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ABSTRACT
Mathematical research is undergoing a transformation fromamostly theoretical enterprise to one that
involves a significant amount of experimentation. Indeed, computational and experimentalmathemat-
ics is now a full-fledged discipline with mathematics, and the larger field of computational science is
now taking its place as an experimental discipline on a par with traditional experimental fields. In this
new realm, reproducibility comes to the forefront as an essential part of the computational research
enterprise, and establishing procedures to ensure and facilitate reproducibility is now a central focus
of researchers in the field. In this study, we describe our attempts to reproduce the results of a recently
published article by Reinhard Ganz, who concluded that the decimal expansion ofπ is not statistically
random, based on an analysis of several trillion decimal digits provided by Yee and Kondo. While we
are able to reproduce the specific findings of Ganz, additional statistical analysis leads us to reject his
overall conclusion.

1. Introduction

Mathematics is undergoing a transformation from a
mostly theoretical enterprise to one that involves a signif-
icant amount of experimentation. Indeed, computational
and experimental mathematics is now a full-fledged disci-
pline with mathematics. The larger field of computational
science, which spans many different disciplines ranging
from physics and engineering to the social sciences, is
now taking its place as an experimental discipline on a
par with traditional experimental fields. But concomitant
with its increased stature as an experimental discipline,
computational science has had to come to grips with the
need to foster greater reproducibility in its research find-
ings. Indeed, in most fields, it is entirely appropriate to
perform an experiment that is merely intended to repro-
duce another recent finding.

1.1. Reproducible computational science

Most experimental disciplines have long instituted both
formal and informal guidelines and procedures for
facilitating and ensuring reproducibility. Prospective
physicists and chemists have been taught to keep a

CONTACT David H. Bailey david@davidhbailey.com Lawrence Berkeley National Laboratory, Computational Research Department, Berkeley, CA ,
USA.
†Jonathan M. Borwein passed away on August , .
Color versions of one or more figures in the article can be found online at www.tandfonline.com/uexm.

detailed logbook of their experimental work, including
such minutiae as exact details of the experimental setup,
the source of samples, a minute-by-minute (if necessary)
log of everything that happens, data collection and anal-
ysis, and more. Social scientists and medical scientists,
troubled with apparent instances of “effects” being seen
in data that later proved illusory, have instituted strict
double-blind procedures and other methodologies to
improve reproducibility.

In spite of these efforts, though, several fields have been
stung in recent years by widely publicized instances of
reproducibility failures. For example, in 2012, a pharma-
ceutical researcher at Amgen reported that he and his
colleagues were unable to replicate 47 of 53 “landmark
papers” about the incidence of cancer, even with some
assistance from the original researchers [Glenn Begley
and Ellis 12, Johnson 14]. Similarly, a 2015 attempt by
Brian Nosek and several colleagues at the University of
Virgina failed to reproduce 60 out of 100 published studies
in the field of psychology [Carey 15]. Several prominent
journals have issued new guidelines for publication stud-
ies, including a disclosure and proper analysis of the sta-
tistical methods used [Van Noorden 14]. Numerous writ-
ers, e.g., [Smith 14, Ziliak andMcCloskey 08], have raised
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concern about the use andmisuse of statistics in scientific
research.

In the wake of these developments, research studies in
the field of computational science have come under addi-
tional scrutiny. Unfortunately, due in part to the rapid
growth of the field, computational science has not fostered
a culture of reproducibility. In many cases, there are con-
cerns that the results are not numerically reproducible—
numerical sensitivities in a code that are minor in most
applications suddenly become major problems when the
codes (and applications using the code) are scaled up in
size to run on highly parallel supercomputers. At a deeper
level, published papers in the field typically do not include
full details of computational environment and the specific
algorithms employed, nor do they, in most cases, offer
the actual source code used and output files on a pub-
licly accessible repository. And very few published papers
attempt specifically to reproduce the findings of a previ-
ous computational study.

A 2013 workshop at the Institute for Computational
and Experimental Research in Mathematics (ICERM) in
Providence, Rhode Island, USA, specifically addressed
the issue of reproducibility in computational and experi-
mentalmathematics. Theworkshop report recommended
broad changes in the field to promote a “culture change
that will integrate computational reproducibility into the
research process.” The findings included these recom-
mendations for publication of research results [Stodden
et al. 13a, Stodden et al. 13b]:

1. A precise statement of assertions to be made in the
article, together with a statement of the computa-
tional approach, and why it constitutes a rigorous
test of the hypothesized assertions.

