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1 Introduction
Those that fail to learn from history are doomed to repeat it.

Winston Churchill [23].

Since mathematics is a human endeavour, errors can and do occur. It is worth studying past

errors and learning from them to reduce the likelihood of making similar errors in the future.

We are concerned with nontrivial errors made by working mathematicians, not with the class of

errors that school-children often make in their homework.

The errors that we consider can be grouped into three broad categories.

(1) Well-known errors made by prominent mathematicians (see §2).

(2) Errors discovered by the author in other mathematicians’ work (§3).

(3) Some errors in, or relevant to, the author’s own work (§4).

It is worth mentioning the errors in category 1 in order to show that even the best mathematicians

are fallible. Also, correcting an error may lead to interesting mathematics (see for example §2.3 and

§2.5). Our list is by no means exhaustive.

Errors in category 2 were discovered recently by the author. These errors are discussed in some

detail in order to show how they were detected, and how they might have been avoided.

Errors in category 3 are described as a penance, and because the reader may find them instructive.

Our definition of “error” is rather broad. An error in a proof might be an unjustified assumption,

or a gap that needs to be filled. As well as errors in published or submitted papers, we include some

incorrect results that were announced in other ways, some implicit errors (see §4.3), and some

claims that were expressed as conjectures rather than theorems (see §2.2, §4.2).
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4:2 Richard P. Brent

2 Some well-known errors
Many errors have been made by highly-regarded mathematicians. They have generally been well-

documented, so we merely give an overview, with references to further information. Our list is

(approximately) in chronological order. A considerably longer list is available online [70].

2.1 The four-colour theorem
Many fallacious proofs of the four-colour theorem have been given. Notable are two, by Kempe [37]

(1879) and Tait [61] (1880), that both stood for 11 years before the errors were noticed [68]. The

first correct proof, by Appel and Haken [3] in 1976, used some of Kempe’s ideas. The Appel-Haken

proof was at first controversial, because it depended on the computer-aided verification of 1834

“reducible configurations” which could not feasibly be verified by hand. In fact, some relatively

minor errors were discovered later, and corrected in the 1989 book by Appel and Haken [4]. There

is still no known “simple” proof that does not involve checking a large number of cases.

2.2 Mertens and Stieltjes
In 1897, Franz Mertens [45] conjectured, on the basis of numerical evidence, that |𝑀 (𝑥) | ⩽ 𝑥1/2
for all 𝑥 > 1, where𝑀 (𝑥) := ∑

𝑛⩽𝑥 𝜇 (𝑛), and 𝜇 (𝑛) is the Möbius function. The same inequality was

also conjectured (in 1885) by Thomas Stieltjes, in a letter to Charles Hermite [60, 71].

In the same letter to Hermite, Stieltjes claimed to have a proof of the weaker result that𝑀 (𝑥) =
𝑂 (𝑥1/2). However, he never published a proof, and none was found in his papers after his death.

It is well-known [63, §14.28] that 𝑀 (𝑥) = 𝑂 (𝑥1/2+𝜀) for all 𝜀 > 0 if and only if the Riemann

Hypothesis (RH) is true. Thus, the claimed result of Stieltjes would imply RH. In fact, it would

imply even more.

In 1985, Andrew Odlyzko and Herman te Riele [50] disproved the conjecture of Mertens. The

disproof was numerical, and did not disprove the claim of Stieltjes. However, for reasons given

in [50, §§1–2], most experts believe that the claim𝑀 (𝑥) = 𝑂 (𝑥1/2) of Stieltjes is false.

2.3 Poincaré’s prize essay
In 1888, Henri Poincaré submitted a paper, entitled The Three-Body Problem and the Equations of
Dynamics, to a competition sponsored by King Oscar II of Sweden and Norway, and the journal

Acta Mathematica (edited by Gösta Mittag-Leffler). The prize committee (Hermite, Mittag-Leffler,

and Weierstrass) awarded Poincaré the prize. The committee stated:

It is the deep and original work of a mathematical genius whose position is among the
greatest mathematicians of the century. The most important and difficult questions,
like the stability of the world system, are treated using methods which open a new
era in celestial mechanics.

While Poincaré’s manuscript was being prepared for printing in Acta Mathematica, sub-editor
Edvard Phragmén communicated with Poincaré about parts of the manuscript that he found difficult

to understand.

If the author were not what he is, I would not for a
moment hesitate to say that he has made a great mistake here.

Phragmén, December 1888, see [48].

Eventually, in December 1889, Poincaré admitted that he had made an error with a critical con-

sequence – his claimed proof of the stability of the solar system was invalid! Unfortunately, the

paper [53] had already been printed, and Mittag-Leffler had started to distribute it. With some
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difficulty, Mittag-Leffler managed to recall almost all of the copies. For further details and references,

see [31].

Poincaré prepared a corrected version, about twice as long as the original prize entry, and it was

eventually published [54]. Poincaré had to pay the extra costs involved, which exceeded the prize

money that he had won.

The story had a happy ending as, in realising his error and making his corrections, Poincaré

discovered the phenomenon of chaos [7, 25, 32, 43, 49]. Some of the credit for this great discovery

must go to Phragmén.

2.4 Rademacher and the Riemann Hypothesis
If you want to climb the Matterhorn you might first wish to go to Zermatt where
those who have tried are buried.

