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ACCURATE ESTIMATION OF SUMS OVER ZEROS

OF THE RIEMANN ZETA-FUNCTION

RICHARD P. BRENT, DAVID J. PLATT, AND TIMOTHY S. TRUDGIAN

Abstract. We consider sums of the form
∑

φ(γ), where φ is a given function,
and γ ranges over the ordinates of nontrivial zeros of the Riemann zeta-function
in a given interval. We show how the numerical estimation of such sums can be

accelerated by a simple device, and give examples involving both convergent
and divergent infinite sums.

1. Introduction

Let the nontrivial zeros of the Riemann zeta-function ζ(s) be denoted by ρ =
β + iγ. In order of increasing height, the ordinates of the zeros in the upper half-
plane are γ1 ≈ 14.13 < γ2 < γ3 < · · · .

We are interested in sums of the form
∑′

T1�γ�T2
φ(γ) and

∑′
T1�γ φ(γ), where

T1 � T2, and where φ(t) is a function with certain properties, which we specify
later. Here the prime symbol (′) indicates that if γ = T1 or γ = T2 then the term
φ(γ) is given weight 1

2 . If multiple zeros exist, then terms involving such zeros are
weighted by their multiplicities. Sums of this form can be bounded using a lemma
of Lehman [10, Lem. 1] that we state for reference. We have changed Lehman’s
wording slightly, but the proof is the same. In the lemma and elsewhere, ϑ denotes
a real number in [−1, 1], possibly different at each occurrence.

Lemma 1 (Lehman). If 2πe � T1 � T2 and φ : [T1, T2] �→ [0,∞) is monotone
decreasing on [T1, T2], then∑′

T1�γ�T2

φ(γ) =
1

2π

∫ T2

T1

φ(t) log(t/2π) dt + Aϑ

(
2φ(T1) logT1 +

∫ T2

T1

φ(t)

t
dt

)
,

where A is an absolute constant.1

To avoid repetition, it is convenient to make the following definition.

Condition A. We say that φ : [T0,∞) �→ R satisfies Condition A if φ(t) is twice
continuously differentiable and satisfies φ(t) � 0, φ′(t) � 0, and φ′′(t) � 0 for all
t ∈ [T0,∞).

Our Lemma 3 may be seen as a refinement of Lehman’s lemma, with the ad-
ditional assumption that φ satisfies Condition A. This assumption allows us to
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obtain a smaller error term in most cases of interest (two numerical examples are
given below). Lemma 3 is stated and proved in §3. For simplicity we outline here
the case T2 → ∞, since this case has one fewer parameter and is of interest in many
applications.

If the infinite sum
∑′

T�γ φ(γ) converges, then the error term in Lemma 1 is

� φ(T ) logT . In Theorem 1 we express the error as −φ(T )Q(T ) + E2(T ), where
the discontinuous term Q(T ) � log T can be computed from (5)–(6), and the con-
tinuous term E2(T ) is generally of lower order than φ(T ) logT (see also Remark 2).
We state Theorem 1 here; the proof depends on Lemma 3 and is given in §4.
Theorem 1. Suppose that 2π � T0 � T and that φ satisfies Condition A. Suppose
further that

∫∞
T

φ(t) log(t/2π) dt < ∞. Let

(1) E(T ) :=
∑′

T�γ

φ(γ)− 1

2π

∫ ∞

T

φ(t) log(t/2π) dt.

Then E(T ) = −φ(T )Q(T ) + E2(T ), where

(2) E2(T ) = −
∫ ∞

T

φ′(t)Q(t) dt,

and Q(T ) = N(T )− L(T ) is defined by (5)–(6). Also,

(3) |E2(T )| � 2(A0 +A1 log T ) |φ′(T )|+ (A1 +A2)φ(T )/T,

where we may take A0 = 2.067, A1 = 0.059, and A2 = 1/150.

In Theorem 1, A0 and A1 are constants satisfying condition (12), and A2 is as
in Lemma 2. We note that E2(T ) is a continuous function of T , as can be seen
from (2), whereas E(T ) has jumps at the ordinates of nontrivial zeros of ζ(s).

Disregarding the constant factors, Theorem 1 shows that

E2(T ) � |φ′(T )| logT + φ(T )/T.

