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Abstract

LetM(n) denote the number of distinct entries in the n×nmultiplication table. The
function M(n) has been studied by Erdős, Tenenbaum, Ford, and others, but the
asymptotic behavior of M(n) as n→∞ is not known precisely. Thus, there is some
interest in algorithms for computing M(n) either exactly or approximately. We
compare several algorithms for computing M(n) exactly, and give a new algorithm
that has a subquadratic running time. We also present two Monte Carlo algorithms
for approximate computation of M(n). We give the results of exact computations
for values of n up to 230, and of Monte Carlo computations for n up to 2100,000,000,
and compare our experimental results with Ford’s order-of-magnitude result.

– In memory of Richard Guy (1916–2020)

1. Introduction

Although a multiplication table is understood by a typical student in elementary

school, there remains much that we do not know about such tables. In 1955, Erdős

studied the problem of counting the number M(n) of distinct products in an n× n
multiplication table. That is, M(n) := |{ij : 1 ≤ i, j ≤ n}|. In [12], Erdős showed
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that M(n) = o(n2). Five years later, in [13], he obtained

M(n) =
n2

(log n)c+o(1)
as n→∞, (1)

where (here and below) c = 1 − (1 + log log 2)/ log 2 ≈ 0.086071. In 2008, Ford

[15, 16] gave the correct order of magnitude

M(n) = Θ(n2/Φ(n)), (2)

where

Φ(n) := (log n)c(log log n)3/2 (3)

is a slowly-growing function.1

Note that (2) is not a true asymptotic formula, as M(n)/(n2/Φ(n)) might or

might not tend to a limit as n → ∞. The computation of M(n) for various large

n could suggest (though not prove) the true behavior of M(n) as n → ∞. The

history of such computations goes back to Brent and Kung [8], who considered how

much area and time are needed to perform an n-bit binary multiplication on a VLSI

chip. For this, they needed a lower bound on M(2n − 1). In 1981 they computed2

M(2n − 1) for 1 ≤ n ≤ 17. In unpublished work dating from 2012, the first two

authors revisited the problem, extending the computation through n = 25, and

exploring Monte Carlo estimates for larger n. Some years later, the fourth author

discovered several new algorithms for the exact computation of M(n). In this paper

we present both exact and Monte Carlo algorithms.

It is useful to distinguish between an algorithm for evaluating M(n) at one given

integer n, and an algorithm for tabulating M(k) for all integers k in the interval [1, n],

which we may refer to simply as “tabulating M(n)”. Several of the exact evaluation

algorithms can be modified in an obvious way to give a tabulation algorithm with

essentially the same time and space complexity.3 This is not true of the Monte

Carlo algorithms, which output an estimate of a single value M(n) and give no

information on M(k) for k 6= n.

Regarding exact algorithms, our contributions are an extension of the previ-

ous numerical work on evaluation/tabulation of M(n), and the development of

an asymptotically faster (subquadratic) tabulation algorithm. Specifically, we can

evaluate M(k) for all k ≤ n in time O(n2/L1/
√
2+o(1)), where

L = L(n) := exp
(√

log n log log n
)
,

1In (2), the notation f = Θ(g) means f = O(g) and g = O(f), i.e., there are positive constants
A and B such that Ag(n) ≤ f(n) ≤ Bg(n) for all sufficiently large n.

2Brent and Kung actually computed M(2n − 1) + 1 = |{ij : 0 ≤ i, j < 2n}|. For consistency in
the exposition, we translate their results to the definition of M(n) stated above.

3Space is measured in bits, and does not include any space required to store the output.
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using O(n) space. We present this algorithm (Algorithm 5) via a series of steps.

First, we explain a straightforward algorithm (Algorithm 1) to evaluate M(n) in

time and space O(n2). This algorithm4 was used by Brent and Kung [8]. Second,

we show (Algorithm 2) that we can evaluate M(n) given M(n − 1), using only

O(n) space and O(n log n) time.5 This incremental approach naturally leads to

a tabulation algorithm (Algorithm 3) that uses O(n) space and O(n2 log n) time.

Finally, we refine the incremental approach to obtain a subquadratic tabulation

algorithm (Algorithm 5): see Theorem 3 for the time bound.

For arguments n ≤ 230, our implementation of Algorithm 5 is slower than that of

the best quadratic algorithm. This is a familiar phenomenon: for many other prob-

lems (e.g. multiplication of n-bit integers, or of n× n matrices) the asymptotically

fastest known algorithm is not necessarily the fastest in practice.

We have tabulated M(n) for n ≤ 230, using a variant of Algorithm 3. For

confirmation of the numerical results we used Algorithm 1 (with segmentation and

parallelization) for various values of n, including n = 2k − 1 for k = 1, 2, . . . , 30.