George Pólya
1

In 1943, Hans Rademacher [8] submitted a proof
2
of the Riemann Hypothesis (RH) to Transactions

of the American Mathematical Society. It was accepted and was scheduled to appear in the May 1945

issue. At the last moment, Rademacher withdrew the paper, because Carl Siegel had found a flaw

in his reasoning. The paper did not appear in the Transactions, but the story was told to a wide

audience in Time magazine [2].

Since Rademacher’s manuscript is not available, we can not say what his error was. However,

there have been suggestions (see e.g. [42]) that he used a proof by contradiction. In other words,

he assumed the existence of a zero 𝜌 of 𝜁 (𝑠) with ℜ(𝜌) > 1/2, and from this assumption he

derived a contradiction, implying thatℜ(𝜌) ⩽ 1/2. This would prove RH. However, in any proof by

contradiction, one has to be extremely careful, as an error in the proof might lead to an erroneous

contradiction.

We remark that several other mathematicians have claimed to prove RH. Some serious attempts

are mentioned in [12, Ch. 8]. Regarding “amateur” attempts, Roger Heath-Brown (quoted in [55,

pg. 112]) comments:

I receive unsolicited manuscripts quite frequently – one finds a particular person
who has an idea, and no matter how many times you point out a mistake, they
correct that and produce something else that is also a mistake.

2.5 Wiles and the proof of Fermat’s Last Theorem
What we now call Fermat’s Last Theorem (FLT) was mentioned by Pierre de Fermat around 1637

in the margin of his copy of Diophantus’s Arithmetica. The story is too well-known to warrant

repeating here.

There have been a great many erroneous proofs of FLT, see [67]. The list might well include

Fermat’s proof, referred to in his marginal note – we will never know with certainty, but in view of

developments over the next 350 years, it seems very unlikely that his proof was correct.

In June 1993, AndrewWiles announced a proof of the Taniyama-Shimura conjecture for semistable

elliptic curves. By previous work of Ribet and of Frey (building on earlier work by other mathe-

maticians), this was known to imply FLT.

Wiles presented his proof at a series of lectures (in Cambridge, UK), and submitted a paper to

Annals of Mathematics. However, while refereeing the paper, Nick Katz found a gap in the proof.

1
Quoted by Lars Hörmander, see [12, pg. 69].

2
Time [2] says “disproving the Riemann Hypothesis”, but this is likely to be an error, see [42].

Maple Trans., Vol. 1, No. 1, Article 4. Publication date: July 2021.



4:4 Richard P. Brent

Wiles worked to repair his proof, first alone, and then with his former student Richard Taylor.

By September 1994 they were almost ready to admit defeat. Then, while trying to understand why

his approach could not be made to work, Wiles had a sudden insight.

I was sitting at my desk examining the Kolyvagin–Flach method. It wasn’t that I
believed I could make it work, but I thought that at least I could explain why it didn’t
work. Suddenly I had this incredible revelation. I realised that, the Kolyvagin–Flach
method wasn’t working, but it was all I needed to make my original Iwasawa theory
work from three years earlier. So out of the ashes of Kolyvagin–Flach seemed to rise
the true answer to the problem. It was so indescribably beautiful; it was so simple
and so elegant.

Andrew Wiles, quoted by Simon Singh [59].

Wiles’s insight led to a corrected proof of FLT, published in 1995 as two papers, one byWiles [74],

and a companion paper by Taylor and Wiles [62]. For a non-technical overview, see [59, 73].

Table 1. Comparing the sagas of Poincaré and Wiles

Author Poincaré Wiles
Topic Three-body problem FLT
Date 1888–1892 1993–1995

Error(s) found by Phragmén Katz

Corrected by Poincaré Wiles and Taylor

Some further Theory of chaos in Modularity theorem

developments dynamical systems proved by Breuil,

developed by Poincaré Conrad, Diamond,

and later authors and Taylor (2001)

The story (or perhaps we can justifiably call it a saga) of Wiles’s proof of FLT has some striking

analogies to the story/saga of Poincaré’s prize essay (§2.3). Wiles’s original manuscript had an

error (discovered by Katz); Poincaré’s had errors (discovered by Phragmén). Although both papers

included other results that were of value, the errors invalidated their main results. The errors

were corrected, though not without difficulty, and the corrected results were published and have

been accepted as valid. Both papers led to further developments: in the case of Wiles, proof of the

Taniyama-Shimura-Weil conjecture for all elliptic curves (a result now known as the modularity
theorem) by Breuil, Conrad, Diamond, and Taylor [21]; in the case of Poincaré, the development of

chaos theory by Poincaré and many subsequent authors. The analogies are summarised in Table 1.

2.6 Mochizuki’s claimed proof of the abc conjecture
The abc conjecture3 considers three relatively prime positive integers 𝑎, 𝑏, 𝑐 such that 𝑎 + 𝑏 = 𝑐 .

Let 𝑑 be the product of the distinct prime factors of 𝑎𝑏𝑐 (hence the name “𝑎𝑏𝑐 conjecture”). The

conjecture gives a lower bound on 𝑑 that (conjecturely) holds for all but a finite number of cases.
4

The 𝑎𝑏𝑐 conjecture was shown by Oesterlé [51] to be essentially equivalent to the Szpiro conjec-

ture, which relates the conductor and the discriminant of an elliptic curve. If true, these (equivalent)

3
Also, perhaps more informatively, known as the Oesterlé-Masser conjecture after its proposers David Masser [40] and Joseph

Oesterlé [51].