For example, if φ(t) = t−c for some c > 1, then E(T ) � T−c log T , and E2(T ) �
T−(c+1) log T is smaller by a factor of order T .

Theorem 1 deals with (convergent) infinite sums. Lemma 3 gives a similar re-
sult for finite sums. We deduce Theorem 1 from Lemma 3 instead of giving an
independent proof (which would be similar to but slightly easier than the proof of
Lemma 3).

Example 1. We consider computation of the constant

c1 :=
∑
γ>0

1

γ2
= 0.02310499 . . . .

The approximation 0.023105 was given in [14, Lemma 2.9], where it was computed
using a finite sum with (essentially) Lemma 1 to bound the tail.

Taking φ(t) = 1/t2 in Lemma 1, with T1 replaced by T and T2 → ∞, gives an
error term

|E(T )| � A

( 1
2 + 2 log T

T 2

)
=

0.14 + 0.56 log T

T 2
,

using the value A = 0.28 mentioned above.1 The corresponding error term given
by Theorem 1 is

|E2(T )| � (4A0 +A1 +A2) + 4A1 log T

T 3
� 8.334 + 0.236 log T

T 3
,
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using the values of A0, A1, A2 above. For example, taking T = 1000 (corresponding
to the first 649 nontrivial zeros), we get |E(T )| � 4.009 × 10−6 and |E2(T )| �
9.965 × 10−9, an improvement by a factor of 400. If we use 1010 zeros, as in
Corollary 1, the improvement is by a factor of 3× 109.

Corollary 1. We have

c1 =
∑
γ>0

1

γ2
= 0.0231049931154189707889338104 + ϑ(5× 10−28).

Proof. This follows from Theorem 1 by an interval-arithmetic computation using
the first n = 1010 zeros, with T = 3293531632.542 · · · ∈ (γn, γn+1), and Q(T )
computed from Q(T ) = N(T )− L(T ); see (5). We used the database of 1011 zeros
of ζ(s) whose computation is described in Platt [13]. These are correct to ±2−102

and this limits the accuracy we can ultimately obtain. To control rounding errors,
we used the Arb package [9]. �
Remark 1. Assuming the Riemann Hypothesis (RH), there is an equivalent expres-
sion2

(4) c1 = 1
2d

2 log ζ(s)/ds2|s=1/2 +G+ π2/8− 4,

where G = β(2) is Catalan’s constant 0.915965 · · · . This enables us to confirm
Corollary 1 without summing over any zeros of ζ(s), but assuming RH. It is only
rarely that such a closed form is known.3

As well as convergent sums, we also consider certain divergent sums. Theorem 2
shows that, if

∫∞
T0

t−1φ(t) dt < ∞, then there exists

F (T0) := lim
T→∞

⎛⎝ ∑′

T0�γ�T

φ(γ)− 1

2π

∫ T

T0

φ(t) log(t/2π) dt

⎞⎠ .

In Theorem 3 we consider approximating F (T0) by computing a finite sum (over
γ � T ), with error term E2(T ) the same as in Theorem 1.

For example, if φ(t) = 1/t and T0 = 2π, we have E(T ) � T−1 log T and E2(T ) �
T−2 log T . The latter bound allows us to obtain an accurate approximation to the
constantH = F (2π) that can equally well be defined, in analogy to Euler’s constant,
by

H := lim
T→∞

⎛⎝ ∑
0<γ�T

1

γ
− 1

4π
log2(T/2π)

⎞⎠ .

This example is considered in detail in [4], where it is shown that

H = −0.0171594043070981495 + ϑ(10−18).

The motivation for this paper was an attempt to generalise the results of [4].
In §2 we define some notation and mention some relevant results in the literature.

We also state Lemma 2, which sharpens a result of Trudgian [18] and gives an almost
best-possible explicit bound on Q(t)− S(t). Lemma 3 in §3 covers finite sums. In

2The formula (4) is stated in [8, (21)] and is proved in [1, p. 13]. An almost indecipherable
sketch of this result may be found in Riemann’s Nachlass. We are indebted to Juan Arias de Reyna
for information on the identity (4), and for his translation of the relevant page from Riemann’s
Nachlass.

