Lecture 1

Fast Algorithms for
Elementary Functions,
m, and v*

*Six lectures on Algorithms, Trinity term 1999.
Copyright ©1999, R. P. Brent. lecO1

Summary

e High-precision arithmetic

e Use of Newton’s method

e Some algorithms for exp and In
e The arithmetic-geometric mean
e Faster algorithms for exp and In
e Gauss-Legendre algorithm for 7
e Some other algorithms for 7

e Other elementary functions

e FEuler’s constant «y

A connection with Ramanujan

1-2

High-precision arithmetic

We are concerned with high-precision
computations on integers or floating-point
approximations to real numbers.
If N is a (large) integer we can represent N
using base (or radix) 3, say
-1
N=1+> dp",
i=0
where the d; are “base § digits”, i.e.
0<d;<p.

The sign can be handled in several ways. We
usually assume N > 0 for simplicity.

On a binary computer with a fixed word length,
say w bits, it is convenient to choose the (3 so
that base-3 digits can be represented exactly in
a single word. Thus, we choose

2<B<2v.

It is often convenient to choose (3 significantly
smaller than 2¥. For example, if w = 32, we
might choose = 23! or 214 or 10%.

13

Addition

The number of operations required to add two
t-digit numbers is O(t). If 3 = 2 this is called
the “bit complexity” to distinguish it from the
“operation complexity” (which is simply 1).

On a machine with fixed wordlength w bits the
“bit complexity” and the “word complexity”
only differ by a constant factor so we ignore the
distinction (though in practice the constant is
important).

Since we are considering a serial computer and

ignoring constant factors, we usually call the bit
complexity “time”.

14

Multiplication

The time required to multiply two ¢-digit
numbers 3 ;6" and 3 b; B39 by the “schoolboy”
method is O(t?). However, this is not optimal.
Most of the computation involves forming
convolutions

Cr = Z aib]-

i+j=k

and we can do this by the Fast Fourier
Transform (FFT) in O(tlogt) operations.

In fact, to ensure that the c; are computed
exactly, these “operations” are more than single
word operations, and we get another logt
factor. A more complicated algorithm, the
Schénhage-Strassen algorithm, reduces this to
loglogt.

Thus, the conclusion is that the time required
to multiply t-digit numbers is

M(t) = O(tlogtloglogt) .

1-5

Optimality

Is the Schénhage-Strassen algorithm optimal ?

The answer depends on the model of
computation. On certain models O(t) is
attainable. However, for realistic models
Schénhage-Strassen is the best known
algorithm.

In case the Schonhage-Strassen algorithm is not
optimal on your model of computation (or you
choose to implement a simpler algorithm), we
express the time bounds in terms of the
function M (t) rather than explicitly using
M(t) = O(tlogtloglogt).

1-6

Assumptions

We need to assume that M (t) satisfies some
reasonable smoothness properties. For example,
assume that 3 «, 8 € (0, 1), for all sufficiently
large t,

M(at) < BM(t) .

This assumption certainly holds if

M(t) ~ ctlogtloglogt .

For convenience, we also assume that M (t) = 0
for ¢t < 1.

Our assumptions ensure that

oo

> M([t/25]) = O(M(t)

k=0

which is useful in analysing the complexity of
Newton’s method.

17

MP Floating Point

We can represent multiple-precision
“floating-point” numbers by pairs (e, N) of
(multiple-precision) integers e (the exponent)
and N (the scaled fraction).

The pair (e, N) is interpreted as BN or
perhaps as 3¢~ ¢N.

Clearly we can perform addition and
multiplication on such floating-point numbers,
obtaining a ¢-digit result, i.e. a result with
relative error O(37%), by performing operations
on the exponents and (shifted) fractions, in
time O(M (t)).

