i+2) (2.2)
(This formula remains valid if ¥ = 0 or n is a half-integer.)
The remaining case is
[r/2] lr/2] /. .
(2 1 INGIRA DI(2 1
Srn 11177*'1_[ (2n+1) 11 LG+ +L) -y 4
Fn—z+ JT(n—i+2) Mn-i+1)

i=1
3. The Weyl character formula and Schur functions of type G

The purpose of this section is to collect standard material on classical group characters
that we use in Sections 4 and 5

3.1. Some simple q-functions

Assume that 0 < ¢ < 1 and m, n are integers such that 0 < m < n. Then the g¢-shifted
factorial, g-binomial coefficient, g-gamma function and q-factorial are given by

=[[—-ad""), (@)=

k=
m

- (1 (1-ag*")
1
=) -

=T

~—

1 e (@9
oo} ={1=9) (4% Q)0
o= 2L [l =Ty(n+1) = [aly [ — 1]y [1],.
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We also need some generalisations of the g-shifted factorials to partitions. We use
standard terminology for partitions, as for example found in [31, Chapter 1]. More pre-
cisely, let A be a partition, that is, A = (A1, Ag,...) is a weakly decreasing sequence of
non-negative integers with only finitely many non-zero A;. The positive A; are called the
parts of A and the number of parts is called the length of the partition, denoted by I(X).
As usual we identify a partition with its (Young) diagram, and the conjugate partition
A" is the partition obtained by reflecting the diagram in the main diagonal. We shall
frequently need partitions of rectangular shape. By definition, this is a partition all of
whose parts are the same. In order to have a convenient notation, we write (r™) for the
partition (r,r,...,r) with n occurrences of r. If X is a partition of length at most n and
largest part at most 7, we use the suggestive notation A C (r™). Clearly this is equivalent
to X C (n"). We say that (i,7) is a square (in the diagram) of A and write (i,7) € X if
and only if 1 <4 <I(A) and 1 < j < \;. Following [42], we now define

Cy(aq)= J[ (1—agh+Xi—=9) (3.1a)
(i,5)EX

C¥(asq) = [ (1—agh 2+t (3.1b)
(i,5)EX

Casq) = [ A —ag™). (3.1c)
(i,5)EX

We remark that in the literature on multiple basic hypergeometric series C(a;q) is
frequently denoted as (a; q)x. Expressed in terms of ordinary g-binomial coefficients, we

have
n o
- n—i l—ag "t
SCURS | (TN | e (3.20
i=1 1<i<j<n q
n 2—24 o —
agq®™*; q)a, 1 —ag* "
ct = (7 - 3.2b
A (Cl, q) lljll (aq2—z—n; ) . 1<1:[< 1— ani+)\j717J+2 ( )
= <IN
CR(as q) = [J(ag" 5 )., (3.2¢)
i=1

where n is an arbitrary integer such that [(A) < n. Since conjugation simply interchanges
rows and columns of a partition, it follows readily from (3.1) that

Cy(asq) = C5 (a;q) (3.3a)
Cf(a;q) = (—ag) M@V =30 CF (4172, q) (3.3b)
C%(a;9) = (—a)Mg"V ="M (a7 q), (3.3¢)

where [A[:= A1+ X2+ and n(A) := 30,5, (i = DA = 32,5 (’\2/)
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3.2. The Weyl character and dimension formulas

Let g be a complex semisimple Lie algebra of rank r, h and h* the Cartan subalgebra
and its dual, and ® the root system spanning h* with basis of simple roots {aq, ..., o},
see e.g., [4,17]. Let (-,-) denote the usual symmetric bilinear form on h*, and assume
the standard identification of h and h* through the Killing form so that the coroots are

given by
2 2«
a\/ = = 2
(a,a) o
Let wy, ..., w, be the fundamental weights, i.e., {w;, aJV) = 0;;, and denote the root lattice

Zoy @ - - - @ Zo, and weight lattice Zwy @ - - - @ Zw, by @ and P, respectively. Further,
let P; be the set of dominant (integral) weights,

P.={XeP: (\a/)20for1<i<r},
and set
Qi ={aecQ: (o', w)>0for1 <i<r}.