3Some examples may be found in [5, Ch. 12] and [12, pp. 349, 443].
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§4–§5 we deduce Theorems 1–3 from Lemma 3. Thus, in a sense, Lemma 3 is the
key result, but we have called it a lemma in deference to Lehman’s lemma.

We remark that the lower bound on T in Theorem 1 (and in other results below)
is chosen to be 2π, not 2πe as in Lehman’s lemma. This is convenient in applications
because 2π < γ1 < 2πe. In fact, any positive lower bound could be chosen, provided
the constants A0, A1 and A2 were adjusted accordingly.

Our results are independent of the RH. However, it should be noted that we
consider summands of the form φ(γ) which depend only on the imaginary parts of
nontrivial zeros β + iγ. As to whether sharper bounds could be obtained on the
assumption of RH, see the remarks at the end of §2.

Finally, we remark that Condition A can be weakened. It is sufficient for φ′′(t)
to exist and be non-negative for almost all t ∈ [T0,∞) because the assumption
φ′′(t) � 0 is only used in the proof of Lemma 3, and there φ′′(t) only appears inside
integrals.

2. Preliminaries

The Riemann-Siegel theta function θ(t) is defined for real t by

θ(t) := arg Γ

(
1

4
+

it

2

)
− t

2
log π,

see for example [6, §6.5]. The argument is defined so that θ(t) is continuous on R,
and θ(0) = 0.

Let F denote the set of positive ordinates of zeros of ζ(s). Following Titch-
marsh [16, §9.2–§9.3], if 0 < T 	∈ F , then we let N(T ) denote the number of zeros
β + iγ of ζ(s) with 0 < γ � T , and S(T ) denote the value of π−1 arg ζ( 12 + iT )
obtained by continuous variation along the straight lines joining 2, 2 + iT , and
1
2 + iT , starting with the value 0. If 0 < T ∈ F , we take S(T ) = limδ→0[S(T −
δ) + S(T + δ)]/2, and similarly for N(T ). This convention is the reason why we
consider sums of the form

∑′
T1�γ�T2

φ(t) instead of
∑

T1�γ�T2
φ(t).

By [16, Thm. 9.3], we have

N(T ) = L(T ) +Q(T ),(5)

L(T ) =
T

2π

(
log

(
T

2π

)
− 1

)
+

7

8
, and(6)

S(T ) = Q(T ) +O(1/T ).(7)

From [16, Thm. 9.4]), S(T ) � log T . Thus, from (7), Q(T ) � log T .
Trudgian [18, Cor. 1] gives the explicit bound |Q(T ) − S(T )| � 0.2/T for all

T � e. In Lemma 2 we obtain a sharper constant, assuming that T � 2π. Our
result is close to optimal, since the proof shows that the constant 150 could at best
be replaced by 48π ≈ 150.8. We note that Q(t)−S(t) is continuous for t > 0. This
follows from the continuity of θ(t) and (8); see also [16, §9.3].

Lemma 2. If Q(t) and S(t) are as above then, for all t � 2π, |Q(t)−S(t)| � A2/t,
where we may take A2 = 1/150 < 0.007.

Proof. We shall assume that t 	∈ F , since otherwise the result follows by continuity
of Q(t)−S(t). The Riemann-von Mangoldt formula states, in its most precise form,

N(t) = θ(t)/π + 1 + S(t).
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From (5), this implies that

(8) Q(t)− S(t) = θ(t)/π + 1− L(t).

Now θ(t) has a well-known asymptotic expansion as t → ∞. Fix a positive integer
k. Then, from [7, Satz 4.2.3(c)],

(9) θ(t) =
t

2

(
log

(
t

2π

)
− 1

)
− π

8
+

k∑
j=1

T̃j(t) +Ok(t
−(2k+1)),

where, using the notation of [2],

T̃j(t) =
(1− 21−2j)|B2j |
4j(2j − 1)t2j−1

,

where B2 = 1
6 , B4 = − 1

30 , . . . are the Bernoulli numbers. Thus, using (6), Q(t) −
S(t) has an asymptotic expansion

(10) Q(t)− S(t) =
1

π

k∑
j=1

T̃j(t) +Ok(t
−(2k+1)).