18

Reciprocals by Newton’s method

Newton’s iteration for finding a simple zero of a
function f is

Tipr = @i — f(wi)/ f (i) .
Apply this to the function
f(l‘) =a- 1/37)

where a # 0 is constant. Provided the initial
approximation zg is not too bad, the sequence
converges to the (unique) zero of f, i.e.

xz = 1/a. Also, the iteration simplifies to

Tiv1 = i + 2(1 — ax;) = z;(2 — ax;)

which only involves additions/subtractions and
multiplications.

Convergence is quadratic, as we can easily see
by taking ¢, = 1 — ax; and observing that

€+1=1— (1 - Ei)(]. +6i) = 612 .
Thus, the number of correct digits

approximately doubles at each iteration.

1-9

Complexity of reciprocals

To obtain a t-digit reciprocal, we need to
perform about lg(t) Newton iterations (here, as
usual, lg denotes log,). If these are performed
using t-digit arithmetic then the time required
is Trec(t) = O(M(t) logt).

However, we can improve the bound by
observing that Newton’s algorithm is
self-correcting, so we can start with a small
number of digits and (almost) double it at each
step. It is most efficient to contrive that the last
iteration is performed with (slightly more than)
t digits.

For example, to get a 100-digit reciprocal, we
might use 2,2,3,5,8,14,26,51,101 digits at
successive iterations.

By our smoothness assumptions, the total time
is only Treo(t) = O(M(t)). We have avoided the
factor log(t).

It is also possible to show that
M(t) = O(Trec(t)), so in a sense multiplication
and reciprocation are equivalent.

Division
To perform a t-digit “floating point” division,

we can use

a/b=ax (1/b)

where the reciprocal 1/b is computed by
Newton’s method. Thus, floating-point division
also takes time O (M (t)).

For integer division, it is easy to obtain the
correct quotient and remainder in time

O(M(t)).

If b is small, then the integer division of a by b
takes time O(%).

111

Square roots

Newton’s method can be applied to compute
t-digit square root approximations in time
O(M (t)), using the classical iteration

1 a
Ii+1:§ $i+z—i .

In fact, it is slightly more efficient to
approximate the inverse square root a=1/? by
Newton’s method (avoiding divisions), then use

a1/2:a><a_1/2.

Algorithms for exp(z) and In(z)

exp(z) and In(z) are inverse functions, i.e.
exp(ln(z)) =z,

at least for real positive z. Thus, if we can
compute one then we can compute the other in
the same time (up to a small constant factor)
using Newton’s method.

Whenever I describe an algorithm for exp(z),
one for In(z) is implied, and wvice versa.

To avoid technicalities, we assume that the
argument x is real and in some bounded, closed
interval [a,b]. Also, in the case of In(z), we
assume a > 0.

1-13

exp(z) — Algorithm 1

The most obvious way to approximate exp(z) is
to sum a sufficient number of terms in the
power series

mn

exp(z) = i i
n=0 """

Using Stirling’s approximation to n!, it is not
hard to see that we need O(¢/logt) terms to
obtain t-digit accuracy. Thus, the time required
for exp(x) is

Top(t) = O <M(t)L> .

logt

Using Newton’s method, we deduce that the
time required for In(z) is

Tln(t):O<M(t) t) .

logt

exp(z) — Algorithm 2

The power series

exp(z) = i o

‘nl
= n!

converges faster for smaller |z|. Thus, an
obvious idea is to apply the identity

exp(z) = (exp(z/2))?

k times before summing the power series.

In other words, evaluate exp(z/2¥) using the
power series, then compute

2k
exp(z) = (exp (x/?k))
by squaring the result k times.
To get t-digit accuracy by this method we need
O(t/k) terms in the power series, so the overall

time is

Top(t) = O <M(t) <k + %)) .

115

Optimal choice of &
Choosing k ~ v/t gives

Teap(t) = O(M(t)V?)

which is better by a factor v/#/logt than the
bound obtained from Algorithm 1.

Although there are asymptotically faster
algorithms (as we shall see), Algorithm 2 is the
fastest algorithm in practice for a wide range
of ¢.

Historical notes

Algorithm 2 was proposed and analysed
in my 1976 paper “The complexity of
multiple-precision arithmetic” [7].