We also denote the set of positive roots by @, so that &, = Q4 N .
The irreducible highest weight modules V() of g are indexed by dominant weights .
The characters corresponding to these modules are defined as

chV(A) =) dim(V,)e",

HEDL*

where the V), are the weight spaces in the weight-space decomposition of V() and et
for A € P is a formal exponential satisfying e* e# = e*#_ It is a well-known fact that
dim(Vy) =1 and dim(V,,) = 0if A — pu ¢ Q4. The characters can be computed explicitly
using the Weyl character formula

> wew sgn(w) e

Ha>0(1 - eia)

chV(\) = (3.4)

Here, W is the Weyl group of g, a > 0 is shorthand for a € &, and p = %Z(Doa =
Z:Zl w; is the Weyl vector. For A = 0, Weyl’s formula simplifies to the denominator
identity

> sgn(w)e = [T —e). (3.5)

weWw a>0
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The dimension of the highest weight module V() follows from the Weyl character
formula by applying the map e* — 1. We will require two slightly more general speciali-
sations resulting in ¢-dimension formulas. Let s be the squared length of the short roots
in ® and define ' and FV by

Pzl e ST, Fe) = g
FY:Ze ... ;e ] — Z[q], FY(e=) = glped) = ¢

for all ¢ with 1 < ¢ < r. By defining the g-dimensions by
dimg V(M) == F(e ™ chV())) and dim; V()) = F¥ (e *chV())),
we have the following pair of g-dimension formulas.

Lemma 3.1. We have

) 1— q<)\+P,a)
dim, V(A) =[] T (3.6a)
a>0
1 — grtea’)
. \V2 _
dim V(\) = 1;[0 T T (3.6b)

In the ¢ — 1 limit, (3.6a) implies the Weyl dimension formula

dimv () =[] %
a>0 ’

Proof. Applying F to e *chV(\) € Z[e™,..., e~ "] and using (3.4), we obtain

ZwEW Sgn(w)q—(pywo\-y-p)_)\_p)

dim, V() = Mool — a7

Since (p, w(A+p)) = (w1 (p), \+p) and sgn(w) = sgn(w~!), a change of the summation

1

index from w to w™" results in

ZwGW Sgn(w)q_<w(p)_p))‘+p>

dimg, V(A) = Moo — @)

The first claim now follows from the denominator formula (3.5) with e™% s ¢~ (®A+0),
The proof of (3.6b) is nearly identical and is left to the reader. O

In the next four subsections we restrict the Weyl character and dimension formulas
to the four classical types and give “dual” forms for the g-dimension formulas needed in
our proofs of the discrete Macdonald—Mehta integrals.
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3.8. The Schur functions

For z = (x1,...,2,) and X a partition of length at most n, the Schur function sy (x)
is defined by

Aj+n—j
dety<; j<n(x;’
sa(a) 1= Shsiaen(mi’ ) (3.7)
deti<ij<n (i )
If A, = Z[z1,...,2,]%" denotes the ring of symmetric functions in n variables, then

the Schur functions indexed by partitions of length at most n form a basis of A,. The
Schur functions have a simple interpretation in terms of the representation theory of
the symmetric group &,, and the general linear group GL,,(C). More precisely, they are
exactly the characters of the irreducible (polynomial) representations of GL,(C). The
representation theory of SL,,(C) is almost identical to that of GL, (C), the only notable
difference being that in the former irreducible representations are indexed by partitions
of length at most n — 1, and to interpret such sy(x) as a character we should impose the
restriction xy - - - &, = 1. Since the Schur function sy (z) is homogeneous of degree A and
satisfies

sa(z) = (z1 - 'an)’\"S(,\17,\,L,...,>\,L,17,\,L,0)(33)7

these differences do not affect any of the underlying combinatorics. In particular, if g is
the Lie algebra sl,,(C) and ¢ the ring isomorphism