4
The bound on the finite number 𝑁 (𝜀) of exceptional cases depends on a positive but arbitrarily small parameter 𝜀; for

details see [66].
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conjectures would have many interesting consequences. Some of these consequences are already

known to be true, e.g. Roth’s theorem and the theorem of Faltings (formerly known as the Mordell

conjecture); others still have the status of conjectures, e.g. the Fermat-Catalan conjecture, which is

a generalisation of FLT.

In August 2012, Shinichi Mochizuki claimed a proof of Szpiro’s conjecture (and hence the

𝑎𝑏𝑐 conjecture) by developing a new theory called inter-universal Teichmüller theory (IUTT) [6].

However, the proof has not been generally accepted by the mathematical community [72]. On one

side we have views such as:

We, the authors of this note, came to the conclusion that there is no proof. We are
going to explain where, in our opinion, the suggested proof has a problem, a problem
so severe that in our opinion small modifications will not rescue the proof strategy.
We supplement our report by mentioning dissenting views from Prof. Mochizuki and
Prof. Hoshi about the issues we raise with the proof and whether it constitutes a gap
at all.

Peter Scholze and Jakob Stix [58].

On the other side, Mochizuki still claims that his proof is correct, and has published it in a refereed

journal [22]. Mochizuki was at that time the editor-in-chief of the journal.
5

At the present time, all that we can say with certainty is that the status of Mochizuki’s proof is

unclear. For further information, see [38, 58, 75], and comments on MathOverflow [41].

2.7 Summary of the examples above
Anew scientific truth does not triumph by convincing its opponents andmaking them
see the light, but rather because its opponents eventually die and a new generation
grows up that is familiar with it.

Max Planck [52]

We have given examples of errors that were found and corrected, see §2.3 (Poincaré) and §2.5

(Wiles). Also, we have mentioned some proofs that were fatally flawed, but a different (correct)

proof of the result was found later, see §2.1 (Kempe, Tait, Appel and Haken). In other cases an error

was found and acknowledged by the author, and no correct proof of the result is known, see §2.4

(Rademacher).

Yet another category is where a proof is unlikely to be correct, but this is impossible to verify,

as the author has died and the claimed proof was never written down (or has been lost), see §2.2

(Stieltjes). Fermat’s claimed proof (of FLT) is in this category.

Finally, we have given one example of a proof that is disputed, in that the author maintains that

it is correct, but a significant number of experts disagree, see §2.6. In such cases, time will tell –

eventually the proof will be accepted as correct,
6
or the author and his supporters will die and the

proof will be relegated to “the dustbin of history”.

3 Agélas and Vassilev-Missana
In March 2021, Léo Agélas sent the author a preprint that had appeared online [1] and had also

been submitted to a journal. In [1], Agélas states
7

5
Asmany of the examples in [70] show, publication in a refereed journal is not in itself a guarantee of correctness. Conversely,

some important and correct papers were never published in refereed journals – one example is the work of Perelman on the

Poincaré conjecture, which solved one of the Millennium Prize Problems, but was only published on the preprint server

arXiv.

6
Possibly after being rewritten to fill in gaps and make it more readily comprehensible.

7
We use the word “Claim” for a statement that we may later prove to be false, in order to distinguish it from a statement

that we believe to be true.
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Claim 1 (Agélas, Theorem 2.1). For any Dirichlet character 𝜒 modulo 𝑘 , the Dirichlet L-function
𝐿(𝜒, 𝑠) has all its non-trivial zeros on the critical line ℜ(𝑠) = 1

2
.

This is the Generalized Riemann Hypothesis (GRH), probably formulated by Adolf Piltz in 1884

(see Davenport [24, p. 124]). A special case, which corresponds to the principal character 𝜒0 (𝑛) = 1

and the Riemann zeta-function 𝜁 (𝑠), is the Riemann Hypothesis, cf. §2.4.

Agélas defines the half-plane A := {𝑠 ∈ C : ℜ(𝑠) > 1}, and two Dirichlet series (convergent for

𝑠 ∈ A):

𝑃 (𝜒, 𝑠) :=
∑
𝑝∈P

𝜒 (𝑝)𝑝−𝑠

and

𝑃2 (𝜒, 𝑠) :=
∑
𝑝∈P

𝜒 (𝑝)2𝑝−𝑠 ,

where P is the set of primes {2, 3, 5, . . .}.
When trying to understand the proof of Claim 1 by Agélas, we considered the case of the Riemann

zeta-function. Since this was sufficient to find an error in the proof, we only need to consider

this case. Thus we can take 𝜒 (𝑝) = 1, so 𝑃 (𝜒, 𝑠) and 𝑃2 (𝜒, 𝑠) both reduce to the usual prime zeta
function [30]

𝑃 (𝑠) :=
∑
𝑝∈P

𝑝−𝑠 .

It is well-known [30, p. 188] that, for ℜ(𝑠) > 1,

𝑃 (𝑠) =
∞∑
𝑘=1

𝜇 (𝑘)
𝑘

log 𝜁 (𝑘𝑠). (1)

Vassilev-Missana [65] states

Claim 2 (Vassilev-Missana, Theorem 1). For integer8 𝑠 > 1, the relation

(1 − 𝑃 (𝑠))2 = 2

𝜁 (𝑠) − 1 + 𝑃 (2𝑠) holds.