For the history of other results, e.g. Trec, see
the bibliographic notes in Aho, Hopcroft and
Ullman [1, Ch. 8].

The AGM

Can we do better than Algorithm 2 ?
Yes, but first we need to describe the
arithmetic-geometric mean (AGM) iteration.

Let ag, b be given initial values. For simplicity
we assume they are positive reals (though an
extension to the complex plane is possible so
long as care is taken with the branch of the
square root below). The iteration is defined by

a; +b;
Aj41 = B

bi+1 = Vaib;

Gauss studied the AGM and showed that a;
and b; converge to a common limit

AGM(aq, bo)

which can be expressed in terms of a complete
elliptic integral.

1-17

Complete elliptic integrals

We define the complete elliptic integral of the
first kind by

K(¢) = /077/2 do

/1 — sin? ¢sin? 0

Similarly, the complete elliptic integral of the
second kind is

E(qﬁ):/OW/Z\/l—sichbsinQGdG.

Gauss showed that
71'
AGM(1,cos¢) = . 1
(1eos0) = 57 1)
For a proof, see Borwein and Borwein, “Pi and
the AGM” [4, §1.2].

Also, if ¢g = sin¢ and ¢;11 = (a; — b;) /2, then

_E(9) _Nrgie12
1 K() ;2 2. 2)

Thus, both K(¢) and E(¢$) can be computed
via the AGM, given cos ¢.

1-18

Remarks

There is no loss of generality in assuming that
ag > by, since

AGM((J,O, bo) = AGM(bo, (10) .

Also, there is no real loss of generality in
assuming that ag = 1, since

A AGM(ao, bo) = AGM()\ao, Abo) .

Thus, we can assume ag = 1 and by = cos ¢, as
above.

Notation

Instead of the argument ¢, the argument
k =sin¢

is often used. k is known as the modulus and
k' =cos¢

is known as the complementary modulus. We

also define ¢/ =7/2 — pso k' =sing'.

119

Quadratic convergence of the AGM

The reason why the AGM is of computational
interest is that it converges quadratically. In
fact, if we define €; by

bifai=1—¢€,
then it is easy to verify that
cit1 =€ /84 0(¢)) .

Also, if b;/a; < 1 then

2\/1)-; a;
bitv1/aiv1 = 2Whijai 2¢/bi/a; ,

1+0bi/a;

so after about lg(ag/bo) iterations we get
a;/b; = O(1). In other words, even if ag /by is
large, it does not take long before quadratic
convergence sets in.

1 20

Extreme cases

If ¢ is small, then

w/
Ko = [R ———)

/1 —sin? ¢sin? 0

Also, less obviously, if k& = sin ¢ is small and

¢ =m/2 — ¢, then
K@) = (1+0())In (%) .

See Borwein and Borwein [4, ex. 1.3.4(b)]

1-21

log(z) — Algorithm 3

The last result implies (by exchanging primed
and unprimed variables) that, if ap = 1 and
bo = cos ¢ = €'/2 is small, then

K(¢) = (1+0(&))In (%) .

However, we can compute K (¢) by the AGM.
In other words, if y = 4/by is large, then

= sy (0 ()

This is fine for computing lny provided
1. y is sufficiently large (y > 5/?).
2. We know 7 to sufficient accuracy.

The first condition is easy to handle. We can
take M =~ B2 and compute

Iny =In(My) — In(M) ,

using an additional O(logt) digits to
compensate for cancellation.

1-22

Approximating 7

Regarding the second condition: if we do not
already know = to sufficient accuracy, we can
compute
In(1+ B7)
m
by the above method, and use

In(1+47") =7 (1+0(6™))

to find a sufficiently accurate approximation to
7. However, we have to work with about 2¢
digits to compensate for cancellation.

This shows that

Ty (t) = O(M(#)logt) .

However, the constant factor implicit in the
“0” is large. A better way of finding 7, with
smaller constant factor, will be discussed soon.