¢:Z[* Ae Pl S Zar, .. g2t 2] = A (3.82)
pe¥)y=x1---x; forl<i<n—1, (3.8b)

then
¢(Ch V(}\)) = Sk(w)‘zn:zflngll’ (39)

where on the left \ is a dominant weight parametrised as
A=A —X)wi+ -+ (A2 — Ap—1)wWn—2 + Ap—1wn—1 (3.10)

and on the right X is the partition (A,...,A\,—1,0).
Instead of using the ratio of determinants given in (3.7), we can compute the Schur
function in a more combinatorial fashion using semi-standard Young tableaux. Namely,

sa(x) =) a’, (3.11)
T

where the sum is over all semi-standard Young tableaux T' of shape A on the alphabet
1<2<---<nanda? = le(T) (D),
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From Lemma 3.1 and equation (3.9), it follows that for [(A) < n we have the principal
specialisation formula

Ai—=Aj+ji—i

1 —
n—1\ _ n(\) | I q
SA(L(L;CI )_q 1_qj,1
1<i<jsn

(3.12)

Indeed, since the above only depends on differences between the parts of A, we may
assume without loss of generality that A,, = 0. Since the set of positive roots is given by
{;+-+a;: 1<i<j<n—1},

it follows that for A € Py parametrised by (3.10) we have

Ai—=Ajp1+g—i+1

dim, V() =dimY V) = [ L

g (3.13)
1<i<j<n—1

Since F(e=«) = ¢*(»=9/2 it follows from (3.8b) that under the induced action of F on
Al, we have

F(z;) = ¢~t2 for1<i<n—1.

We also have F(e™*) = g~ DIM/2=n(N) where on the right \ is the partition correspond-
ing to A € Py on the left. Hence,

8/\<17 q,-.-, qn_l) = q(n—l)‘M/Qs)\ (q_(n_l)/27 q—(n—3)/2, e 7(1(”_1)/2)
= q(nfl)\kl/2p(s/\(x))
= ¢"WF(Ee*chV(N) = ¢"W dim, V()),

which by (3.13) implies (3.12). All of the above is well-known, although rarely made
explicit. Since later we want to refer to analogous results for other groups without spelling
out the (less well-known) details, we have included the full details of the Schur function
case. We also note that each of the principal specialisation formulas for the classical
groups has a dual form obtained by using conjugate partitions. These dual forms will be
crucial later.

Lemma 3.2 (Principal specialisation — dual form). For A C (r™), we have

r -1 L=Nj—i

n— n n+r—1||n+r—1 1 =gt
s (1,g;--.q 1):q(A)H[)\’.+7‘—Z}[ ] H 1—gi™
i=1L7

r—1
1<i<j<r

Proof. Perhaps the most elegant proof is to use the dual Jacobi-Trudi identity (31,
p. 41] and the principal specialisation formula for the elementary symmetric functions
[31, p. 27], combined with the determinant evaluation [24, Theorem 26].
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In view of the other types yet to be discussed, we will proceed in a slightly different
manner. By (3.2), we can write (3.12) as

B N CO n;
n 1):q \) U

5)\(17Qa"'7q C_(qq)
A\

According to (3.3), the right-hand side also equals

() C (a7 9)

n\|A| n
—q q _ )
( ) C,\/(Q%Q)

which, by (3.2) with n — r, is

T 1 i—n. AN —=Xtji—i
/ 1 =g
|>\\ —1 -4 -
Mgy I ——=
} q)x - q
i=1 i 1<i<j<r
By
A )BV P =ML n()—n(\) - (6 D nvi-1(q;9)r—i 14
r—i4+1. *( q ) q H . . ) (3 )
el CURRART )P (@ Dxr—i (@ Dnimxg—1

the lemma follows. 0O
3.4. The odd-orthogonal Schur functions

A sequence (A1,...,A,) is called a half-partition if \y > Ag > -+ > A, > 0 and
N €7+ 1/2.