The known exact (quadratic or subquadratic) evaluation/tabulation algorithms

are too slow to go much past n = 230, so for larger n it is necessary to resort to

approximate (Monte Carlo) methods. We give two Monte Carlo algorithms, which

we call Bernoulli and product, for reasons that will be evident later (see Section

3). In each case, we avoid the problem of factoring large integers by using Bach’s

algorithm [2] for generating random integers in factored form. This algorithm is

not so routine to implement and because of this it does not appear to have been

used very frequently, a notable exception being Sutherland [29, Section 7.7]. We

have also implemented a simpler, but slower method of Kalai [20]. The speed of

the Monte Carlo algorithms depends mainly on the time required for testing the

primality6 of large integers, which can be done much faster than factoring integers

of comparable size [1, 28].

The paper is organized as follows. Section 2 is concerned with exact algorithms

for evaluating/tabulating M(n). After a brief overview of the sieve of Eratosthenes

as a precursor to various ways of evaluating M(n), we start with the method used

by Brent and Kung [8]. We then show how to tabulate M(n) in time O(n2 log n)

using an incremental algorithm. In fact, the time bound can be reduced slightly by

using a result of Ford [15], as we show in Theorems 1–2 and Remark 3. In Section

2.4 we consider generating products in a multiplication in specific residue classes.

We then show (in Theorem 3) that the incremental algorithm can be modified to

tabulate M(n) in time O(n2/L1/
√
2+o(1)). We remark that log n = Lo(1), so log n

factors can be subsumed into the o(1) term in the exponent of L.

Section 3 describes and compares our two Monte Carlo algorithms for estimating

4The space requirement can be reduced by segmentation, see Section 2.1.
5The time bound can be improved, see Theorems 1–2 in Section 2.3.
6Or “probable” primality, since a small probability of error is acceptable in the context of a

Monte Carlo computation, see Section 3.3.
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M(n). We consider the variance in their estimates for a given number of independent

random trials. Lemma 4 shows that, considering only the variance, the product

algorithm is more accurate than the Bernoulli algorithm. This does not necessarily

mean that it is preferable in practice, as factors such as the time per trial and space

requirements need to be considered.

Finally, Section 4 contains numerical results (exact up to n = 230−1, and approx-

imate up to n = 2100,000,000), comments on implementations of the algorithms, and

some conclusions regarding the asymptotic behavior of M(n).

Remark 1. In (3), the factor (log n)c is asymptotically larger than the factor

(log log n)3/2. However, for small n, the second factor varies more rapidly than

the first. Write x := log n, A = A(x) := xc, B = B(x) := (log x)3/2. Thus

Φ(n) = AB and, taking logarithmic derivatives, we have Φ′/Φ = A′/A + B′/B.

Now |A′/A| < |B′/B| if c/x < 3/(2x log x), i.e., if x < exp(3/2c) ≈ 3.7× 107, or

n < exp(exp(3/2c)) ≈ 253,431,908.

Consequently, our numerical results up to n = 2100,000,000 barely extend to the

region where the true asymptotic behavior of M(n) becomes evident.

2. Exact Evaluation of M(n)

Our model of computation is a standard random access machine with infinite, direct-

access memory. Memory may be addressed at the bit-level or at the word level, and

the word size is Θ(log n) bits if n is the input size. We assume that arithmetic

operations, memory access, and other basic operations take unit time. We count

space in bits and do not include any space used to store the output.

2.1. Sieve of Eratosthenes

The algorithms for evaluating M(n) resemble the sieve of Eratosthenes, the simplest

implementation of which involves, for each 1 < k ≤ n1/2, removing the multiples

of k from (k, n]. This naive implementation uses O(n log n) time and O(n) space

and finds all primes up to n. There is a large body of literature, both practical

and theoretical, dealing with improvements and variations to this sieve. We refer to

Helfgott [18] for a summary of the literature. Here, we highlight the aspects that are

relevant for computing M(n). In practice, we may be limited by a space constraint;

lowering the space used by an algorithm may turn otherwise infeasible computations

into feasible ones. For example, before marking off multiples of k in (k, n], we may

segment this interval into subintervals. The asymptotic run-time remains unchanged

so long as the “marking off” process is not doing “empty work”, i.e., so long as

(n−k)/k is not small. Using this idea, the space bound may be reduced to O(n1/2)
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with straightforward segmentation of the interval [1, n]. Helfgott [18] reduces the

space requirement further by using Diophantine approximation to predict which

integers less than n1/2 have multiples in a given subinterval. This prediction process

allows sieving on intervals of size O(n1/3(log n)5/3) at no asymptotic cost in time

[18, Main Theorem].

2.2. Computing M(n) Directly

We can explicitly construct each product in a multiplication table and count the

number of distinct products using Algorithm 1. The algorithm exploits the sym-

metry of the multiplication table.