Agélas states

Lemma 2.3 appears as an extension of Theorem 1 of Vassilev-Missana (2016), we
give here the details of the proof as it is at the heart of the Theorem obtained in this
paper. For this, we borrow the arguments used in Vassilev-Missana (2016).

He then states

Claim 3 (Agélas, Lemma 2.3). For 𝑠 ∈ A, we have

(1 − 𝑃 (𝜒, 𝑠))2𝐿(𝜒, 𝑠) − (𝑃2 (𝜒, 2𝑠) − 1)𝐿(𝜒, 𝑠) = 2.

In the case that we consider, namely 𝐿(𝜒, 𝑠) = 𝜁 (𝑠), both Claim 2 and Claim 3 amount to the

same relation, which we can write in an equivalent form as

2

𝜁 (𝑠) = 2 − 2𝑃 (𝑠) + (𝑃 (𝑠))2 − 𝑃 (2𝑠). (2)

In §3.1 we show that (2) is false. This implies that Lemma 2.3 of Agélas is false, as is Theorem 1

of Vassilev-Missana. Theorem 2.1 of Agélas (the GRH) may be true, but has not been proved.

Theorem 2 of Vassilev-Missana is false, as shown in §3.2.

8
It is not clear why Vassilev-Missana imposes such a strong restriction on 𝑠 ; we might expect the relation to hold for all

𝑠 ∈ A, or even (using analytic continuation) for almost all 𝑠 ∈ {𝑧 ∈ C : ℜ(𝑧) > 0}.
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3.1 Disproving claim (2)
Five methods to disprove (2) are given in [18]. We give three of them here. The methods that are

omitted here involve analytic continuation into the strip 0 < ℜ𝑠 ⩽ 1.

Method 1. Expand each side of (2) as a Dirichlet series

∑
𝑎𝑛𝑛

−𝑠
. On the right-hand side (RHS),

the only terms with nonzero coefficients 𝑎𝑛 are for integers 𝑛 of the form 𝑝𝛼𝑞𝛽 , where 𝑝 and 𝑞

are primes, 𝛼 ⩾ 0, and 𝛽 ⩾ 0. However, on the left-hand side (LHS), we find 𝑎30 = −2 ≠ 0, since

30 = 2 × 3 × 5 has three distinct prime factors, implying that 𝜇 (30) = −1. By the uniqueness of

Dirichlet series that converge absolutely for all sufficiently large values of ℜ(𝑠) [34, Thm. 4.8], we

have a contradiction, so (2) is false.

Remark 1. Instead of 30 we could take any squarefree positive integer with more than two prime

factors.

Method 2.We can evaluate both sides of (2) numerically for one or more convenient values of 𝑠 .

If we take 𝑠 = 2𝑘 for some positive integer 𝑘 , then the LHS of (2) can easily be evaluated using

Euler’s formula

𝜁 (2𝑘) = (−1)𝑘−1 (2𝜋)2𝑘
2 · (2𝑘)! 𝐵2𝑘 ,

where 𝐵2𝑘 is a Bernoulli number. The RHS can be evaluated by using (1). Taking 𝑘 = 1, i.e. 𝑠 = 2,

the LHS is 12/𝜋2 = 1.2158542 and the RHS is 1.2230397 (both values correct to 7 decimals). Thus,

|LHS − RHS| > 0.007. This is a contradiction, so (2) is false.

Remark 2. It is always a good idea to verify identities numerically whenever it is convenient to

do so. A surprising number of typographical and more serious errors can be found in this manner.

Early mathematicians such as Euler, Gauss, and Riemann were well aware of the value of numerical

computation, even though they lacked the electronic tools and mathematical software (such as

Maple, Magma, Mathematica, SAGE, . . . ) that are available today.

If we had followed the philosophy of experimental mathematics [9], we would have attempted

method 2 first. However, method 1 has the advantage that all computations are easy to do by hand

(or mental arithmetic). Method 2 is slightly more work, as it requires writing a small program.

Method 3. We consider the behaviour of each side of (2) near 𝑠 = 1. On the LHS there is a simple

zero at 𝑠 = 1, since the denominator 𝜁 (𝑠) has a simple pole. On the RHS there is a logarithmic

singularity of the form 𝑎(log(𝑠 − 1))2 + 𝑏 log(𝑠 − 1) +𝑂 (1). This is a contradiction, so (2) is false.

3.2 Theorem 2 of Vassilev-Missana is false
Vassilev-Missana [65, Theorem 2] makes the following claim.

Claim 4. For integer 𝑠 > 1,

𝑃 (𝑠) = 1 −

√
2/𝜁 (𝑠) −

√
2/𝜁 (2𝑠) −

√
2/𝜁 (4𝑠) −

√
2/𝜁 (8𝑠) − · · · (3)

Proof that Claim 4 is incorrect. Assume that Claim 4 is correct. Replacing 𝑠 by 2𝑠 and using

the result to simplify (3), we obtain

1 − 𝑃 (𝑠) =
√
2/𝜁 (𝑠) − (1 − 𝑃 (2𝑠)) . (4)

Squaring both sides of (4) and simplifying gives (2), but we showed in §3.1 that (2) is incorrect.