In order to give an explicit bound on Q(t)−S(t), we use an explicit bound from [2,
(47)] on the error term in (9). The bound, valid for all t > 0, is

(11) |R̃k+1(t)| < (1− 21−2k)−1 (πk)1/2 T̃k(t) +
1
2e

−πt.

Substituting the expression for T̃k(t) into (11) gives a bound

|R̃k+1(t)|
π

<
|B2k|

4(πk)1/2(2k − 1) t2k−1
+

e−πt

2π

for the error term in (10). Thus, for all k � 1 and t > 0,

Q(t)− S(t) =
1

π

k∑
j=1

T̂j(t) + ϑ

(
|B2k|

4(πk)1/2(2k − 1) t2k−1
+

e−πt

2π

)
.

Taking k = 3 and using the assumption t � 2π, we obtain the result. �

Define S1(T ) :=
∫ T

0
S(t) dt. From Littlewood [11], S1(T ) � log T . Explicit

bounds on S1(T ) are known [6, 17, 19]. From [17, Thm 2.2],

(12) |S1(T )− c0| � A0 +A1 log T for all T � 168π,

where c0 = S1(168π), A0 = 2.067, and A1 = 0.059. However, a small computation
shows that (12) also holds for T ∈ [2π, 168π]. Hence, from now on we assume that
T0 � 2π and that (12) holds for T � T0.

We know that S1(T ) = o(log T ) if and only if the Lindelöf Hypothesis (LH) is
true — see Titchmarsh [16, Thm. 9.9(A), Thm. 13.6(B), and Note 13.8]. Since RH
implies LH, one might expect better constants under the assumption of RH (or
LH). However, it is likely that any improvement would be significant only for T
very large. See, for example, Simonič [15].
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3. Finite sums

In this section we prove Lemma 3, which may be seen as a refinement of Lemma 1
if the conditions φ′(t) � 0, φ′′(t) � 0 are satisfied. The proof of Lemma 3 is
essentially the same as the proof of Lehman’s lemma up to equation (15), but

then differs in the way that
∫ T2

T1
φ′(t)Q(t) dt is bounded. In particular, the proof

of Lemma 3 uses the explicit bound (12) on S1(T ), whereas the proof of Lehman’s
lemma does not use a bound on S1(T ).

Lemma 3. Suppose that 2π � T0 � T1 � T2 and that φ satisfies Condition A. If
A0, A1, and A2 are as in Theorem 1, and

E(T1, T2) :=
∑′

T1�γ�T2

φ(γ)− 1

2π

∫ T2

T1

φ(t) log(t/2π) dt,

then E(T1, T2) = φ(T2)Q(T2)− φ(T1)Q(T1) + E2(T1, T2), where

(13) E2(T1, T2) = −
∫ T2

T1

φ′(t)Q(t) dt

and

|E2(T1, T2)| � 2(A0 +A1 log T1) |φ′(T1)|+ (A1 +A2)φ(T1)/T1.(14)

Proof. Assume initially that T1 	∈ F , T2 	∈ F . Using Stieltjes integrals, we see that∑′

T1�γ�T2

φ(γ) =

∫ T2

T1

φ(t) dN(t) =

∫ T2

T1

φ(t) dL(t) +

∫ T2

T1

φ(t) dQ(t)

=
1

2π

∫ T2

T1

φ(t) log(t/2π) dt+

∫ T2

T1

φ(t) dQ(t),

so

E(T1, T2) =

∫ T2

T1

φ(t) dQ(t) =

[
φ(t)Q(t)−

∫
φ′(t)Q(t) dt

]T2

T1

= φ(T2)Q(T2)− φ(T1)Q(T1)−
∫ T2

T1

φ′(t)Q(t) dt.(15)

This proves (13). To prove (14), note that, from Lemma 2,

(16)

∫ T2

T1

φ′(t)Q(t) dt =

∫ T2

T1

φ′(t)S(t) dt+ ϑA2

∫ T2

T1

φ′(t)

t
dt,

and the last integral can be bounded using

(17)

∣∣∣∣∣
∫ T2

T1

φ′(t)

t
dt

∣∣∣∣∣ � 1

T1

∫ T2

T1

|φ′(t)| dt = φ(T1)− φ(T2)

T1
� φ(T1)

