Lecture 2

Communication and
computation in some
parallel algorithms*

*Six lectures on Algorithms, Trinity term 1999.
Copyright ©1999, R. P. Brent. lec02

Summary

e The importance of communication in
hardware

— Area-time bounds for VLSI chips
e Linear algebra

— Matrix multiplication
— Solution of linear systems

— The SVD and eigenvalue problems
e Non-numerical problems

— Merging
— Sorting
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Area-time bounds for VLSI

It is interesting to consider algorithms
implemented in hardware before we consider
those implemented in software.

Specifically, consider the model of VLSI circuits
described in Ullman’s book Computational
Aspects of VLSI [13]. Variations on this model
were used by Thompson [9], Brent and Kung [5],
Brent and Goldschlager [4], etc to obtain lower
bounds on the area and time required for some
fundamental computations, e.g. binary
multiplication, sorting, the FFT, evaluation of
propositional calculus formulae, set equality,
context-free language recognition, etc.
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Sketch of the model

e A computation is performed in a planar,
convex region R of area A.

o Wires of finite width A are used for
communication within R.

e 1/0 ports of finite size on the boundary of
R are used for input and output
(communication with the outside world).

e Wires are allowed to overlap, but the
degree of overlap is bounded by v,
e.g. v = 2 is sufficient.

e Each input is read only once.

e Storage of one bit of information takes a
fixed area.

e The circuit is synchronous with a fixed
cycle time 7.

o Wires can transmit one bit in time 7.
For details, see Ullman [13] or the original

papers.
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Bisection

D Diameter

Figure 1: A VLSI chip

The ellipse is the boundary of a VLSI chip.

D is the diameter and X is a chord of length L
perpendicular to the diameter.

Given a nonempty set V of processing elements
(ports and/or gates), X is chosen so that some
of the elements of V' lie on each side of it. This
is called a bisection of V.
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Information transfer

The (maximal) information transfer across X
during a computation of time T is

I=WT/r,

where W is the number of wires which
intersect X.

Theorem. If there is a bisection of V' with
information transfer I then

AT? = Q(I?) .
Idea of proof: A= Q(L?) and L > \W/v, so
AT? = Q(W?T?) = Q(I?) .

This theorem is from Brent and
Goldschlager [4]. There are similar results
(with slightly different definitions) in
Brent and Kung [5] and Thompson [9].
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Applications

To apply the theorem, we use a “crossing
sequence” argument to give a lower bound on I,
the information which has to cross X. Typically
we obtain

I=9(n),

where n is a measure of the size of the problem.
Thus, we can conclude that

AT? = Q(n?) .

For example, this bound applies to n-bit binary
multiplication, evaluation of a propositional
calculus formula (optionally in disjunctive
normal form), and for testing set equality.
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AT bounds

Often we can obtain an independent lower
bound on the area, typically

A=Q(n).

Then, multiplying the two bounds and taking a
square root, we have

AT = Q(n®/?) .

A lower bound on AT seems to be more natural
than a bound on ATZ.

For example, the AT = Q(n*/?) bound applies
to binary multiplication, and shows that in a
sense

multiplication is harder than addition

because we can perform binary addition in the
same model with

AT =O(n) .
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Parallel machines Machine-independent models

There are many examples of parallel computer It is because of these differences that
architectures (a few alive and well, many machine-independent models such as BSP have
extinct). They all involve multiple processors been introduced. However, no standard has
but differ in other important respects emerged yet, and programmers still resort to

e Memory may be local or shared low-level features of machines in order to get
(or actually local but apparently shared, higher efficiency (typically for benchmarks such
or some combination, . . .) as the Linpack benchmark, because they help to

)

sell machines).
e The processors (real or virtual) may have

independent irllstructi(.)n streams (MIMD) Data distribution

or a common instruction stream (SIMD).

If MIMD, we can program them using a Given a parallel machine with p processors and
common program (SPMD) or different a problem with input data D, we have to
programs in each processor. distribute D over the processors in some

manner. (Of course, with a smart enough
compiler, the data distribution might be
invisible to the programmer.) The result may
end up distributed over the processors and we

have to specify how this is to occur?.

e The processors and memories may be
connected in various different ways, which
may or may not be visible to the
programmer. For example, rings, tori,
hypercubes, cliques (crossbars), trees, ...

e There may be a small number of powerful
processors (perhaps vector processors) or
a larger number of feeble processors.