Algorithm 1: Computing M(n) directly

Input : An integer n
Output: M(n)

1 Initialize a bit vector A of length n2 to 0.
2 for 1 ≤ i ≤ n do
3 for i ≤ j ≤ n do
4 Set A[ij] = 1

5 return Hamming weight of A

The following lemma is obvious from counting the number of times the body of

the inner loop is executed . We note that the area associated with the table is n2.

Lemma 1. Algorithm 1 computes M(n) in time O(n2) and space O(n2).

Algorithm 1 looks similar to the sieve of Eratosthenes (for finding the primes

smaller than n2), and many of the tricks that are known to speed up the latter may

also be used to speed up Algorithm 1. The key difference is the stopping point for

marking off multiples of i; Algorithm 1 only marks off through the nth multiple

of i. Because of this early stopping point, Algorithm 1 has time bound O(n2),

whereas the corresponding bound for a naive version of the sieve of Eratosthenes is

O(n2 log n).

The space bound of Lemma 1 can be reduced by modifying the algorithm. As

discussed above, standard segmenting allows subintervals of size O((n2)1/2) = O(n).

By using Diophantine approximation the space bound could even be reduced to

O(n2/3(log n)5/3).

Suppose that it is possible to store all n2 bits of the vector A. If the bit vector A

associated with the computation of M(n−1) is saved, then M(n) may be computed

in O(n) additional time. We simply count how many bits are not set in S =

[A[n], A[2n], . . . , A[n2]], and increment M(n− 1) by that amount. Let the number

of set bits in S be denoted by δ(n), so the number of unset bits is n− δ(n). We can
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compute δ(n) in O(n) time, and we can compute M(n) using

M(n) = M(n− 1) + (n− δ(n)) =

n∑
k=1

(
k − δ(k)

)
=
n2 + n

2
−

n∑
k=1

δ(k). (4)

Section 2.3 shows how to compute δ(n) almost as quickly, using only O(n) space.

2.3. Computing M(n) Incrementally

We compute M(n) incrementally using (4). More precisely, we compute δ(k) for all

k ≤ n where δ(n) counts the elements in {n, 2n, 3n, . . . , n2} = {mn : 1 ≤ m ≤ n}
that appear in the (n − 1) × (n − 1) multiplication table. If mn appears in the

smaller multiplication table then it may be factored so that each factor is strictly

less than n. If m = ij and n = gh, then mn = (ij)(gh) = (ih)(jg). If ih < n

and jg < n then the product mn has already appeared in the table. Observe that

ih < n iff i < g and jg < n iff j < h. Thus, to compute δ(n), we need to count

distinct products ij with 0 < i < g and 0 < j < n/g for each divisor g of n with

g ≤
√
n. By counting the distinct products in the shape formed by the union of

rectangles whose boundaries are determined by the divisors of n, we may compute

δ(n).

Algorithm 2: Computing δ(n)

Input : D = [[d0 = 1, n], . . . , [d`−1, n/d`−1]], containing the ordered pairs
of divisors of n, where d`−1 is the largest divisor in [1,

√
n].

Output: δ(n)

1 Initialize counters i = 1 and k = 0
2 Initialize a bit vector A of length n to 0.
3 for i < D[`− 1][0] do
4 if i == D[k][0] then
5 Increment k

6 for i ≤ j < D[k][1] do
7 Set A[ij] = 1

8 return Hamming weight of A

Remark 2. If the input to Algorithm 2 is missing one or more divisor pairs, then

the output (Hamming weight of A) is a lower bound on δ(n).

Example 1. In Figure 1, the gray area corresponds to the products that Algo-

rithm 2 constructs given the divisor pairs 2 · 21, 3 · 14, and 6 · 7 of 42.

Algorithm 2 runs in time proportional to the area of the shaded region (which

we call the shape). In general, an upper bound is O(n log n), obtained by noting
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21×

Figure 1: The shape for computing δ(42)

that no product in a rectangle is larger than n, so the total area is bounded by

the area under a hyperbola. A different upper bound is O(nτ(n)), where τ(n)

counts the divisors of n. This bound comes from the fact that, for each divisor of

n, we construct a rectangle of area less than n. Both of these upper bounds can

over-estimate. The O(n log n) bound over-estimates when n is not smooth, and the

O(nτ(n)) bound over-estimates when n is smooth [11]. The first bound may be

used to show that M(n) can be tabulated in time O(n2 log n); this bound can be

reduced to o(n2 log n) by using deeper results on divisors, as in Theorem 2.

Following [14, 15], we let τ(n; y, z) be the number of divisors d of n which satisfy

y < d ≤ z, and τ+(n) = |{k ∈ Z : τ(n, 2k, 2k+1) ≥ 1}|. Lemma 2 (due to Ford)

bounds the mean value of τ+(n).

Lemma 2 (Ford [15, Corollary 5]). If c = 0.086 . . . is as above, then

1

n

∑
k≤n

τ+(k) = Θ
( log n

Φ(n)

)
.