T1
,

where we used φ(t) � 0, φ′(t) � 0 (from Condition A).
Also,∫ T2

T1

φ′(t)S(t) dt =

[
φ′(t)(S1(t)− c0)−

∫
φ′′(t)(S1(t)− c0) dt

]T2

T1

= φ′(T2)(S1(T2)− c0)− φ′(T1)(S1(T1)− c0)−
∫ T2

T1

φ′′(t)(S1(t)− c0) dt.
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Now, using φ′(t) � 0 and |S1(t)− c0| � A0 +A1 log t, we have

|φ′(t)(S1(t)− c0)| � −(A0 +A1 log t)φ
′(t)

for t = T1, T2. Thus∣∣∣∣∣
∫ T2

T1

φ′(t)S(t) dt

∣∣∣∣∣
� −

2∑
j=1

(A0 +A1 log Tj)φ
′(Tj) +

∣∣∣∣∣
∫ T2

T1

φ′′(t)(S1(t)− c0) dt

∣∣∣∣∣ .(18)

Also, using φ′′(t) � 0, we have∣∣∣∣∣
∫ T2

T1

φ′′(t)(S1(t)− c0) dt

∣∣∣∣∣ � A0

∫ T2

T1

φ′′(t) dt+A1

∫ T2

T1

φ′′(t) log t dt

= A0(φ
′(T2)− φ′(T1)) +A1

[
φ′(t) log t−

∫
φ′(t)

t
dt

]T2

T1

= (A0 +A1 log T2)φ
′(T2)− (A0 +A1 log T1)φ

′(T1)−A1

∫ T2

T1

φ′(t)

t
dt.(19)

Inserting (19) in (18) and simplifying, terms involving T2 cancel, giving

(20)

∣∣∣∣∣
∫ T2

T1

φ′(t)S(t) dt

∣∣∣∣∣ � −2(A0 +A1 log T1)φ
′(T1)−A1

∫ T2

T1

φ′(t)

t
dt.

Combining (13) with (16), (17), and (20) gives (14). Finally, we note that (13)–(14)
hold even if T1 ∈ F and/or T2 ∈ F , because of the way that we defined N(T ) (and
hence Q(T ) = N(T )− L(T )) for T ∈ F . �

Remark 2. With the assumptions and notation of Lemma 3, Lemma 1 gives the
bound

(21) |E(T1, T2)| � A

(
2φ(T1) logT1 +

∫ T2

T1

φ(t)

t
dt

)
.

Our bound (14) on E2(T1, T2) is often smaller than the bound (21) on E(T1, T2).
We can take advantage of this if the terms φ(Tj)Q(Tj) (j = 1, 2) are known. This
is often the case, because we can easily compute Q(Tj) = N(Tj) − L(Tj) if the
nontrivial zeros up to height Tj have been enumerated.

4. Convergent sums

In this section we assume that
∑

T�γ φ(γ) < ∞, or equivalently (given our

conditions on φ) that
∫∞
T

φ(t) log(t/2π) dt < ∞. We first state an easy lemma, and
then prove Theorem 1.
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Lemma 4. Suppose that 2π � T0 � T , that φ satisfies Condition A, and that∫∞
T

φ(t) log(t/2π) dt < ∞. Then

φ(t) log t = o(1) as t → ∞,(22)

φ′(t) log t = o(1) as t → ∞, and(23) ∫ ∞

T

|φ′(t)| log t dt < ∞.(24)

Proof. For u � T , ∫ u+1

u

φ(t) log(t/2π) dt � φ(u+ 1) log(u/2π).

Thus φ(u + 1) log(u/2π) = o(1) as u → ∞, and φ(t) log((t − 1)/2π) = o(1). Since
log((t− 1)/2π) ∼ log t, (22) follows.

For (23), we have

(25) φ(u) � φ(u)− φ(u+ 1) =

∫ u+1

u

|φ′(t)| dt � |φ′(u+ 1)|,

so (22) implies that φ′(u+1) log u = o(1). Taking t = u+1, we have φ′(t) log(t−1) =
o(1). Since log(t− 1) ∼ log t, (23) follows.