For ¢ = (21,...,2,) and A = (A1,...,\,) a partition or half-partition, the odd-
orthogonal Schur functions are defined as (cf. [13,29])
Xj+n—j+1/2 x‘—(/\j+n—j+1/2))

det1<i j<n (2

0212 (@) = detigi,jn (:Un_jH/Q — x-_(n_j+l/2)) ' 19

The 502,411 (%) again arise from (3.4), this time for g = 802,41 (C). Defining ¢ by

¢:2[*:xe P]" »z[af? . 22"

)

T x4, forl<i<n—1,
¢<e—“i)={1

(x1---z,)Y?, fori=n,

where B, is the hyperoctahedral group acting on the x; by permuting them and by sending
x; to x;l for some 7, we have

d(ch V(X)) = sogns1.x(2), (3.16)
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where on the left A is a dominant weight parametrised as
A= ()\1 - )\2)&)1 + -+ ()\nfl - )\n)wnfl + 2)\nwn7

and on the right A is the partition or half-partition (A1,...,A,).
For later use, we will also define the companion

sot (z) = det1<i j<n (x;\j+n7j+1/2 + 37;()\'7+n7j+1/2)> (3.17)
20410 deticryen (@ TT7 4 gy oI
If \ is a partition, it readily follows that
503, 11(@) = (=1)Msoop 1,5 (—2). (3.18)

For half-partitions, however, so;n 41 ,(z) is a rational function such that
n
1/2 —1/2
S04, 414(1)D(@) € Z[z*IP,  D() = (@) + 27,

=1

Since for half-partitions sog, 11 (z)D(z) € Z[z¥]P", it follows that, regardless of the
type of A\, we have

$02n 11,1 (2)503,, 1 5 (7) € Zlzt)Bn.
In terms of the Sundaram tableaux introduced on page 84, for A a partition we have

sognpia(z) = ',
T

where the sum is over all Sundaram tableaux of shape A and
T = [T a0, (3.19)
k=1

Lemma 3.3 (Principal specialisation — dual form). For A C (r™) a partition, we have

r —1
" (N —n 2n+2r—1||2n+2r —1
soon1.A(¢: ¢, q") = " A'H[ N }[ o } (3.20a)
i=1L 7

N = Nij—i 20— N, =N +itj—1

1—g¢q 1—¢q
X H 1—gi-i ’ 1 — g2ntiti—1
1<i<j<r

and



94 R.P. Brent et al. / Journal of Combinatorial Theory, Series A 144 (2016) 80-138

502n+1,)\(q1/27q3/27 e qn—l/Z) _ qn(k)—(n—1/2)|)\| (320]3)

Xli[1+q"%+i*1/2 m+2r—17[2n+2r—1]17"

Sl gnt2 L N = r—i
1 gNm A= L 2n= AN il
SE | (AN S
11 1— qj—z 1— q2n+z+j—1
1<i<j<r

Proof. Let €1,...,¢, be the standard unit vectors in R™. Assuming the realisation
{aq,...,an}t ={e1 —€2,...,€n—1 — €n, €} for the simple roots of s02,11(C) (see [17]),

the fundamental weights and positive roots are given by
{Wl,...,wn} = {61761 +627'~'761 +"'+€n717%(61 ++6n)}7
{aed®:a>0}={e:1<i<n}U{egLe:1<i<j<n}
Hence, by (3.6b), (3.16) and F(z;) = ¢"~**!, we have

502041 (¢: 4%+, q") = ¢V 7" dimy V(A) (3.21)

o g2hit2n—2it1
_ qn()\)—n|>\| H q
1— q2n72i+1
=1

Ai—=Xj+j—i 1— q)\i+)\j+27l—’i—j+1

l—gq
x H 1—qi—i 1 — g2n—i—j+1
1<i<jsn

It follows from (3.2) that the right-hand side can be expressed in terms of the generalised
g-shifted factorials as

n

qn(/\)fn\kl Cg(q”, —q ,q”+1/27 ,qn+1/2;q)
Cy(g ) (> Lq)

where CY(ay,...,ar;q) = CY(a1;q) - - CY(ax; ). By (3.3), this is also

n+1)|/\\qn()\') Cg’ (q—n, —-q ", q—n—1/27 _q—n—1/2; Q) ]
Ci(g:9)CY (g2 15 q)

(—q
Again using (3.2), but now with n replaced by r, this is
1—i—2n—r N=Njti—i o _ q2n—)\i—)\j+i+j—1

I
ey L) TT (4 $4)x; l—q
q" q - — . —
( ) Z];[ (qr—z+1; Q)/\i 1<i1;|j:<r 1— q]—Z 1— q2n+z+j—1

(3.22)