Theorem 1. Algorithm 2 computes δ(n) in space O(n) and in time O(nτ+(n)).

Proof. By the above discussion concerning δ(n), the algorithm is correct. As i

increases, the counter k keeps track of which rectangle boundary to use. The counter

j is then bounded above by the appropriate divisor of n.

The space bound is obvious, since the vector A uses n bits.

For the time bound, recall that the run-time is proportional to an area, say A.

For each k, consider all the divisors of n in the interval (2k, 2k+1]. They all have

the same bottom left corner, namely, the origin, and shapes range from 2k × n/2k
to 2k+1 × n/2k+1. Hence they are all enclosed by a rectangle of shape 2k+1 × n/2k
which has area 2n. Thus we get an upper bound A ≤ 2nτ+(n).

Clearly Algorithm 2 can be invoked repeatedly to tabulate M(n). For reference

we call this (tabulation algorithm) Algorithm 3.
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Theorem 2. Algorithm 3 tabulates M(n) in space O(n) and time

O

(
n2 log n

Φ(n)

)
.

Proof. We compute M(n) by evaluating δ(k) for 1 ≤ k ≤ n. Using Theorem 1, the

total run-time is

O

∑
k≤n

kτ+(k)

 = O

n∑
k≤n

τ+(k)

 ,

so the result now follows from Lemma 2.

Remark 3. In view of Ford’s result (2), the time bound given in Theorem 2 can

be written as O(M(n) log n). We do not know how to give a direct proof of this

without using Ford’s results.

The space bound in Theorem 1 is for a naive implementation. It is not difficult

to see that it can be reduced to O(n1/2) with straightforward segmentation, or

even to O(n1/3(log n)5/3) via Diophantine approximation, as in [18]. Algorithm 3

represents an improvement by a factor of n in the naive storage cost and a significant

improvement in run-time for the tabulation problem. If only a single evaluation is

required, then Algorithm 1 may be faster. In practice, we observed that Algorithm 3

is competitive with Algorithm 1. This may be due to different implied constants

in the big-O bounds, and because Algorithm 1 has a larger memory requirement,

which can cause a deviation from the expected quadratic run time due to cache

effects [19, Chapter 2]. In the next subsection we explain how generating products

in specific residue classes can be used to speed up Algorithm 2.

2.4. Working “modulo w”

We may generate products in a multiplication table in specific residue classes; this

is akin to sieving with a wheel, and has two advantages. First, if w is the modulus,

then the vector used in Algorithm 2 may be declared to be of size bn/wc and unique

products may be counted by residue class. Second, by not explicitly constructing

small consecutive products, but simply counting them, we get a faster algorithm.

In the following we illustrate these ideas with the examples w = 1, 2, and 6.

2.4.1. Working “modulo 1”

If n is not prime, then the first row of the table contains the consecutive integers less

than the largest nontrivial divisor of n. Store the number of consecutive integers

and initialize the bit vector A so that the zero index is associated with the largest

divisor of n. Iterate through each row of the multiplication table starting at the

first entry greater than or equal to the largest divisor. Figure 2 shows the area
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21×

Figure 2: The shape for computing δ(42) working modulo 1.

that is considered in computing δ(42). The light gray products are all accounted

for because the first row has 20 distinct products. We only construct the products

greater than 20, which are shown in dark gray. This improvement reduces both

the time and space requirements by a factor of (1− 1/p1), where p1 is the smallest

prime factor of n. As a consequence, it is easy to see that δ(2p) = p−1 if (as usual)

p is a prime.

2.4.2. Working “modulo 2”

If n is composite and not of the form 2p for p a prime, then its shape has nontrivial

entries in the first two rows. Create a bit vector associated with odd numbers. The

first row is indexed by consecutive odd numbers up to some bound. Either the first

row or the second row will contain the bound for the consecutive even numbers

that are stored. For rows associated with an odd multiplier, start with the lower

bound associated with the odd vector and iterate through the table creating only

the odd entries. For the even vector, consider even rows and the even numbers in

the odd rows. This reduces the time by reducing area although the overhead in

setting up the loops to iterate through the table in the specified manner is higher.