Finally, from (25), |φ′(t)| � φ(t− 1) for t � T + 1, so∫ ∞

T+1

|φ′(t)| log t dt �
∫ ∞

T+1

φ(t− 1) log t dt �
∫ ∞

T

φ(t) log(t/2π) dt < ∞,

and (24) follows. �

Proof of Theorem 1. We have φ(t) log t = o(1) by Lemma 4 and convergence of
the integral in (1). Also, from Lemma 4 we have

∫∞
T

|φ′(t)| log t dt < ∞, but

Q(t) � log t, so
∫∞
T

φ′(t)Q(t) dt converges absolutely. Now, Lemma 3 gives∑′

T�γ�T2

φ(γ)− 1

2π

∫ T2

T

φ(t) log(t/2π) dt

= φ(T2)Q(T2)− φ(T )Q(T )−
∫ T2

T

φ′(t)Q(t) dt.(26)

If we let T2 → ∞ in (26), φ(T2)Q(T2) → 0 and
∫ T2

T
φ′(t)Q(t) dt tends to a finite

limit. Thus, the right side of (26) tends to a finite limit, and the left side must
tend to the same limit. This gives∑′

T�γ

φ(γ)− 1

2π

∫ ∞

T

φ(t) log(t/2π) dt = −φ(T )Q(T )−
∫ ∞

T

φ′(t)Q(t) dt.

We have proved (1)–(2) of Theorem 1. The bound (3) follows by observing that
the bound (14) of Lemma 3 is independent of T2, so∣∣∣∣∫ ∞

T

φ′(t)Q(t) dt

∣∣∣∣ � 2(A0 +A1 log T ) |φ′(T )|+ (A1 +A2)φ(T )/T.

This completes the proof of Theorem 1. �
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5. Divergent sums

In this section we give two theorems that apply, subject to a mild condition (31)
on φ(t), even if

∑
T�γ φ(γ) diverges. Theorem 2 shows the existence of a limit for

the difference between a sum and the corresponding integral. Theorem 3 shows
how we can accurately approximate the limit.

First we prove two lemmas that strengthen the first and third parts of Lemma 4.
In Lemma 5, f is non-increasing but need not be differentiable.

Lemma 5. Suppose that, for some T � 1, f : [T,∞] �→ [0,∞) is non-negative and
non-increasing on [T,∞). If

(27)

∫ ∞

T

f(t)

t
dt < ∞,

then f(t) log t = o(1).

Proof. Assume, by way of contradiction, that f(t) log t 	= o(1). Thus, there exists
a constant c > 0 and an unbounded increasing sequence (tn)n�1 such that t1 > T
and

(28) fn := f(tn) � c

log tn
.

Moreover, by taking a subsequence of (tn)n�1 if necessary, we can assume that
tn+1 � t2n for all n � 1. Thus

(29) log

(
tn+1

tn

)
� log tn+1

2
.

Since f(t) is non-increasing, we have f(t) � fn+1 on [tn, tn+1], and∫ tn+1

tn

f(t)

t
dt �

∫ tn+1

tn

fn+1

t
dt = fn+1 log

(
tn+1

tn

)
.

Using (28)–(29), this gives∫ tn+1

t1

f(t)

t
dt � 1

2

n∑
k=1

fk+1 log tk+1 � c

2

n∑
k=1

1 =
cn

2
→ ∞.

This contradicts the condition (27). Thus, our assumption is false, and we must
have f(t) log t = o(1). �

Lemma 6. If φ satisfies Condition A with T0 � 1, and
∫∞
T0

φ(t)
t dt < ∞, then∫∞

T0
φ′(t) log t dt is absolutely convergent.

Proof. For T � T0 we have

(30)

∫ T

T0

φ′(t) log t dt = φ(T ) logT − φ(T0) logT0 −
∫ T

T0

φ(t)

t
dt.

As T → ∞ in (30), the term φ(T ) logT → 0 by Lemma 5, and the integral on the
right-hand side tends to a finite limit. Thus, the integral on the left-hand side tends
to a finite limit. Since φ′(t) log t � 0 has constant sign on [T0,∞), the integral is
absolutely convergent. �
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Theorem 2. Suppose that T0 � 2π, that φ satisfies Condition A, and that

(31)

∫ ∞

T0

φ(t)

t
dt < ∞.