By (3.14) with n — 2n 4+ r, the first claim follows.
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The second specialisation (3.20b) follows in much the same way by applying (3.2) and
(3.3) to

502n+1,)\<q1/27 q3/27 R qn_1/2> (323)

= =12 gim V(A)

o1 _ gritn—itl/2
— V) =(n=1/2)|7| H q
=4 L=
e
1 _ q>\1—)\]+j—l 1 _ q>\l+)\]+2’n—l—]+1
% H L—gi~i 11— g2nig+tl =

1<i<j<n
For later reference we also state the principal specialisation of sog'n 41, L\ ().
Lemma 3.4. For A = (A\1,...,\,) a partition or half-partition, we have
T] o gritn—itl/2

V2 YR = gt =120 H
1=1

+
So2n+1,>\(q 1 + qn_i+1/2 (3.24)

)\i—)\j-‘rj—i )\,i+/\j+2n—i—j+1

1—-g¢g 1—gq
X H 1—qgi—i ’ 1 — g2n—i—itl
1<i<jsn

Proof. According to (3.5), the denominator identity for B,, (or soz,+1,1(C)) is given by
(see also [24, Equation (2.4)])

det (x@‘7+1/2_.xf‘"’j+1/m) (3.25)

1<, j<n \ ! ¢

= ()OO e 0 —2) [ (@ —2) —aiy).

i=1 1<i<j<n

Replacing x; by —x; (readers worried about a choice of branch-cut should first multiply
both sides by [[, z; 172 and later divide by this factor) and taking the transpose of the
determinant, we obtain (see also [24, Equation (2.6)])

n

det (az?iiH/Q—kx.ﬁ("*iH/m):Hmil/%"(l—i—xi) H (xi—z;)(1—z;x5). (3.26)

1<i,j<n / : by
i=1 1<i<j<n
If we specialise z; = ¢"“t1/2 (1 <i < n) in (3.17), then we get

503,10 (a"% ") (3.27)
_detigij<n (q(A.7‘+n*j+1/2)(n*i+1/2) + q—(A_,-+n—j+1/2)(n7i+1/2))
B deti<; j<p (=12 (n=i4/2) 4 g=(n=j+1/2)(n—i+1/2))
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By (3.26) with 2; = ¢}+"=7+1/2 or ; = ¢"77%1/2 both determinants on the right-hand
side can be expressed in product form, resulting in (3.24). 0O

3.5. The symplectic Schur functions

For ¢ = (x1,...,2,) and A a partition of length at most n, the symplectic Schur
functions are defined as

A+l —(Ajtn—j+1)
detigi j<n (77’ —xz; )

SPay A (T) 1= — — (3.28)
2n detlgi,jgn (xzz J+1 x (n ]+1))

If g = sp,,,(C), then
¢(Ch V()\)) = Sp2n,)\(‘r)7
where ¢(e™ ) =1 -x; (1 <i<n)and
Poox=A = X)wi 4+ (Ao1 — An)wn—1 + Apwn.

To express this combinatorially, we need the symplectic tableaux of King and El-
Sharkaway [20,21]. These are semi-standard Young tableaux on 1 <1 <2 <2 < -+ <
n < n such that all entries in row k are at least k. For example,

2[3]5]
1

NN
NN
ar|w

is a symplectic tableau for n > 5. The symplectic analogue of (3.11) then is
Sp2n )\ Z T

where the sum is over all symplectic tableaux of shape A and x7 is again given by (3.19).

Lemma 3.5 (Principal specialisation — dual form). For X € (r™), we have

n(A)—n L= 2n42r 1[2n42r]"
Do A (¢, 05, q") =q" P |A|H =l BV | R (3.29a)
1_ q/\i—/\’j+j—z‘ 1_ qzn—/\;—/\;+z‘+j
x H 1—qi—i ' 1 — g2ntity

1<i<j<r

and
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sponn (@', 6%, g ) (3.29b)
n— i -1
N =(=1/2) H 1—@r=X40 T on 420 120+ 2r
1— g2t [ N 47— r—i
1— i7>‘j+J72 1— 2n7)\27)\;+i+j
< ] C —_
11 1—g 1= g@nits
1<i<j<r
Proof. If we take the simple roots to be {a1,...,an,}t = {€1 —€2,...,€n_1 —€n, 26, } (see