More importantly, it reduces the memory requirement. By splitting the products

into residue classes modulo 2, we require half the storage. The above discussion

also makes it easy to see that δ(3p) = p− 1 + b(p− 1)/2c.
Figure 3 shows the area that is considered in computing δ(75) modulo 2. The

products in light gray are accounted for by a counting argument and the products

in dark gray are constructed. That is, the bit vector storing even numbers starts at

50, and then the even products 52 and 56 in dark gray are constructed. Thus, there

are 24 + 2 = 26 unique even products. The bit vector storing odd numbers starts at

25, and constructs the products 27, 33, 39. Therefore, there are 12 + 3 = 15 unique

odd products, and δ(75) = 26 + 15 = 41.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25×

Figure 3: The shape for computing δ(75) working modulo 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145

6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120 126 132 138 144 150 156 162 168 174

7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 140 147 154 161 168 175 182 189 196 203

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232

9 18 27 36 45 54 63 72 81 90 99 108 117 126 135 144 153 162 171 180 189 198 207 216 225 234 243 252 261

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290

11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 176 187 198 209 220 231 242 253 264 275 286 297 308 319

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240 252 264 276 288 300 312 324 336 348

13 26 39 52 65 78 91 104 117 130 143 156 169 182 195 208 221 234 247 260 273 286 299 312 325 338 351 364 377

1

2

3

4

5

6

7

8

9

10

11

12

13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29×

Figure 4: The shape for computing δ(377) working modulo 6.

2.4.3. Working “modulo 6”

A naive invocation of Algorithm 2 to compute δ(377) requires the construction

of 270 products. By constructing products in residue classes modulo 6 only 119

products need to be constructed. In Figure 4, we see that the sixth row tells

us there are 28 consecutive multiples of 6. Therefore, we only need to construct

products 0 (mod 6) that are greater than 168. Similarly, the third row tells us that

there are 14 consecutive numbers 3 (mod 6). Therefore, we only construct products

3 (mod 6) that are greater than 84. The second row tells us that we only need to

construct products greater than 56 when we deal with 2, 4 (mod 6) cases. Finally,

the first row tells us that we need to construct products greater than 28 for the 1, 5

(mod 6) cases.

It is possible to create rules for the evaluation of δ(mp) via counting arguments.

We count consecutive products in residue classes modulo w = lcm(1, 2, 3, . . . ,m−1).

The third author created a website [26] that may be used to count the products

constructed and display the shape associated with a δ(n) computation when using

Algorithm 2 naively, or with a modulus of w = 1, 2, 6, 12, 60, or 120.
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2.5. Subquadratic Tabulation

Recall that if all n2 bits of A can be held at once in Algorithm 1, then tabulation

and evaluation are essentially the same problem. We apply this idea to computing

δ(n). Consider the use of Algorithm 2 in computing δ(6 · 7), δ(6 · 9), δ(6 · 11), and

δ(6 · 13). The divisor list for each of these is of the form [1, 6 · k], [2, 3 · k], [3, 2 · k],

and [6, k] for k = 7, 9, 11, 13. One shape is always a subset of the next shape and so

the set of distinct products in each shape is a subset of the next such set. Rather

than think of four independent computations, we consider the one computation of

δ(6 · 13). Unlike in Algorithm 2 where the bit vector storing distinct products is

populated by a row of the multiplication table, we will populate the bit vector by

incrementally shifting the end-points of the rectangles. While computing δ(6 · 13)

we can “learn” δ(6 · 7), δ(6 · 9), and δ(6 · 11). Instead of computing δ(6 · 9) from the

beginning, we use the computation of δ(6 ·7) and only account for the new products

that may arise.

In general, this requires that we tabulate δ(n), for those n that have similar

shapes. For a fixed m and primes p ≈ q, the divisor lists of mp and mq are very

similar. In particular, if both primes are larger than m, the first entries in the

divisor lists correspond only to the divisors of m. If p < q, we may re-use the bit

vector from computing δ(mp) to compute δ(mq). All we need to account for are

the new products that appear as the corresponding rectangles are shifted.

Algorithm 4: Computing δ(mq) given δ(mp) for primes p, q (m < p < q).

Input : A bit vector A of length mq with weight w containing the
products from computing δ(mp). The divisor lists for mp and mq:
Dp = [[d0 = 1,mp], [d1,mp/d1], . . .] and
Dq = [[d0 = 1,mq], [d1,mq/d1], . . .] both of length `.

Output: δ(mq)

1 Initialize counters i = 1 and k = 0
2 for i < Dp[`− 1][0] do
3 if i == Dp[k][0] then
4 Increment k

5 for Dp[k][1] ≤ j < Dq[k][1] do
6 if A[ij] == 0 then
7 Set A[ij] = 1
8 Increment w

9 return w

Lemma 3. If mq ≤ n, then Algorithm 4 computes δ(mq) in time O(md(q) log n),

where d(q) := q − p.
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Proof. There are O(m log n) individual products to check per unit shift.

The benefit of Algorithm 4 over Algorithm 2 is that, while computing δ(mq), we

learn δ(mp) for all p < q. In computing M(n), we may compute δ(mq) at a cost

of O(n log n), but in the process we learn δ(mp) for all prime p, m < p < q, for no

additional cost.

Theorem 3. Algorithms 2 and 4 may be combined to tabulate M(n) in time

O(n2/L1/
√
2+o(1)), where L = L(n) := exp (

√
log n log log n).