Then there exists

F (T0) := lim
T→∞

⎛⎝ ∑′

T0�γ�T

φ(γ)− 1

2π

∫ T

T0

φ(t) log(t/2π) dt

⎞⎠ ,

and

(32) F (T0) = −φ(T0)Q(T0)−
∫ ∞

T0

φ′(t)Q(t) dt.

Proof. Suppose that T � T0. Applying Lemma 3, we have∑′

T0�γ�T

φ(γ)− 1

2π

∫ T

T0

φ(t) log(t/2π) dt

= φ(T )Q(T )− φ(T0)Q(T0)−
∫ T

T0

φ′(t)Q(t) dt.(33)

Let T → ∞ in (33). On the right-hand side, φ(T )Q(T ) → 0 by Lemma 5, and the
integral tends to a finite limit by Lemma 6, using Q(t) � log t. Thus the left-hand
side tends to a finite limit F (T0). This gives (32). �

The identity (32) is not convenient for accurately approximating F (T0) when T0

is small, because
∫∞
T0

φ′(t)Q(t) dt is not necessarily small. In Theorem 3 we use a

finite sum (over γ � T ) and integral to approximate F (T0). Theorem 3 has the
same expression for the error term E2 as Theorem 1, essentially because the bounds
in both theorems are proved using Lemma 3.

Theorem 3. Suppose that 2π � T0 � T1, that φ satisfies Condition A, and
that (31) holds. Let

F (T0) := lim
T→∞

( ∑′

T0�γ�T

φ(γ)− 1

2π

∫ T

T0

φ(t) log(t/2π) dt

)
.

If A0, A1, A2 are as in Theorem 1, then

F (T0) =
∑′

T0�γ�T1

φ(γ)− 1

2π

∫ T1

T0

φ(t) log(t/2π) dt− φ(T1)Q(T1) + E2(T1),

where E2(T1) = −
∫∞
T1

φ′(t)Q(t) dt, and

|E2(T1)| � 2(A0 +A1 log T1) |φ′(T1)|+ (A1 +A2)φ(T1)/T1.

Proof. We note that, from Theorem 2, the limit defining F (T0) exists. Also, from
Lemmas 5–6, φ(T )Q(T ) = o(1) and

∫∞
T0

φ′(t)Q(t) dt < ∞. Thus, using Lemma 3

as in the proof of Theorem 1, we see that

lim
T2→∞

( ∑′

T1�γ�T2

φ(γ)− 1

2π

∫ T2

T1

φ(t) log(t/2π) dt

)

= −φ(T1)Q(T1)−
∫ ∞

T1

φ′(t)Q(t) dt
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and
∣∣∣∫∞

T1
φ′(t)Q(t) dt

∣∣∣ � 2(A0 +A1 log T1) |φ′(T1)|+ (A1 +A2)φ(T1)/T1. Since

F (T0) = lim
T2→∞

( ∑′

T1�γ�T2

φ(γ)− 1

2π

∫ T2

T1

φ(t) log(t/2π) dt

)

+
∑′

T0�γ�T1

φ(γ)− 1

2π

∫ T1

T0

φ(t) log(t/2π) dt,

the result follows. �

Example 2. To illustrate the divergent case, we consider the example φ(t) =
1/(log(t/2π))2. The constant 2π here is unimportant, but this choice simplifies
some of the expressions below.

From Lemma 1, the asymptotic behaviour of
∑

0<γ�T φ(γ) is given by

1

2π

∫ T

c

φ(t) log(t/2π) dt = li(T/2π)− li(c/2π) ∼ T

2π log T
,

where c � 2πe is an arbitrary constant, and li(x) is the logarithmic integral, defined
in the usual way by a principal value integral. This motivates the definition of a
constant c2 by

(34) c2 := lim
T→∞

( ∑′

0<γ�T

φ(γ)− li(T/2π)

)
,

where the limit exists by Theorem 2.
If we use (34) to estimate c2 then, by Theorem 3, the error is

E(T ) = −φ(T )Q(T ) +O(|φ′(T )| logT ) +O(φ(T )/T ) � 1

log T
.