[17]), then

{wi, .. wn} ={e, e tea, a0+ Fend,
{aed®:a>0}={2;:1<i<n}U{ete:1<i<j<n}

From Lemma 3.1, it then follows that

Do (¢, 0%, q") = "N "M dim, V() (3.30a)
_ 2(Ni+n—i+1
ey anu
1— q (n—i+1)
1 ghi— A=t ] gl H2n—i—j+2
x H 1q_ ; ' 1q_ 2n—i—j+2
1<i<j<n q q
and
D (0V/2,6¥2, . q" V) = U2 dimY V(A (3.30)

_ o Aitn—i+1
IORICE 1/2>|A|H1 " _
1 _qTL (]

Ai—Xj+j—i Ait+Aj+H2n—i—j+2

1—g¢q 1—g¢q
X H 1—qi—i ’ 1 — g2n—i—it2
1<i<j<n

The rest of the proof is analogous to that of Lemma 3.3; we omit the details. O
3.6. The even-orthogonal Schur functions

Let a D,, partition be a weakly decreasing sequence (\1,...,A,) such that each A\; € Z
or each \; € Z + 1/2, and such that A\,—; > |\,|. If X is a D,, partition then so is
A=A Ao —An).

For x = (x1,...,x,) and A a D,, partition, the even-orthogonal Schur functions are
defined by

5 Our definition agrees with that of [13,36] up to the change = + 1/z. For even n, 025, (1/2) = s025, (),
so that the two definitions are identical. For odd n, so2,,x(1/%) = soy, 5(z), so that the difference corre-
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Xjtn—i | —(\+n—j)
detyi<;. ox;’ +x
S0z 7 (z) 1= Z 1<i,j<n ( i — —Z(n—j) ) (3.31)
ce{£1} detigij<n (277 + 1 )
We note that soy, 5(2) = S0z, A(Z), where Z := (21,...,2,_1,2;,"). Assuming g =
$02,(C), we have
¢(ch V(/\)) = S02n,1 (),
where
T X4, forl<i<n—2,
ple™) = (x1---xp 12, D)2, fori=mn—1,
(x1 - ,)Y/2, for i = n,
and

P+ SA= ()\1 — )\2)&)1 + -4 ()\n,1 — )\n)wn,1 + ()\n,1 =+ )\n)wn

For our purposes it is not enough to consider soz,, »(x); we also need the closely related
even-orthogonal characters (cf. [22])

Aj+n—j —(\j+n—3)
detigi j<n (77 +ax; )

deti<ijcn (207 +a; 7))

02p, A () = ux , (3.32)

where X is a partition or half-partition and uy = 1 if I{(A) < n and uy = 2 if [(A) = n.
Note that
n ) if [(A) < n,
o2a(e) = 4 ) < (3.33)
s02n.2 () + 80g,, x(2), if I(A) =n.

Also the even-orthogonal characters can be expressed in terms of a tableau sum, see,
e.g., [12,41]. We will however not define these tableaux here and instead restrict our
attention to the simpler “even Sundaram tableaux” of [12]. An even Sundaram tableau is
a semi-standard Young tableau on the alphabet 1 <1 <2 <2< ---<n <@ < 0o such
that all entries in row k are at least k, with the exception that co may occur multiple
times in each column but at most once in each row. Note that the only difference with
the earlier definition of Sundaram tableaux is that entries in row k have to be at least
k instead of k. This implies that 1 cannot actually occur in even Sundaram tableaux.
Due to the absence of the letter 1, it is not known how to assign monomials to even

sponds to the diagram automorphism which permutes the two vertices n — 1 and n in the fork of the D,,
Dynkin diagram.
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Sundaram tableaux so that they generate og, x(x). It is however shown in [12] that
02,2 (1™) correctly counts the number of even Sundaram tableaux of shape .

Lemma 3.6. For A a partition contained in (r™), we have

o2n (a2, 6°%, . g ) (3.34)

r —1

:qn(A)_(n_l/Q)‘MH 2n+2r — 2 2n+2r — 2

Sl AN —a r—i
y H 1 q>\§7>\;+jfi ' 1— q2n7)\;7)\;+i+jf2
i 1—qi—i 1 — g2ntiti—2
RUIIIT
There is a similar result for o2, 1(1,¢,...,¢" '), but this is not needed.