Proof. Let γ be a real parameter with 0 < γ < 1, to be chosen later. We split the

integers k ≤ n into two classes. The first consists of k that are Lγ-smooth, that is,

all prime factors of k are at most Lγ . There are n/L1/(2γ)+o(1) such numbers k, as

n→∞, see [10]. For these values of k we compute δ(k) via Algorithm 2, accounting

for a run-time of O(n2/L1/(2γ)+o(1)). The second class consists of those k that are

not Lγ-smooth; write such k as mq, where q is the largest prime factor of k, so that

q > Lγ . Since k ≤ n, the pairs (m, q) that can arise here have m < n/Lγ . For each

such pair (m, q) take the largest prime Q with mQ ≤ n and compute δ(mQ) using

Algorithm 4, so learning δ(mq) for all primes q ≤ Q, and in particular, for all primes

q with Lγ < q ≤ Q. For each m the run-time is O(n log n) by Lemma 3, so the

total run-time for all such values of m is O(n2/Lγ+o(1)). These two computations

are balanced when γ = 1/
√

2, proving the theorem.

For reference we let Algorithm 5 be the algorithm defined by the above proof.

3. Monte Carlo Estimations

If n is too large for the exact computation of M(n) to be feasible, we can resort

to Monte Carlo estimation of M(n). In the following we describe two different

Monte Carlo algorithms, which we call the Bernoulli and product algorithms. In

the descriptions of these two algorithms, we assume that n is fixed, and p denotes

a probability (not a prime number).

3.1. The Bernoulli Algorithm

We perform a sequence of T ≥ 2 trials, where each trial involves choosing a random

integer z ∈ [1, n2]. The integers z are assumed to be independent and uniformly

distributed. For each z, we count a success if z appears in the n× n multiplication

table, i.e., if z can be written as z = xy, where 1 ≤ x ≤ y ≤ n. Let S be the number

of successes after T trials. Since we are performing a sequence of T Bernoulli

trials with probability of success p = M(n)/n2, the expected number of successes

is E(S) = pT , and the variance is V(S) = E((S − pT )2) = p(1 − p)T . Thus, an
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unbiased estimate of M(n)/n2 is given by p̂ = S/T , and the variance of this estimate

is p(1 − p)/T . For large T the error M(n)/n2 − S/T is asymptotically normally

distributed. By the “law of the iterated logarithm” [21], this error is almost surely

O((T−1 log log T )1/2) as T →∞.

Remark 4. In a practical computation, p is unknown, but an unbiased estimate

of the variance of the error is p̂(1− p̂)/(T − 1), where the denominator T − 1 takes

into account the loss of one degree of freedom in using the sample mean p̂ instead

of the population mean p. This is known as Bessel’s correction, and was used by

Gauss [17] as early as 1823.

3.2. The Product Algorithm

In this algorithm, each trial takes z = xy, where x and y are independently and

uniformly distributed integers in [1, n]. Thus, z is guaranteed to appear in the

n × n multiplication table. Let ν = ν(z) ≥ 1 denote the number of times that

z appears in the table. The probability that a trial samples z is ν(z)/n2. Thus,

E(1/ν) = M(n)/n2 = p (where p is as in the Bernoulli algorithm). Consider

a sequence of T independent trials, giving values ν = ν1, . . . , νT . An unbiased

estimate of M(n)/n2 is given by E := T−1
∑

1≤j≤T 1/νj , and the variance of this

estimate is V := T−1E((ν−1 − p)2). Lemma 4 shows that, for the same values of T

and n, the variance in the estimate of M(n)/n2 given by the product algorithm is

no larger than that given by the Bernoulli algorithm.

Lemma 4. If V is the variance of the estimate E after T trials of the product

algorithm, then V ≤ p(1− p)/T .

Proof. Using p = E(ν−1), we have

V = T−1E((ν−1 − p)2) = T−1(E(ν−2)− p2).

Since ν is a positive integer, ν−2 ≤ ν−1, and E(ν−2) ≤ E(ν−1) = p. It follows that

V ≤ T−1(p− p2), as desired.

Remark 5. It is easy to see that equality holds in Lemma 4 only in the trivial case

n = 1. From Ford’s result (2), we have TV = O(1/Φ(n)) as n→∞.

An unbiased estimate of the variance of the error for the product algorithm in

terms of computed quantities is
∑

1≤j≤T (ν−1j − E)2/(T (T − 1)), see Remark 4.

3.3. Avoiding Factorization via Bach/Kalai

For the Bernoulli algorithm, we have to determine if an integer z ∈ [1, n2] occurs

in the n× n multiplication table. Equivalently, we have to check if z has a divisor

d satisfying z/n ≤ d ≤ n. A straightforward algorithm for this would first find the
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prime power factorization of z, then attempt to construct a divisor d in the interval

[z/n, n], using products of the prime factors of z.