This contradiction shows that Claim 4 is incorrect. ♮
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Remark 3. An alternative is to resort to a variation on method 2 above. With 𝑠 = 2 we find

numerically that 𝑃 (𝑠) ≈ 0.4522 and

1 −

√
2/𝜁 (𝑠) −

√
2/𝜁 (2𝑠) −

√
2/𝜁 (4𝑠) − · · · ≈ 0.4588 ≠ 𝑃 (𝑠),

where the numerical values are correct to 4 decimal places. Thus, (3) is incorrect.

Remark 4. It may not be clear what the infinite expression on the RHS of (3) means. We state

Claim 4 more precisely as

𝑃 (𝑠) = 1 − lim

𝑛→∞

√
2/𝜁 (𝑠) −

√
2/𝜁 (2𝑠) −

√
2/𝜁 (4𝑠) − · · ·

√
2/𝜁 (2𝑛𝑠) . (5)

The limit exists and is real if 𝑠 is real, positive, and sufficiently large.

To evaluate (5) numerically, we could start with a sufficiently large value of 𝑛, then evaluate the

nested square roots in (5) by working from right to left, using the values of 𝜁 (2𝑛𝑠), 𝜁 (2𝑛−1𝑠), . . .,
𝜁 (2𝑠), 𝜁 (𝑠). In fact, it is desirable to replace 2/𝜁 (2𝑛𝑠) in (5) by 2/𝜁 (2𝑛𝑠) − 1, as this gives the same

limit but with faster convergence (for details see [18]).

4 Errors in, or relevant to, the author’s own work
In this section we discuss three of the author’s papers. The first, concerned with the analysis of the

binary Euclidean algorithm, had some significant errors which were only noticed (and corrected)

21 years after the paper was published, although the paper had been referred to several times in

the intervening period.

The second paper (§4.2), concerning integer multiplication, contained a conjecture which, al-

though believed by the authors and supported by numerical evidence, was false. This was shown

by Erdős in a 1960 paper [26] that, unfortunately, was written in Russian and difficult to access.

Moreover, it turned out that Erdős’s proof was incorrect, and was only corrected by Erdős and

Sárközy some 20 years later [27].

The third paper (§4.3) pointed out an (incorrect) implicit assumption made in several papers, by

various authors, concerning fast algorithms based on the arithmetic-geometric mean.

4.1 Analysis of the binary Euclidean algorithm
Tam complicatæ evadunt, ut nulla spes superesse videatur.9

Gauss, notebook, 1800

My 1976 paper [14] proposed a heuristic probabilistic model for the binary Euclidean algorithm.

Some forty years later, the heuristic assumptions of the model were fully justified by Ian Morris [47],

building on earlier work by Brigitte Vallée [64] and Gérard Maze [44]. The paper [14] contained

some significant errors which were not noticed until 1997, when Donald Knuth was revising

volume 2 of his classic series The Art of Computer Programming in preparation for publication of the

third edition [39]. The errors all take the same form, which we illustrate by considering a typical

case. Further details are given in [15, §9].

It is convenient to define lg𝑥 := log
2
𝑥 = (ln𝑥)/ln 2. Consider the function 𝑓 : [0,∞) ↦→ (0,∞)

defined by

𝑓 (𝑥) :=
∞∑
𝑘=1

2
−𝑘

1 + 2
𝑘𝑥

. (6)

9They come out so complicated that no hope appears to be left (Gauss referring to his analysis of the Euclidean algorithm).
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Observe that

𝑓 ′(𝑥) = −
∞∑
𝑘=1

(
1

1 + 2
𝑘𝑥

)
2

,

where the series converges for all 𝑥 > 0, and as 𝑥 → 0+ we have 𝑓 ′(𝑥) ∼ lg𝑥 . Thus, we might

expect 𝑓 (𝑥) to have a logarithmic singularity of the form 𝑥 lg𝑥 at the origin (though this turns out

to be incorrect, see below).

In [14, Lemma 3.1], it is claimed that (with 𝑓 denoted by 𝐷1 in [14]),

𝑓 (𝑥) = 1 + 𝑥 lg𝑥 + 𝑥
2

− 𝑥2

1 + 𝑥 +
∞∑
𝑘=1

(−1)𝑘𝑥𝑘+1

2
𝑘 − 1

(7)

for 0 < 𝑥 < 2, but this is incorrect, as we shall show.

It was pointed out by Flajolet and Vallée [personal communication, 1997] that we can obtain an

equivalent expression for 𝑓 (𝑥) using Mellin transforms [28, App. B.7]. The Mellin transform of

𝑔(𝑥) := 1/(1 + 𝑥) is

𝑔∗ (𝑠) =
∫ ∞

0

𝑔(𝑥)𝑥𝑠−1 𝑑𝑥 =
𝜋

sin𝜋𝑠

in the strip 0 < ℜ𝑠 < 1. Now 𝑓 (𝑥) = ∑
𝑘⩾1 2

−𝑘𝑔(2𝑘𝑥), so the Mellin transform of 𝑓 (𝑥) is

𝑓 ∗ (𝑠) =
∞∑
𝑘=1

2
−𝑘 (𝑠+1)𝑔∗ (𝑠) = 𝑔∗ (𝑠)

2
𝑠+1 − 1

.