Convergence is so slow that it is difficult to obtain more than two correct decimal
digits. On the other hand, if we estimate c2 using the approximation

(35)
∑′

0<γ�T

φ(γ)− li(T/2π)− φ(T )Q(T )

suggested by Theorem 3, then the error is E2(T ) � (T log2 T )−1, smaller by a
factor of order T log T . More precisely, from Theorem 3 we have

|E2(T )| � 4(A0 +A1 log T )

T log3(T/2π)
+

A1 +A2

T log2(T/2π)

� 0.302 log(T/2π) + 8.702

T log3(T/2π)
.(36)

Corollary 2. If c2 is defined by (34), then

c2 = −0.5276697875 + ϑ(10−10).

Proof. Using the first n = 109 nontrivial zeros with T = (γn + γn+1)/2 in (35),
and the error bound (36), an interval-arithmetic computation gives the result. The
sum over zeros was performed as described in the proof of Corollary 1, again using
Arb [9] and computing Q(T ) in the obvious way. �
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Table 1. Numerical estimation of c2 ≈ −0.5276697875

n estimate via (34) estimate via (35) |E2| bound (36)
10 -0.49986259 -0.52733908 1.96× 10−2

102 -0.54054724 -0.52767238 8.64× 10−4

103 -0.52244974 -0.52767173 4.58× 10−5

104 -0.53117846 -0.52766980 2.78× 10−6

105 -0.53026260 -0.52766977 1.87× 10−7

We used fewer nontrivial zeros in the proof of Corollary 2 than in the proof of
Corollary 1 because the computation in the inner loop, involving a logarithm eval-
uated using interval arithmetic, was more expensive, and 109 zeros were sufficient
to obtain the desired error bound.

To illustrate the speed of convergence, in Table 1 we give the estimates of c2
obtained from (34) and (35) by summing over the first n nontrivial zeros, and the
error bound (36), with T = (γn + γn+1)/2.
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[15] A. Simonič, On explicit estimates for S(t), S1(t), and ζ(1/2 + it) under the Riemann hy-
pothesis, J. Number Theory, to appear. arXiv:2010.13307, 2020.

https://www.ams.org/mathscinet-getitem?mr=4034593
https://arxiv.org/abs/2009.05251
https://www.ams.org/mathscinet-getitem?mr=1790423
https://www.ams.org/mathscinet-getitem?mr=0466039
http://ediss.uni-goettingen.de/
https://arxiv.org/abs/1307.5723
https://www.ams.org/mathscinet-getitem?mr=3681746
https://www.ams.org/mathscinet-getitem?mr=202686
https://www.ams.org/mathscinet-getitem?mr=2378655
https://www.ams.org/mathscinet-getitem?mr=3647966
https://www.ams.org/mathscinet-getitem?mr=3356033
https://arxiv.org/abs/2010.13307


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

SUMS OVER ZEROS OF THE RIEMANN ZETA-FUNCTION 2935

[16] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press,
Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown.
MR882550

[17] T. Trudgian, Improvements to Turing’s method, Math. Comp. 80 (2011), no. 276, 2259–2279,
DOI 10.1090/S0025-5718-2011-02470-1. MR2813359

[18] T. S. Trudgian, An improved upper bound for the argument of the Riemann zeta-function on
the critical line II, J. Number Theory 134 (2014), 280–292, DOI 10.1016/j.jnt.2013.07.017.

MR3111568
[19] T. Trudgian, Improvements to Turing’s method II, Rocky Mountain J. Math. 46 (2016),

no. 1, 325–332, DOI 10.1216/RMJ-2016-46-1-325. MR3506092

Australian National University, Canberra, 2601 Australia

Email address: accel@rpbrent.com

School of Mathematics, University of Bristol, Bristol, BS8 1TH, United Kingdom

Email address: dave.platt@bris.ac.uk

School of Science, University of New South Wales, Canberra, 2610 Australia

Email address: t.trudgian@adfa.edu.au

https://www.ams.org/mathscinet-getitem?mr=882550
https://www.ams.org/mathscinet-getitem?mr=2813359
https://www.ams.org/mathscinet-getitem?mr=3111568
https://www.ams.org/mathscinet-getitem?mr=3506092

	1. Introduction
	2. Preliminaries
	3. Finite sums
	4. Convergent sums
	5. Divergent sums
	References