Similarly, for the product algorithm, we have to count the number of divisors d

of xy in the interval [xy/n, n]. A straightforward algorithm for this would first find

the prime power factorizations of x and y.

To avoid having to factor the random integers z (or x and y) occurring in the

Bernoulli (or product) algorithms, we can generate random integers along with

their prime power factorizations, using the algorithms of Bach [2] or Kalai [20].

This is much more efficient, on average, than generating random integers and then

attempting to factor them, since the integer factorization problem is not known to

be solvable in polynomial time and is time consuming in practice for many inputs.

The algorithm described by Bach, specifically his “Process R”, returns an integer

x uniformly distributed in the interval (N/2, N ], together with the prime power

factorization of x. Using Bach’s algorithm, which we call “procedure R”, it is

easy to give a recursive procedure B which returns x uniformly distributed in the

interval [1, N ], together with the prime power factorization of x. For details see

Algorithm 6. The following comments on the complexity of Bach’s algorithm also

apply to procedure B.

Algorithm 6: Modification of Bach’s algorithm

1 procedure R(N)

Input : A positive integer N
Output: A random integer x ∈ (N/2, N ] and its prime power factorization

2 Details omitted: see Bach [2, “Process R”, pg. 184]
3 end procedure R

4 procedure B(N)

Input : A positive integer N
Output: A random integer x ∈ [1, N ] and its prime power factorization

5 if N == 1 then
6 return 1

7 generate random real u uniformly distributed in [0, 1)
8 if u < bN/2c/N then
9 return B(bN/2c)

10 else
11 return R(N)

12 end procedure B

The expected running time of Bach’s algorithm is dominated by the time for
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primality tests.7 Bach’s algorithm requires, on average, O(logN) primality tests.

The AKS deterministic primality test [1, 22] requires (logN)O(1) bit-operations, so

overall Bach’s algorithm has average-time complexity (logN)O(1). In our imple-

mentation, we replaced the AKS primality test by the Miller–Rabin Monte Carlo

test [9, 23, 24, 28], which is much faster, at the cost of a small probability of error.8

A small probability of an error (falsely claiming that a composite integer is prime) is

acceptable when the overall computation is a Monte Carlo estimation. Such errors

will have a negligible effect on the final result, assuming that the number of trials

is large.

Kalai [20] gave an algorithm with the same inputs and outputs as our modification

(procedure B) of Bach’s algorithm, but much simpler and easier to implement. The

disadvantage of Kalai’s algorithm is that it is asymptotically slower than Bach’s, by

a factor of order logN . More precisely, Kalai’s algorithm requires, on average, of

order (logN)2 primality tests, whereas procedure B requires of order logN prime

power tests. We implemented both algorithms using Magma [5], and found that, as

expected, Kalai’s algorithm was slower than procedure B for N sufficiently large.

With our implementations9, the crossover point was N ≈ 245. For N = 2100,

procedure B was faster by a factor of about 2.2.

4. Implementations and Results

We used several independent implementations of Algorithm 1 (with segmentation),

and three independent implementations of Algorithm 3 in three different languages:

C, C++, and Sage.10 The published exact computations in [8] are of the form

M(2n − 1) for 1 ≤ n ≤ 17. In Table 1, we include 18 ≤ n ≤ 30. The entries in

Table 1 were computed independently using both Algorithm 1 and Algorithm 3.

No discrepancies were found.11 Timing comparisons are difficult as different (time-

shared) computer systems were used, but we estimate that Algorithm 3 was about

three times faster than Algorithm 1 for n = 30.

A table of M(k · 210) for 1 ≤ k ≤ 220 was computed by the third and fourth

authors [27]. The computation used a wheel modulus approach as described in Sec-

7More precisely, Bach’s algorithm requires prime power tests, but it is relatively easy to check if
an integer is a perfect power (see Bernstein [4]), so primality tests and prime power tests have (on
average) almost the same complexity. Also, it is possible to modify Bach’s algorithm so that only
primality (not prime power) tests are required. Thus, we ignore the distinction between primality
tests and prime power tests.

8The probability of error can be reduced to at most 4−k by repeating the test k times with
independent random inputs; see [28].

9Further details concerning our implementations, and approximations/optimizations valid for
very large N , may be found in [6, 7].

10We thank Paul Zimmerman for verifying some of our results using Sage.
11The entries given in OEIS A027417 differ by one because they include the zero product.
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k M(2k − 1) k M(2k − 1)
18 14081089287 25 209962593513291
19 55439171530 26 830751566970326
20 218457593222 27 3288580294256952
21 861617935050 28 13023772682665848
22 3400917861267 29 51598848881797343
23 13433148229638 30 204505763483830092
24 53092686926154

Table 1: Extension of the Brent-Kung computation

tion 2.4 with w = 60. The computation took about 7 weeks on Butler University’s

BigDawg cluster which has 32 Intel Xeon E5-2630 processors (a total of 192 cores).