Using the inverse Mellin transform, we can write 𝑓 (𝑥) as a sum of residues of

ℎ(𝑠) :=
( 𝜋

sin𝜋𝑠

) 𝑥−𝑠

2
𝑠+1 − 1

forℜ𝑠 ⩽ 0. The function ℎ(𝑠) has poles for 𝑠 ∈ Z (where sin𝜋𝑠 = 0), and also for 𝑠 = −1+2𝜋𝑖𝑛/ln 2,
𝑛 ∈ Z (where 2𝑠+1 = 1). Note that there is a double pole at 𝑠 = −1. Evaluating the residues gives, for

𝑥 ∈ (0, 1),

𝑓 (𝑥) = 1 + 𝑥 lg𝑥 + 𝑥
2

− 𝑥2

1 + 𝑥 +
∞∑
𝑘=1

(−1)𝑘𝑥𝑘+1

2
𝑘 − 1

+ 𝑥𝑃 (lg𝑥), (8)

where

𝑃 (𝑡) = 2𝜋

ln 2

∞∑
𝑛=1

sin 2𝑛𝜋𝑡

sinh(2𝑛𝜋2/ln 2) (9)

is a small periodic function arising from the non-real poles of ℎ(𝑠).
We observe that the correct expression (8) differs from the incorrect (7) precisely by the addition

of the small term 𝑥𝑃 (lg𝑥).
The reason for the error in the proof of Lemma 3.1 of [14] is that it was simply assumed that

𝑓 (𝑥) could be written as 𝛾 (𝑥) lg(𝑥) + 𝛿 (𝑥), where 𝛾 (𝑥) and 𝛿 (𝑥) are analytic and regular in the

unit disk |𝑥 | < 1. Expressions for 𝛾 (𝑥) and 𝛿 (𝑥) were then deduced, giving (7). The error was not

in the deduction of (7), but in the incorrect assumption regarding the form of 𝑓 (𝑥).
In retrospect, it should have been obvious that, if 𝑥 is regarded as a complex variable, then (6)

defines an analytic function with poles at 𝑥 = −2−𝑘 for 𝑘 = 1, 2, 3, . . .. On the other hand,𝛾 (𝑥) lg(𝑥)+
𝛿 (𝑥) has only one singularity in the disk |𝑥 | < 1, and that is the logarithmic singularity at 𝑥 = 0.

Thus, as in the example of §3.1, the singularities differ.

The reader may ask why we did not follow our own advice (see Remark 2 in §3.1) and attempt

to verify (7) numerically. In fact, we did verify the equality using floating point arithmetic on
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the computer available to us at the time (1976).
10

This was insufficient to show a discrepancy,

because |𝑃 (𝑡) | < 7.8 × 10
−12

for 𝑡 ∈ R. The reason why 𝑃 (𝑡) is so small is that the denominators

sinh(2𝑛𝜋2/ln 2) in (9) are large; the smallest denominator is sinh(2𝜋2/ln 2) > 1.16×1012. Nowadays,
we would attempt a verification to much higher precision (say 40 decimals), and this would be

sufficient to detect the discrepancy caused by the term 𝑥𝑃 (lg𝑥) in (8).

The analysis of the binary Euclidean algorithm predicts that the expected number of iterations is

∼ 𝐾 lg𝑛 for uniformly distributed 𝑛-bit inputs. Here 𝐾 is a constant that can be expressed as an

integral, where the integrand includes a term involving 𝑃 (𝑡). In 1997, Knuth attempted to evaluate

𝐾 accurately, and obtained

𝐾 = 0.70597 12461 01945 · · · ,
but I had found

𝐾 = 0.70597 12461 01916 · · · .
In a curious twist, it turned out that Knuth’s value was incorrect, because he relied on some of

the incorrect results in my paper [14], whereas my value was correct, because I had used a more

direct numerical method that depended only on recurrences for certain distribution functions that

were given correctly in [14]. With assistance from Flajolet and Vallée, we reached agreement on

the correct value of 𝐾 just in time to meet the deadline for the third edition of [39].

4.2 The Brent-Kung multiplication paper
If you only want him to be able to cope with addition and subtraction, then any
French or German university will do. But if you are intent on your son going on to
multiplication and division – assuming that he has sufficient gifts – then you will
have to send him to Italy.

15-th century advice, quoted by Georges Ifrah [35, pg. 577].

In a 1982 paper [19] with H. T. Kung, we considered the area𝐴 and/or time𝑇 required to perform

multiplication of 𝑛-bit integers expressed in binary notation. We showed that, in a certain realistic

model of computation, there is an area-time tradeoff, and 𝐴𝑇 = Ω(𝑛3/2). To obtain this bound we

needed a lower bound on the function𝑀 (𝑁 ) defined by
11

𝑀 (𝑁 ) := |{𝑖 𝑗 | 0 ⩽ 𝑖 < 𝑁, 0 ⩽ 𝑗 < 𝑁 }|. (10)

Remark 5. In the number theory literature, it is customary to define

𝑀 (𝑁 ) := |{𝑖 𝑗 | 0 < 𝑖 ⩽ 𝑁, 0 < 𝑗 ⩽ 𝑁 }|,

which may be interpreted as the number of distinct entries in an 𝑁 × 𝑁 multiplication table.

However, when considering 𝑛-bit binary multiplication, the definition (10) (with 𝑁 = 2
𝑛
) is more

natural. Either definition can be used; it makes no difference to the asymptotics.

For our purposes, it was sufficient to use the easy lower bound
12

𝑀 (𝑁 ) ⩾ 𝑁 2

2 log𝑁
for all 𝑁 ⩾ 4.