Proof. If we specialise z; = ¢"*t1/2 in (3.32), with 1 < 7 < n, and then use the
determinant evaluation (3.26) with 2; = ¢**"~J or x; = ¢" 7, we obtain

1/2 3/2 n—1/2 (N —(n—1/2)|A| n 14 q>\i+7l—i
oM@ 00T = g || = (3.35)
o LTa
o H L—ghhtimi ] Aty
1—qgi—t 1 — g2n—i—j

1<i<jsn

The rest of the proof follows that of Lemma 3.3. O

For later reference we note that it follows in much the same way from (3.25) and
(3.26) that

soznn (g2, ¢%2,...,q"71?) (3.36)
_ =1/ filiﬂft:f+filiﬁﬁt:f
Ll 4 gn—i 11 74 gni
=1 =1

l—q l—q
% H l—gi—i = 1—gni-j
1<i<jsn

4. Okada-type formulas

With the exception of type A, _1, our proofs of the discrete analogues of Macdonald—
Mehta integrals for v = 1/2 given in the next section rely on formulas for the multi-
plication of Schur functions of type g indexed by partitions of rectangular shape. Such
formulas have been given by Okada in [36]. We use several of his formulas, but we also
require additional ones. In the subsection below, we list all these results, and we present
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the (principal) specialisations of these formulas that we actually need. Subsection 4.2
provides the proofs of the new results not contained in [36]. These proofs heavily rely on
“preparatory results” from [36].

4.1. Main results
Our first result applies to g = s02,41(C). Let soz_nﬂ’)\(x) = 80241,1 ().

Theorem 4.1. Let v be a non-negative integer, € € {—1,1} and s := %r. Then

S eMsos11,(67) = 80311, (5m) ()50 1, o (@) (4.1)
AC(rm)
where the sum on the left is over partitions, and 0 = — ife =1 and 0 = + if e = —1.

For ¢ = 1 this is (a special case of) Okada’s [36, Theorem 2.5(1)].
Later we require (4.1) in principally specialised form as follows from (3.21), (3.23)
and (3.24) for A = (s™).

Corollary 4.2. For r a non-negative integer and € € {—1,1}, we have

r+1. o2 n _ gititr—1
3 > ny (i) (@54 1—¢
502n+1,)\(qa q,...,q ) =9q 2 ) H _ itj—1 (423)
AC(rm) (@@ 5o 1=
and
E eMsog, 12 (e¢ %, 66?2, . . eq"V?) (4.2b)
AC(r™)

g2 q)n(eq T 2 ) Ty L gt

— —rn2/2( H
(@ /% @n(eq % q)n 22 1—g o7t
i

where \ is summed over partitions.

Letting ¢ tend to 1 in (4.2a) (or the ¢ = 1 case of (4.2b)) yields the unweighted
enumeration of Sundaram tableaux given in Theorem 1.2. Taking e = —1 in (4.2b), then
using

(@ Y/29), (=g Y2 9) ()

(@Y%) (—a"%9)n  (G¢%)n

tend to £1 gives

and finally letting ¢'/2

ST ()T LS st — (qyrn T LI
TC() e TP T
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Since

IT| = moo(T) + > (mi(T) + mg(T)),

k=1
this results in the two weighted enumerations of that theorem.

Next we consider g = sp,,, (C).

Theorem 4.3. Let r be a non-negative integer and s := |ir|, t :== [1r]. Then

Z SPan,A () = 8Pay, (s7) (%)502n 41, (1m) (2). (4.3)
AC(rm)

This identity follows from [36, Theorem 2.5(1)] by observing that (see e.g. [41, Propo-
sition A2.1(c)])

n
2, —1 2
S02n+1,a+1/2(T) = SPap, Az H / / )

=1

where A + 1/2 stands for (A; +1/2,..., A\, + 1/2). It is interesting to note that Proc-
tor [39, Lemma 4, equation for As,(mw,), case r=n] obtained this same sum from
a specialised Schur function. (In representation-theoretic terms: the restriction of an
SLay+1(C)-character indexed by a rectangular shape to Sp,,(C) decomposes into the
sum of symplectic characters indexed by all shapes contained in that rectangle; see also
[23, Equation (3.4)].) He used his result to prove the (at the time conjectured) formula
for the number of symmetric self-complementary plane partitions contained in a given
box.
Once again, use of (3.21) as well as (3.30) yields our second corollary.