Table 2 shows the time (in seconds) to compute δ(n) for all n ∈ (108, 108 + 103]

on an Intel i7-4700 with 16GB RAM, using various values of the modulus w. It

can be seen that using larger moduli provides a significant speedup (at the cost of

increased program complexity).

Algorithm time (s)
Algorithm 2 909

(mod 1) 302
(mod 2) 184
(mod 6) 106
(mod 12) 85
(mod 60) 59

Table 2: Runtime comparison

Algorithm 1, implemented in C, ran on the ARCS computer system at the Uni-

versity of Newcastle, Australia. The computer nodes used were a mixture of 2.2

GHz Intel Xeon 3 and 2.6GHz Intel Xeon 4.

We now consider Monte Carlo algorithms for approximating M(N), where N :=

2n − 1. First consider the case n = 30, N = 230 − 1, for which we know the exact

value M(N) = 204505763483830092 from our deterministic computations. Taking

T = 106 trials of the “product” Monte Carlo algorithm, we estimate M(N)/N2 =

0.17750, whereas the correct value to 5 decimals (5D) is M(N)/N2 = 0.17738. The

variance estimate here is V = 2.873 × 10−8, so σ := V 1/2 ≈ 0.00017. Thus, the

Monte Carlo estimate is as accurate as predicted from the standard deviation σ.

The same number of trials with the Bernoulli algorithm gives variance 1.459×10−7,

larger by a factor of about five. Thus, the product algorithm is more efficient (other

things being equal), as predicted by Lemma 4. In practice the comparison is not

so straightforward, because the product algorithm requires checking more divisors

(on average) than the Bernoulli algorithm, and has a larger space requirement.
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The results of some Monte Carlo computations are given to 4D in Table 3. For

n > 104 we used an approximation described in [6] to avoid dealing with n-bit

integers (essentially by using a logarithmic representation). We used the product

algorithm (mainly for n < 106) and the Bernoulli algorithm (mainly for n ≥ 106),

combined with Bach’s algorithm (described in Section 3). The Bernoulli algorithm

was preferred for n ≥ 106 because of its smaller space requirements. Kalai’s algo-

rithm was used for confirmation (mainly for n ≤ 100).

The second column of Table 3 gives an estimate of M(N)/N2, and the last

column gives the normalized value (N2/M(N))/Φ(N). By Ford’s result (2), this

should be bounded away from 0 and ∞ as n → ∞. The third column gives 104σ,

where σ2 is an estimate of the variance of the corresponding entry in the second

column. Because of the factor 104, this corresponds to units in the last place (ulps)

for the second column. Since the entries in the third column are bounded by 0.12,

the entries in the second column are unlikely to be in error by more than 0.7 ulp.

Similarly, the entries in the last column of the table are unlikely to be in error by

more than 1 ulp.12 The entries for n ≤ 30 may be verified (up to the predicted

accuracy) using the exact results of Table 1.

n M(N)/N2 104σ trials N2/M(N)
(N = 2n − 1) 108 Φ(N)

20 0.1987 0.12 2 0.9414
30 0.1774 0.02 100 0.8213
40 0.1644 0.02 100 0.7549
50 0.1552 0.02 100 0.7112
102 0.1311 0.02 100 0.6068
103 0.0798 0.02 100 0.4264
104 0.0517 0.01 100 0.3435
105 0.0348 0.06 2 0.2958
106 0.0240 0.05 10 0.2652
107 0.0170 0.05 6.7 0.2432
108 0.0121 0.10 1.32 0.227

Table 3: Monte Carlo computations

It has not been shown that the numbers in the last column of Table 3 should

tend to a limit as N → ∞. Ford’s result (2) shows that the lim sup and lim inf

are finite and positive, but not that a limit exists. A non-rigorous extrapolation of

our experimental results, described in more detail in [6, 7], suggests that the limit

(if it exists) is about 0.12. Clearly convergence is very slow. Perhaps this is to be

expected, given that Φ(n) grows very slowly.

In some similar problems the corresponding limit does not exist. For example, let

12Table 3 is extended to n = 5× 108 (but with lower accuracy) in [6, 7].
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S(x) be the number of n ≤ x such that the number of divisors of n is at least log x.

Norton [25] showed that there are positive constants c1, c2 with c1 < R(x) < c2 for

x sufficiently large, where R(x) = S(x)x−1(log x)c(log log x)1/2. Later, Balazard,

et al. [3] showed that limx→∞R(x) does not exist. Thus, it would not be too sur-

prising if limN→∞N2/(M(N)Φ(N)) failed to exist. However, we have not detected

any numerical evidence for oscillations in the last column of Table 3, so we would

expect the lim inf and lim sup to be close, even if unequal.
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