2. Complete statements of, or references to, the algo-
rithms employed.

3. Details of software (both research and commercial
software) used in the computation.

4. Details of the test environment, including hard-
ware, system software, and the number of proces-
sors utilized.

5. Details of data reduction and statistical analysis
methods.

6. Discussion of the adequacy of numeric precision
and grid resolution.

7. A valid summary of experimental results.
8. Verification and validation tests performed by the

author(s).
9. Availability of computer code, input data, and out-

put data, with some reasonable level of documen-
tation.

Of course, these requests are not all equally relevant to
each piece of research.

1.2. Reproducibility study: Randomness of the digits
of π

With this background, the present authors sought to per-
form a “case study” by analyzing the reproducibility of a
recent paper in the computational mathematics field. The
study that we selected is by ReinhardGanz, who, in a 2014
article [Ganz 14], analyzed a large dataset of the decimal
digits of π to see whether or not the decimal digits of π

are statistically random. We were led to attempt to repli-
cate his study for three reasons.

� Several colleagues had contacted various of the cur-
rent authors to ask our opinions of the study.

� The conclusion was striking, given that while π is
clearly not random, we knew of no compelling prior
evidence of statistical non-randomness in the digits
of π , but see [Calude et al. 10].

� We were keen, in light of the discussion in
Section 1.1, to attempt a full-hearted replica-
tion/reproduction of a mathematical experiment.

Two of the present authors have previously published
studies on the question of whether π or other constants
are b-normal. By b-normal, for some positive integer b, we
mean that every base-b digit appears, in the limit, with
frequency 1/b, that every pair of base-b digits appears, in
the limit, with frequency 1/b2, and so on, with every m-
long string of base-b digits appearing, in the limit, with
frequency 1/bm.

As we will discuss in more detail in the next section,
whether or not π (or almost any other irrational or tran-
scendental constant that appears in the mathematical lit-
erature) is b-normal, either for b = 2 or for b = 10, let
alone for all bases simultaneously, remains an outstanding
open problem inmathematics. Since the dawn of comput-
ing, mathematicians have wondered whether or not this is
true; indeed, to gain insight into this question is a leading
motivation for the many recorded computations of π and
othermathematical constants. The question ofwhetherπ ,
in particular, is b-normal to any or all bases is among the
oldest unanswered questions of mathematics.

Some of the previous research on this question by the
present authors and colleagues include the following. In
[Bailey and Crandall 01; Borwein and Bailey 04], one
of the present authors and Richard Crandall (deceased
December 2012) established that the question of whether
constants such asπ, log 2 and others are 2-normal in each
case reduces to a conjecture about the behavior of a closely
related pseudorandom number generator. If the associ-
ated pseudorandom number generator can be proved to
be uniform in (0, 1), then normality is established. In
[Bailey and Crandall 02; Borwein and Bailey 04], the
same authors proved normality for an uncountably infi-
nite class of transcendental constants; for example, the
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authors proved that the constant (now known as Stone-
ham’s constant)

α2,3 =
∞∑

n=0

1
3n23n

= 0.54188368 . . . (1–1)

is provably 2-normal (this result was proven more simply,
using an ergodic theory argument, in [Bailey and Misi-
urewicz 06]) (see also [Borwein and Bailey 04]). In a sep-
arate study by two of the present authors [Bailey and Bor-
wein 12], it was shown that α2,3 is provably not 6-normal.

In a 2012 article [Bailey et al. 12], two of the present
authors, together with Cristian Calude, Michael Din-
neen, Monica Dumitrescu, and Alex Yee, demonstrated
that based on a Poisson process model and the first
four trillion hexadecimal digits of π , it was “extraordi-
narily unlikely” that π is not asymptotically 16-normal.
In a 2013 article [Aragon Artacho et al. 13], two of
the present authors, together with Francisco Aragon
Artacho and Peter Borwein, analyzed the normality
of π , Stoneham’s constant, and others using graphical
and statistical techniques. These authors showed, for
example, that while Stoneham’s constant is provably 2-
normal, it fails to satisfy a stronger condition of statistical
randomness.

So it was with considerable interest that the present
authors read a 2014 paper by ReinhardGanz, published in
the journal Experimental Mathematics [Ganz 14]. Ganz,
based on a dataset of the first several trillion decimals dig-
its ofπ provided to himbyYee andKondo, concluded that
these digits are not statistically random, to a fairly impres-
sive confidence level. If Ganz’s result is correct, it could
be landmark study in the field. At the very least, Ganz’s
result and methods well deserve to be reproduced by
other researchers, and to be extended to larger datasets if
possible.

... The status of Pi
For three other recent articles on the number the-
oretic and computational status of π , we refer the
reader to [Bailey et al. 13, Borwein 14, Borwein and
Chapman 15].