123

Complexity of In

Using the results obtained so far, we have
Tin(t) = O(M(t)logt)

because the AGM converges quadratically and

only O(logt) iterations are required.

Remark

The AGM is not self-correcting. Thus, we can
not get rid of the “logt” factor in these bounds
by starting with low precision as we did for
reciprocals and square roots by Newton’s
method.

Complexity of exp

Using Newton’s method and Algorithm 3 for In,
we obtain

Teap(t) = O(M(t) log) .

124

Historical notes

The O(M (t) logt) algorithms for log and exp
were first published in my 1975 paper
“Multiple-precision zero-finding methods and
the complexity of elementary function
evaluation” [5]. The algorithm for In is implicit
in Beeler, Gosper and Schroeppel’s unpublished
1972 MIT Technical Report “HAKMEM” [2].

Different O(M (t) logt) algorithms for log and
exp were published in my 1976 J. ACM paper
“Fast multiple-precision evaluation of
elementary functions” [6]. These algorithms use
incomplete elliptic integrals and Landen
transformations. The 1976 paper was actually
written before the 1975 paper (J. ACM has a
long publication delay).

1-25

Legendre’s relation

Legendre found a beautiful relation between the
four quantities K(¢), K(¢'), E(¢) and E(¢')
where, as usual, ¢ + ¢ = 7/2:

E(PK(¢) + E(¢)K(9) — K($)K(¢) =

o 3

For a proof, see Borwein and Borwein [4, §1.6].
All we need to obtain a fast algorithm for the
computation of 7 is the special case

¢ = ¢' = /4. Then, abbreviating K (7 /4) by K
and E(w/4) by E, Legendre’s relation reduces to

2EK—K2=g. (3)

1-26

Fast evaluation of m

Suppose we perform the AGM iteration with
initial values ag = 1 and by = cos(7/4) = 1/v/2,
obtaining a good approximation to the limit

a =AGM(1,1/v/2). Then, by Gauss’s result (1)
on the limit of the AGM,

% = = .
‘=K

Also, using the relation (2), we can find E/K
from quantities occurring during the AGM
computation. Hence, dividing each side of (3)
by K2, we obtain a known quantity

2F
|
K

on the left, and the quantity

- ()

27 \ K
on the right, where everything is known except
for the factor ﬁ Hence, we can find 7 !

127

The Gauss-Legendre algorithm for =

Simplifying the above, we obtain a nice
algorithm for the computation of 7. In my
197576 papers [5, 6] I called it the
Gauss-Legendre algorithm because, as we have
seen, it depends on results of Gauss and
Legendre. The algorithm was discovered
independently by Salamin (1976) [12].

A+ 1; B+ 2712
T+ 1/4; X+ 1;
while A — B > 37t do
begin
Y «+ A;
A« (A+B)/2
B« VBXY;
T« T-Xx(A-Y)%
X +2xX;
end;
return A?/T {or, better, (A+ B)?/(4T)}.

The rate of convergence is illustrated in the
following table.

1 28

Convergence of the Gauss-Legendre
Method

Tteration | A?/T — 7 | 7 — (A + B)?/(4T)
0 8.6-1 2.3-1
1 4.6’-2 1.0-3
P 8.8-5 7.4-9
3 3.1-10 1.8™-19
4 3.7-21 5.5’-41
5 5.5’-43 2.4’-84
6 1.2-86 2.3-171
7 5.8’-174 1.1°-345
8 1.37-348 1.1-694
9 6.9’-698 6.1’-1393

From the table we see that
(A+ B)?/(4T) <7 < A%JT

(this can be proved rigorously). Also,
convergence is quadratic, as expected. It takes 9
iterations to get 1000 decimals, 19 iterations to
get 108 decimals, and only 29 iterations to get
109 decimals !.

1-29

Complexity of m evaluation

From the algorithms above,
T:(t) = O(M(t)logt) .

It is an open question whether this bound is the
best possible.