10
We used a Univac 1100/42 mainframe with a 36-bit wordlength, and 27 bits for the floating-point fraction, equivalent to

about 8 decimals. This was in the days before personal computers or the IEEE 754 standard for floating-point arithmetic, or

the widespread availability of software for high-precision arithmetic.

11
In [19], we used the notation 𝜇 (𝑁 ) instead of𝑀 (𝑁 ) .

12
Here and elsewhere, “log” denotes the natural logarithm and “lg” denotes the logarithm to base 2. Note that, in [19], “log”

denotes the logarithm to base 2 and “ln” is used for the natural logarithm.
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We also investigated𝑀 (𝑁 ) numerically and, as a result of the numerical evidence (see [19, Table II]),

conjectured that

lim

𝑁→∞

(
𝑀 (𝑁 ) lg lg𝑁

𝑁 2

)
= 1. (11)

As numerical evidence for this conjecture, we found that, for 5 ⩽ 𝑛 ⩽ 17 and 𝑁 = 2
𝑛
, the

following inequality holds:

0.995 < 𝑀 (𝑁 )/𝑀∗ (𝑁 ) < 1.007, where𝑀∗ (𝑁 ) = 𝑁 2

0.71 + lg lg𝑁
.

The constant 0.71 here was chosen empirically to give a good fit to the data; it does not affect the

conjecture since𝑀∗ (𝑁 ) ∼ 𝑁 2/lg lg𝑁 as 𝑁 → ∞.

Shortly after publication of [19], Paul Erdős, in a letter to the author, pointed out that the

conjecture (11) is false, since it contradicts a result in a paper [26] that he published in 1960 (albeit

in a rather inaccessible Russian journal). In fact, he showed that

𝑀 (𝑁 ) = 𝑁 2

(log𝑁 )𝑐+𝑜 (1)
, (12)

where

𝑐 = 1 − 1 + ln ln 2

ln 2

≈ 0.086

is a small positive constant. Much later (in 2008), Ford [29, Corollary 3] gave the more precise result

𝑀 (𝑁 ) ≍ 𝑁 2

(log𝑁 )𝑐 (log log𝑁 )3/2
. (13)

Erdős’s result (12) contradicts (11), since log𝑁 grows faster than any power of log log𝑁 as 𝑁 → ∞.

However, as the functions (log𝑁 )𝑐 and log log𝑁 grow very slowly, the true asymptotic rate of

growth of𝑀 (𝑁 ) was not evident from computations with 𝑁 ⩽ 2
17
. For later computations with

larger values of 𝑁 , see [20].

We did, in some sense, have the last laugh, as it turned out that Erdős’s proof of (12) in [26] was

incorrect, as it used a known result outside its domain of applicability. This was pointed out by

Karl Norton, and the proof was corrected in Erdős and Sárközy [27].
13

4.3 Equivalence of some AGM algorithms
We now describe an implicit error, where several authors made an implicit assumption that was

later shown to be incorrect. Fortunately, this had no serious consequences.

The asymptotically fastest known algorithms for the high-precision computation of 𝜋 are based

on the arithmetic-geometric mean (AGM) of Gauss and Legendre. The first such algorithm was

discovered in 1976 by the author [13] and (independently) by Salamin [56]. It is sometimes called

the Gauss-Legendre algorithm, since it is based on results that can be found in the work of these

two mathematicians [16]. Subsequently, several other AGM-based algorithms were found by the

Borwein brothers [10].

We give two of the AGM-based algorithms, the Gauss-Legendre algorithm (GL1), and the Borwein-

Borwein quartic algorithm (BB4) [10], as presented in [17, §4].

13
Erdős and Sárközy [27] was published in 1980, so it is surprising that Erdős did not mention it to me in his letter of 1981. I

only became aware of it forty years later, by following a chain of references on MathSciNet.
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Algorithm GL1
Input: The number of iterations 𝑛𝑚𝑎𝑥 .

Output: A sequence (𝜋 ′
𝑛) of approximations to 𝜋 .

𝑎0 := 1; 𝑏0 := 1/
√
2; 𝑠0 :=

1

4
;

for 𝑛 from 0 to 𝑛𝑚𝑎𝑥 − 1 do

𝑎𝑛+1 := (𝑎𝑛 + 𝑏𝑛)/2;
𝑐𝑛+1 := 𝑎𝑛 − 𝑎𝑛+1;
output 𝜋 ′

𝑛 := 𝑎2𝑛+1/𝑠𝑛 .
if 𝑛 < 𝑛𝑚𝑎𝑥 − 1 then

𝑏𝑛+1 :=
√
𝑎𝑛𝑏𝑛 ;

𝑠𝑛+1 := 𝑠𝑛 − 2
𝑛 𝑐2𝑛+1 .

Remark 6. Subscripts on variables such as 𝑎𝑛, 𝑏𝑛 are given for expository purposes. In an efficient

implementation only a constant number of real variables are needed, because 𝑎𝑛+1 can overwrite

𝑎𝑛 (after saving 𝑎𝑛 in a temporary variable for use in the computation of 𝑐𝑛+1), and similarly for 𝑏𝑛 ,

𝑐𝑛 , 𝑠𝑛 , and 𝜋
′
𝑛 . Similar comments apply to Algorithm BB4.

Algorithm BB4
Input: The number of iterations 𝑛𝑚𝑎𝑥 .

Output: A sequence (𝜋 ′′
𝑛 ) of approximations to 𝜋 .