2. Ganz’s study and our present analysis

The purpose of Reinhard E. Ganz’s article [Ganz 14] is
to examine whether the decimal expansion of π is sta-
tistically random. In [Ganz 14], a statistical test is intro-
duced and employed to analyze the first 1013 digits of π .
In what follows, we briefly describe the test and show that
the results are replicable, and finally, we present our addi-
tional numerical experiments showing that the statistical
test is not robust.

We note that while Ganz gives a fairly explicit descrip-
tion of his experiment, the current authors were not able
to fully digest, and so attempt to replicate his method-
ology, without several communications between us and
Ganz.

2.1. Ganz’s original experiment

The null hypothesis introduced in Ganz’s article, which
is referred to as Null, is that the decimal expansion of π

behaves like a realization of a sequence of mutually inde-
pendent, identically distributed (iid) random variables on
{0, 1, ..., 9}. To test Null, the full set of digits are divided
into 222 disjoint blocks, each containing 5 × 109 consecu-
tive non-overlapping 9-tuples of digits so that 222 × 5 ×
109 × 9 = 9.99 × 1012. These are then converted to 222
binary values, Xi, i = 1, ..., 222, according to whether the
block containedmore than 2.3 × 106 9-tuples with at least
five identical consecutive digits (for example, 157777704).

Null1 is then defined as that the binary stream Xi
is Bernoulli process with Pr(Xi = 0) = Pr(Xi = 1) = 0.5.
Afterward, lengths Lj(Xi) (Lj for short) are determined
for consecutive runs of Xi , where a jth run is defined
as the succession of Lj identical values Xi = 0 or Xi = 1.
For example, if 00100011 is a consecutive run of Xi, then
L1 = 2, L2 = 1, L3 = 3 , and L4 = 2.Null2 is then defined
as that the random variable Lj has the geometric distribu-
tion with scale parameter q = 0.5.

To show that distribution Lj is independent of the
value and position of Xi, the author introduces the dif-
ference dk(Lj, Lj+1) = Lj − Lj+1 (or dk for short) and
the differencesDk(Lj, Lj+�r/2�) = Lj − Lj+�r/2� (orDk for
short), where 1 ≤ j ≤ �r/2�, r is the number ofLj, and �.�
denotes the floor function. Finally, Null3 is defined to be
that dk and Dk follow the symmetric Laplace distribution
with parameter p = 1 − q = 0.5.

In a nutshell, the author of [Ganz 14] believes that
the randomness of digits (Null) implies that Xi is an
iid random variable (Null1) which implies that the ran-
dom variable Lj has the geometric distribution with
scale parameter q = 0.5 (Null2) which eventually implies
Null3. Therefore, he believes that the rejection of Null3

would lead to rejection of Null as well.

2.2. Ganz’s experiment replicated

Ganz uses θ = T√
V
(for details on T andV refer to [Ganz

14]) as a standard normalized statistic for testing H0 :
θ = 0 versus H1 : θ �= 0, so that the test rejects Null3 at
the significant level α = 0.001 if |θ | > td f ;0.9995, where
d f denotes the degrees of freedom of the t distribution.
It is claimed that use of td f ;0.9995, for the corresponding
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Table . θ values for our suite of ten experiments.

Rejected, Rejected,
nB n θ (dk ) θ (Dk ) t

(n−2,0.9995) θ (dk ) θ (Dk )

  . . . × ×
  . . . × ×
222 54 3.933 3.496 3.488

√ √
  . . . × ×
  . . . × ×
  . . . × ×
  . . . × ×
  − . . . × ×
  . . . × ×
  . . . × ×

t-distribution, instead of z0.9995 (zδ denotes the δth quan-
tile of the standard normal distribution) provides addi-
tional protection of the α level, with onlyminor reduction
in the power of the test.

Our values for Ganz’s test statistics are θ (dk) = 3.933
and θ (Dk) = 3.496 (> t52;0.9995 = 3.488, where n = 54).
These numbers are identical to those reported in the
article—suggesting that the null hypothesis is indeed to
be rejected.

2.3. Ganz’s experiment extended

Our results so far show the correctness of those presented
in the article, but do not assess the statistical test itself. To
do so, we decided to run the test by varying the number
of blocks with the same set of digits so as to validate the
robustness of the statistical test used in [Ganz 14].

This time, we divide the 1013 digits into
213, 217, 226, 231, 236, 241, 246, 252, or 258 blocks,
respectively. The reason for this selection is that our
digits are saved in text files each containing 108 digits,
and it is easier to store an integer number of text files
in each block for the sake of simplicity in coding. In
addition, the number of digits in each block must be a
multiple of 9, since we are counting the 9-tuples. Hence,
nB = � 1013

9×108×β
�, where nB is the number of blocks and

β ∈ {43, 44, . . . , 52}. When β = 50, then nB = 222
which is the case presented in the original article.