Comparison with other algorithms

Archimedes suggested bounding 7 by the areas
of regular n-gons inside/outside the unit circle
(or half their lengths). For example, starting
with regular hexagons, we can obtain a
recurrence for doubling n which gives bounds
for n = 12,24, 48,96, . .. (see Borwein &
Borwein [4, Ch. 11]).

Each iteration involves a square root and a few
multiplications/additions, so is comparable to
an AGM iteration. However, convergence is
only linear, not quadratic. To obtain 106 digits
of m by such a method would take more than
108 iterations (compare 19 for the
Gauss-Legendre method).

1-30

Improvements on Archimedes

Other methods involve the arctan formula
arctan = 0 — 03/3 +65/5 — ...
combined with Machin’s formula

s 1 1

— =4 arctan — — arctan —

4 5 239
or similar formulae. They are good for moderate
precision but give only linear convergence, so
Gauss-Legendre must win eventually.

There are many other methods, but they nearly
all have linear (or worse) convergence. The only
known methods competitive (for high precision
computations) with the Gauss-Legendre method
are similar methods based on the AGM — see
Borwein and Borwein [4].

131

Other elementary functions

By considering the AGM for complex
arguments, or by using incomplete elliptic
integrals and Landen transformations, we can
compute any elementary function sin, cos, tan,
sinh etc or its inverse arctan etc, in a compact
interval not containing any singularities of the
function, in time

O(M(t)logt) .

It is not known whether this result is best
possible.

1 32

FEuler’s constant

Euler’s constant y = —IV(1) is usually
defined by

v = lim (H, - In(n)) ,

n—o0

where

wl»—‘

It is not known whether v is rational or
irrational. Hence, there is some interest in
computing v and its regular continued fraction
(perhaps more interest than in computing ,
since 7 is known to be transcendental).

The defining limit converges much too slowly to
be useful, but it can be accelerated by
approximating the truncation error by an
Euler-Maclaurin expansion. The difficulty here
is how to quickly generate the Bernoulli
numbers required for the Euler-Maclaurin
expansion.

1-33

Use of Bessel functions

The fastest known method for computing v, due
to Brent and McMillan [9], was derived using
results on Bessel functions, but it can be
regarded as a “smoothing” of the defining limit.
Specifically, let

k=0
where
0 [k 2
k=0 '
Then U(n)
vin) —4n
0< V(n) v < me ,

so computation of U(n)/V (n) gives v to of
order n digits. This can be done in time O(n?),
or even faster if we use rational arithmetic and
a binary tree for summation. Thus

T, (t) = O(M(t)(log)?) .

For details see [9].

1-34

Recent computations

~ has recently been computed to 108 decimals
by Thomas Papanikolaou. By computing
470,006 partial quotients of its continued
fraction, Papanikolaou has shown that if v is
rational, say v = p/q, then

q> 10242080 .

By computing more partial quotients, it should
be possible to improve this to

q> 10499900 .

Papanikolaou’s computation improved the 1980
result of Brent and McMillan, who computed ~
to 30,100 decimals and showed that ¢ > 1015000,
using 29,200 partial quotients.

1 35

A connection with Ramanujan

Ramanujan published several series for 7, e.g.
generalisations of Glaisher’s

= C(2k+1)
7_1_2(k+1)2k + 1)

but these are not suitable for computation of .

In his first notebook [3, I,p.98] Ramanujan
states that (in modern notation)

% (_1yk=1 [Lk\"
Z%(m) =lnz+y+o(l) (4

k=1
as £ — +oo. Here n is a fixed positive integer.

The case n =1 is correct, in fact the error term
is just an exponential integral

/mffdu_o(e‘)
x T

(this result is due to Euler, and has been used
by Sweeney and others to compute 7).

Unfortunately, (4) is false if n > 2.