!Otherwise problems such as sorting are

trivial !
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Linear algebra on parallel machines Data distribution
Linear algebra problems with dense matrices We could distribute A over the processors by
provide nice, regular examples and are rows, columns, or blocks, and similarly for B
(relatively) easy to solve with high efficiency on and C. Whichever way we partition A, B and
parallel machines. If only all problems were so C, some communication between processors is
well-defined and regular ! necessary (unless everything is done on one

processor and the others remain idle).

Matrix multiplication We assume that the classical, O(n3) matrix
multiplication algorithm is used, and that the
time for one multiply and add on a single
processor (with data in cache etc) is 7. Thus, it
would take time T} & n®7 to solve the problem
on a single processor. We hope to solve the
problem p times faster on p processors, i.e. we
hope that the speedup

Consider, for example, the problem of forming
the product C of two n X n matrices A and B.
(The rectangular case is interesting and
important, but we consider the square case for
simplicity.)

Th
°=7,

is close to p, or that the efficiency
S T

p Pl

is close to 1. Here T}, is the time required to
solve the problem on p processors.
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Communication versus computation

With current technology, communication
between processors is typically much slower
than communication/computation within a
processor. To communicate a message of w
words might take time

(Gw+ H)r,

where G and H are constants, typically much
greater than 1.

We can interpret

e 1/(G7) as the processor to processor
communication bandwidth, and

e Hrt as the startup cost of a
communication.

In practice such a simple linear model is
inaccurate, but we use it for lack of anything
better.
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Block distribution

In order to minimise communication costs, the
best way to distribute A and B is by blocks.
Suppose that p = s is a perfect square and s|n,
for the sake of simplicity?.

We partition A, B and C into s x s block
matrices, where each block is of size n/s x n/s.

For example, if s =2, p = 4, we partition A as
Agp | Aoa
A= ) ) ,
[ A1p | A1p

where each A; ; is a matrix of size n/2 x n/2.
(Here and below indices run from zero.)

2Such assumptions are usually made by lecturers; only
programmers have to consider the difficult cases.
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Estimate of efficiency

The processor assigned the block with indices
(%, k) has to accumulate the sum

Cirk=)_ Ai;Bjk,
j

so it needs data from the “block row” 7 of A
and the “block column” k of B.

For each n/s x n/s matrix product, taking time
(n/s)3T, the processor needs 2(n/s)? words of
data, which can to be transferred in time
2G(n/s)? + 2H. If we neglect H and low order
terms, we see that

E=1/(14+Gs/n).

Hence, F is close to 1 only if

n>Gs.
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Interpretation

Since G is typically in the range 100 to 1000,
the inequality
n> Gs

means that n has to be large relative to s = /p.

Thus, we can not make efficient use of a large
number of processors unless n is huge.



Gaussian elimination

In practice, it is more likely that we want to
solve a linear system

Az =1b

than multiply two matrices. Consider the
method of Gaussian elimination (without
pivoting, for the time being). If we partition A
into p = s2 blocks as before, a problem of load
balance rears its head.

As the elimination proceeds, all the “action”
moves to the bottom right corner, and more and
more processors have nothing to do. This is
because A is gradually transformed into the
upper triangular matrix U in the matrix
factorisation A = LU. After the j-th iteration
the first j columns are zero below the diagonal
(or traditionally are used to store columns of L).
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Gaussian elimination

rows of U

active
region

Figure 2: Decomposition A — LU

Solution - scattered decomposition

A solution to the load balance problem is to use
a scattered or cyclic distribution of the data A.
Here matrix element a; ; is stored in processor

(i mod s,j mod s)

instead of in processor

(Lis/n], Lis/n]) -

For such mappings it is convenient to take
indices running from 0, as in C, rather than
from 1, because the range of the “mod s”
function is {0,1,...,s — 1}.

Assume a cyclic data distribution. As the
computation proceeds, each processor has a
matrix of roughly the same “shape” (tending
towards upper triangular), and we gain a factor
of almost three in efficiency over that obtained
using the block decomposition.
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Scattered versus block decomposition

We have seen that the scattered decomposition
gives better load balance than the block
decomposition, at least for Gaussian
elimination. (A little thought shows that they
are equivalent for matrix multiplication.)