2.4. Our findings

The θ values presented in Table 1 show that only when
nB = 222 is the null hypothesis rejected. This reveals the
lack of robustness of the statistical test in [Ganz 14].
Figures 1 and 2 illustrate respectively the distribution of
dk and of Dk for all variations of nB. These figures show
that the distributions are fairly symmetric in most cases,
while in few cases like nB = 222 the distributions appear
skewed. The overall results convince us that the statistical
test is not robust and, therefore, cannot be used to confirm
the author’s claim: “the decimal expansion of π is not sta-
tistically random.”

Heedful of Carl Sagan’s observation that extraordinary
claims require extraordinary evidence, we wonder why
Ganz did not attempt confirmatory experiments. Once
the digits and statistical tests were prepared, the cost (in
time) of our additional experiments was not great. Rather
than doing this, Ganz compared his experiment to that of
a quantum random sequence and concluded:

This result of our test is consistent with recent results in
[Calude et al. 10, p. 10]. In that study, bit strings extracted
from the binary expansion of π as well as bit strings pro-
duced by PRNGs from software packages Mathematica 6
and Maple 11 were compared to sequences of quantum
random bits obtained by different physical experiments;
a set of randomness tests inspired by algorithmic infor-
mation theory revealed statistically significant differences
between the distributions of the data obtained fromπ and
those obtained from quantum systems.

3. Conclusions and recommendations

Now that we have completed this case study, let us revisit
the recommendations we recorded in Section 1.1.

1. A precise statement of assertions to be made in the
article, together with a statement of the computa-
tional approach, and why it constitutes a rigorous
test of the hypothesized assertions.
� In our view, the highlighted phrase is missing
from [Ganz 14]. Without such a discussion, it
is hard to dismiss the possibility that the use of
“222” was the result of cherry-picking the data
or, more charitably, a lucky fluke.

� Equally importantly, as argued in [Ziliak and
McCloskey 08], a statistical correlation or a t-
test without some substantial argument is far
from convincing.

2. Complete statements of, or references to, the algo-
rithms employed.
� As noted, greater precision—or pseudocode—
regarding Ganz’s original experiment would
have made our job easier.

3. Details of software (both research and commercial
software) used in the computation.
� Ganz gives limited information, indicating that
both Maple 11 and Mathematica 6 were used.
Since neither package is open source and both
versions are quite old, this is only partially reas-
suring.

� In our case, all codes were written in C++within
a Linux environment to read the digits from
zipped text files, to count the 9-tuples, and to
extract values for Xi, Lj, dk, Dk, and θ . The fre-
quencies of dk andDk and their charts were pro-
vided using Excel.
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Figure . Distribution of Dk for our suite of experiments.
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4. Details of the test environment, including hard-
ware, system software, and the number of proces-
sors utilized.
• The coding and computations were done within
a Linux environment on CARMA server com-
puter with 189GB ofmemory and 24 CPUs each
Intel(R) Xeon(R) 3.47 GHz. For each nB, we uti-
lized two CPUs at the same time. Each occupied
0.9% of the memory for about 100 hours.

5. Details of data reduction and statistical analysis
methods.
� This was generally appropriate.

6. Discussion of the adequacy of numeric precision
and grid resolution.
� This is not applicable.

7. A valid summary of experimental results.
� This was generally appropriate in [Ganz 14].

8. Verification and validation tests performed by the
author(s).
� We feel that bothGanz’s tests and ours have been
adequately described above.

9. Availability of computer code, input data, and out-
put data, with some reasonable level of documen-
tation.
� In our case, we have provided a zipped ver-
sion of our code, along with a “read me” file at
https://www.carma.newcastle.edu.au/jon/repro-
pi.zip. One recommendation in [Stodden et al.
13a, Stodden et al. 13b] was to use a standard
community code repository, such as Github, for
this purpose. We are assessing this situation and
may also place it in a similar place.

We remark, in passing, that the entirety of our repli-
cation efforts appears to be comparable to, if not greater
than, the original study. This appears to be the case in
other replication efforts in the field as well [Stodden et al.
13a, Stodden et al. 13b].

In summary, while the current authors could repro-
duce the main finding in [Ganz 14], their subsequent
more extensive tests failed to replicate the phenomenon.
In light of this, and the failure of the author of [Ganz 14] to
provide a substantive justification for his test that would
not be shared by our generalizations, we conclude that the
evidence given in [Ganz 14] that “the decimal expansion
of π is not statistically random” is unconvincing.
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