Corollary 4.4. For r a non-negative integer, we have

ntl n itjtr—1

'n+1 1— q
Z Sp2n,)\(q? q2a SRR q - H H _ z+] 1 (44&)
AC(r™) i=1 j=1
and
_ li+r)/2 n nol 1 — gttitr
/ n— 1/2 —rn2/2 1 q q
Z SPap, )\ ,q - q H 1— qi/2 HH 1—qgiti
AC(rm) i=1j=1 (4 4b)

Letting ¢'/2 tend to +1 in (4.4b) implies two counting formulas for symplectic
tableaux.
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Theorem 4.5. The number of symplectic tableaux of height at most n and width at most
r is given by

n+l n

t+j+r—1
Il —— i (4.5)

i=1 j=1

and the number of such tableauz weighted by (—1)I7! is

m”z‘+ r/2 = z+]+r
p LT

i=1 i=1 j=1

For example, when 7 = n = 2 there are (3-4%-52-6)/(1-2%-32-4) = 50 symplectic
tableaux, with the following break-down according to shape

DB[DEL:]EL}

1 4 5 10

so that the signed enumeration is 1 —4+5+10—-16+14=10=(2-3-4-5)/(1-22-3).
We remark that (4.5) is not actually new, and it is implicit in [39] that the number
of symplectic tableaux contained in (r™) (0 < m < n) is given by

2n—m-+1 m

t+j+r—1
H H i+j—-1 "~

=1 j=1

See also [26, Theorem 7] for an equivalent statement in terms of vicious walkers (non-
intersecting lattice paths).

Our final Okada-type formula involves the even-orthogonal as well as orthogonal char-
acters.

Theorem 4.6. Let r be a positive integer. Then

Z 8021, A (%) = S0y, (57 (X)8025,41,(s7) (), (4.6a)
AC(rm)
where s := %r, and
Z 0271,)\(1‘) = OQn,(s”)(-r)SOQnJrl,(t")(x)a (46b)
AC(r™)

I(AN)=n

where s := $(r+1) and t := 3(r — 1).
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We remark that (4.6b) also holds when the orthogonal characters are replaced by
even-orthogonal Schur functions, but in some sense this is a weakening of the result.
In the other direction, the analogous result does not hold for (4.6a) in that we cannot
replace the even-orthogonal Schur functions by orthogonal characters.

By (3.23), (3.35) and (3.36), the above two identities result in the final corollary of
this section.

Corollary 4.7. For r a positive integer, we have

Z o2 (a2, %2, ") (475)
AC(rm)
— g2 (¢"*/2 q)n ((—QT/Q;Q)n i (Q’“/Q;q)n) ﬁ 11 ﬂ
(q1/2; Q)n (_1§ Q)n (—1; Q)n P st 1— ql+]—l
and
> oannl@ 262 (7b)
AC(r™)
I(N)=n
r/2. T/2+1/2 n n—1 idjtr—1
—rn2 (q 7q)n ( 1 q
=2¢™ /2 )
(@2, 9)n Hjﬂl T g

If we let ¢ — 1 in (4.7b), we obtain a closed-form expression for the number of
even Sundaram tableaux of height exactly n and width at most r. From (3.33) and
809, 3 (@) = 802;,,A (%), it follows that

Ogn,)\(ln) = U) SOQm,\(ln). (4.8)

Hence we can combine (4.7a) and (4.7b) to also obtain the enumeration of such tableaux
contained in (™).

Theorem 4.8. The number of even Sundaram tableaux of height at most n and width at
most r is given by

22n_1<r+) GOy Yy SRV AN
=1 j=1 Z+']

and the number of such tableaux of height exactly n is

G g ititr—1
22n 2
I

=1 j=1
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For example, when r = n = 2 there are 46 even Sundaram tabl