1 36

What might have been

The case n =1 (with improved error term) is

o0 _1 k—1,.k -
E:L—%—ﬁ-:mx+v+o<5—>,
= k'k x

and the sum on the left side can be written as
0 k
_ T
[® Z Hky .
k=0
This is easy to prove, and was known by

Ramanujan (see Berndt [3, I, pp. 46-47]). Thus,
Ramanujan knew that

oo k (o] k —T
ZHk%/Z%zlnz+’y+O(%> .
k=0 k=0

He could have generalised and made the
“better” conjecture

) zk n X [k n
ZH’C<E /Z W =lnz+7+o0(1)
k=0 k=0
(5
instead of his incorrect claim (4).

1-37

Comments on the better conjecture

The case n = 2 of (5) is what was used (with a
sharper error bound) by Brent and McMillan.
The function (2*/k!)" acts as a smoothing

kernel with a peak at k =~ = — %

In fact, (5) is correct and the error term o(1)
can be improved to

O (exp(—cux))

where

e ifn=1,
en = 2nsin?(n/n) if n > 2.

The case n = 3 is interesting because

max ¢, =c3=4.5,
n=1,2,...

but no one seems to have used n > 2 in a
serious computation of .

1-38

Historical notes

Early computations of , up to Knuth (1962),
used the Euler-Maclaurin formula.

Sweeney (1963) used essentially the (correct)
case n = 1 of Ramanujan’s (4), with the error
term replaced by an asymptotic expansion.

T used Sweeney’s method and continued
fractions in 1977 to show that g > 1010000,

In 1980, Brent and McMillan! used the case
n = 2 of the “better” conjecture (proved using
results on the asymptotic behaviour of the
modified Bessel functions Ip(z) and Ko(z)).

In a 1994 paper [10] I noted the connection with
Ramanujan?.

'"Edwin McMillan (1907-1991), a physicist, is better
known for his invention of the synchrotron (independently
of Veksler) and for the discovery of neptunium and pluto-
nium (1941). He shared the 1951 Nobel prize in chemistry
with Seaborg. See Nature 353 (1991), 602.

2Ramanujan’s story is too well known to need a
footnote.

139

References

[1] Alfred V. Aho, John E. Hopcroft and
Jeffrey D. Ullman, The Design and
Analysis of Computer Algorithms,
Addison-Wesley, 1974.

[2] M. Beeler, R. W. Gosper, and
R. Schroeppel, HAKMEM, MIT AI Lab,
1972.

[3] B. C. Berndt, Ramanugan’s Notebooks,
Parts I-I11, Springer-Verlag, New York,
1985-1991.

[4] Jonathan M. and Peter B. Borwein, Pi and
the AGM, Wiley-Interscience, John Wiley
and Sons, New York, 1987.

[5] R. P. Brent, Multiple-precision zero-finding
methods and the complexity of elementary
function evaluation, in Analytic
Computational Complezity (edited by
J. F. Traub), Academic Press, New York,
1975, 151-176.

1 40

[6]

[7]

[8]

[9]

R. P. Brent, Fast multiple-precision
evaluation of elementary functions,
J. ACM 23 (1976), 242-251.

R. P. Brent, The complexity of
multiple-precision arithmetic, in The
Complezity of Computational Problem
Solving, University of Queensland Press,
Brisbane, 1976, 126-165.

R. P. Brent, Computation of the regular
continued fraction for Euler’s constant,
Mathematics of Computation 31 (1977),
771777,

R. P. Brent and E. M. McMillan, Some new
algorithms for high-precision computation
of Euler’s constant, Mathematics of
Computation 34 (1980), 305-312.

R. P. Brent, Ramanujan and Euler’s
constant, in Proceedings of Symposia in
Applied Mathematics, Vol. 48 (edited by
W. Gautschi), American Mathematical
Society, Providence, Rhode Island, 1994,
541 545.

1-41

[11] Donald E. Knuth, The Art of Computer
Programming Volume 2: Seminumerical
Algorithms (third edition, 1997),
Addison-Wesley, 1997.

[12] E. Salamin, Computation of 7 using

arithmetic-geometric mean, Mathematics of

Computation 30 (1976), 565-570.

1-42