𝑦0 :=
√
2 − 1; 𝑧0 := 2𝑦2

0
;

for 𝑛 from 0 to 𝑛𝑚𝑎𝑥 − 1 do

output 𝜋 ′′
𝑛 := 1/𝑧𝑛 ;

if 𝑛 < 𝑛𝑚𝑎𝑥 − 1 then

𝑦𝑛+1 :=
1 − (1 − 𝑦4𝑛)1/4

1 + (1 − 𝑦4𝑛)1/4
;

𝑧𝑛+1 := 𝑧𝑛 (1 + 𝑦𝑛+1)4 − 2
2𝑛+3𝑦𝑛+1 (1 + 𝑦𝑛+1 + 𝑦2𝑛+1).

Algorithm GL1 produces a sequence (𝜋 ′
𝑛) of approximations to 𝜋 . It is known that Algorithm

GL1 has quadratic convergence, so (roughly speaking) the number of correct digits doubles at each
iteration. More precisely, if 𝑒 ′𝑛 := 𝜋 − 𝜋 ′

𝑛 is the error in 𝜋 ′
𝑛 , then

0 < 𝑒 ′𝑛 < 𝜋2
2
𝑛+4

exp(−2𝑛+1𝜋). (14)

Similarly, Algorithm BB4 produces a sequence (𝜋 ′′
𝑛 ) of approximations to 𝜋 , and the sequence

has quartic convergence, so (roughly speaking) the number of correct digits quadruples at each
iteration. More precisely, if 𝑒 ′′𝑛 := 𝜋 − 𝜋 ′′

𝑛 is the error in 𝜋 ′′
𝑛 , then

0 < 𝑒 ′′𝑛 < 𝜋2
2
2𝑛+4

exp(−22𝑛+1𝜋). (15)

In 2017–2018, we observed that the error bound on 𝑒 ′
2𝑛 , obtained from (14) by the substitution

𝑛 → 2𝑛, is exactly the same as the error bound on 𝑒 ′′𝑛 given in (15). We computed some of the errors

to high precision, and discovered that, not only were the error bounds equal, but the errors were

identical. More precisely, 𝑒 ′′𝑛 = 𝑒 ′
2𝑛 for all 𝑛 ⩾ 0.

This implies that one iteration of Algorithm BB4 is equivalent to two iterations of Algorithm

GL1, in the sense that 𝜋 ′′
𝑛 = 𝜋 ′

2𝑛 .
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In the literature up to 2018, it had been (implicitly) assumed by the Borwein brothers, Bailey,

Kanada, and others [5, 11, 10, 36] that the algorithms were inequivalent.
14

For example, when

computing 𝜋 to high precision, Kanada [36] used both algorithms as a consistency check. Although

this would catch some programming errors, it does not provide an independent check that the

constant computed is actually 𝜋 . A better consistency check would be provided by a fast algorithm

based on different theory, such as a Ramanujan-Sato series for 1/𝜋 , see [11], [17, §6]. The equivalence
is implicit in the work of Guillera [33], but was not stated explicitly until 2018, when a proof was

given in [17]. A more direct proof may be found in [46].

Remark 7. An iteration of Algorithm BB4 is about twice as time-consuming as an iteration of

Algorithm GL1. On the other hand, Algorithm GL1 requires twice as many iterations to obtain the

same precision. Thus, it is not clear which algorithm is preferable in practice. For more on this

topic, see [17, end of §4].

5 Some conclusions
There are many classes of mathematical errors. We list some of the more common ones. An

awareness of such errors may help the reader to avoid similar ones.

(1) Numerical or algebraic errors, possibly caused by an incorrect or numerically unstable

algorithm, or an error in its implementation as a computer program.

(2) Errors of omission. For example, Poincaré missed the possibility of chaotic behaviour (§2.3),

and Vassilev-Missana failed to consider integers with more than two distinct prime factors

(§3.1).

(3) Unwarranted assumption, such as in our analysis of the binary Euclidean algorithm (§4.1).

Many incorrect proofs of RH are in this class. For example, they may assume that some

property of 𝜁 (𝑠) that holds for ℜ(𝑠) > 1 also holds for 1/2 ⩽ ℜ(𝑠) ⩽ 1.

(4) Gap in the proof. A recent example is Wiles’s first proof of FLT, see §2.5. More generally,

perhaps the author proves A and claims that A implies B, but the implication is not obvious –

it may be true but needs to be proved. Also, a proof may be logically correct, so far as it

goes, but not prove what is claimed. For example, if we are trying to prove a statement

(∀𝑛 ⩾ 0)𝑃 (𝑛), it is not (usually) sufficient to prove 𝑃 (0), 𝑃 (1), . . . , 𝑃 (99).
(5) Using an incorrect result from a published paper. For example, Agélas (§3) used an incorrect

result of Vassilev-Missana. In the worst case this could lead to a whole tree of incorrect

results.

(6) Using a correct result but applying it incorrectly. For example, the definitions may be subtly

different, or the domain of applicability of the correct result may not be taken into account

correctly. See for example the discussion of Erdős [26, 27] in §4.2.

(7) General lack of clarity or rigor, so although the proof may be correct in some sense, it is

not currently accepted by the mathematical community (see §2.6). Old examples include

many of Euler’s proofs, and various proofs of the fundamental theorem of algebra that were

not rigorous by modern standards. More recently, some well-known examples are from the

Italian school of algebraic geometry [69] in the period 1885–1935.
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