Another advantage of the scattered
decomposition is that the location of element
a; j of the matrix A depends only on (,5) and
is independent of the dimensions of A. This is a
great advantage if we are writing software to
operate on matrices of arbitrary shape (not
necessarily known at compile time).
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Partial pivoting

Except for special classes of matrices, Gaussian
elimination is unstable unless we perform
pivoting to constrain the size of the multipliers
(elements of L).

For example, the use of partial pivoting
corresponds the a matrix factorisation

PA=1LU,

where P is a permutation matrix, chosen so
that the elements m;; of L are at most 1 in
absolute value.
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Communication overhead of pivoting

On a parallel machine, pivoting introduces
additional communication overheads. At the
k-th step we need to find the best pivot element
in the k-th column, and this requires
communication between the processors which
have access to elements of the column. The
volume of communication is small, but the
startup costs are significant. To find the
maximum of a vector stored in s = |/p
processors, using a binary tree, and to
broadcast the result to the processors, costs us
about H7lg(p) just in startup costs, so a term

Hrnlg(p)

will occur in the estimate of Tj,.

H may be about 100 (if special communication
hardware is provided) or 108 or more (if
communication is done entirely in software
using interrupts), so the startup cost may well
dominate for small and moderate n.
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Distribution by columns

Instead of distributing both rows and columns
in a scattered (cyclic) manner, it is tempting to
distribute just the columns of A in this way.
More precisely, element a; ; could be stored in
processor

jmodp,

where the processors are numbered
0,1,...,p—1.

The advantage of this “cyclic by column”
distribution is that a single processor has access
to a whole column, so no communication is
required to find the pivot element in that
column. Information about the pivot element
and its location still has to be broadcast to the
other processors.
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Disadvantages of distribution by
columns

The distribution by columns has significant
disadvantages.

o Communication in the horizontal direction
has bandwidth reduced by a factor
s = /p, from s/(GT) to 1/(GT).

e For matrix multiplication C' + AB, do we
distribute B by columns (for consistency)
or by rows (for compatibility with the
definition of matrix multiplication) ?

Generally, it seems preferable to use a
distribution where rows and columns are
treated in the same way.
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Memory references per flop

On many machines it is impossible to achieve
close to peak performance if Gaussian
elimination is performed in the obvious way (via
saxpys or rank-1 updates). This is because
performance is limited by memory accesses
rather than by floating-point arithmetic.

Saxyps and rank-1 updates have a high ratio of
memory references to floating point operations.

Close to peak performance can be obtained for
matrix-vector or (better) matrix-matrix
multiplication which (if implemented properly)
have a lower ratio of memory references to
floating-point operations.
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Blocking

It is possible to reformulate Gaussian
elimination so that most of the floating-point
arithmetic is performed in matrix-matrix
multiplications (level 3 BLAS). The idea is to
introduce a “blocksize” or “bandwidth”
parameter w. Gaussian elimination is performed
via saxpys or rank-1 updates in vertical strips of
width w. Once w pivots have been chosen, a
horizontal strip of height w can be updated. At
this point, a matrix-matrix multiplication can
be used to update the lower right corner of A.
The optimal choice of w is usually about /7.

It is important to note that the introduction of
the parameter w is independent of the data
distribution on a parallel machine. There is
certainly no need to distribute A in w X w
blocks. For more on this and related topics, see
my paper “The Linpack benchmark on the
AP1000” [3].
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Illustration

rows of U

1 w rows

level 3
region

Figure 3: Blocked LU decomposition
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The SVD

Suppose m > n. A singular value decomposition
(SVD) of a real m x n matrix A is its
factorisation into the product of three matrices

A=UxvT,

where U is m x n with orthonormal columns,
Y is an m X m non-negative diagonal matrix, and
V is an n X n orthogonal matrix.

The diagonal elements o; of X are the singular

values of A. The SVD has many applications
(see Golub and Van Loan [T7]).
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Computing the SVD in parallel

The SVD is usually computed by a two-sided
orthogonalisation process, e.g. by two-sided
reduction to bidiagonal form followed by the
QR algorithm. It is difficult to implement this
Golub-Kahan-Reinsch algorithm efficiently on a
parallel machine. It is much simpler to use a
one-sided orthogonalisation method due to
Hestenes.

The idea of Hestenes is to generate an
orthogonal matrix V such that AV has
orthogonal columns. Normalising the Euclidean
length of each non-null column to unity, we get

AV =UX

As a null column of U is always associated with
a zero diagonal element of X, this gives the

SVD of A.
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Parallel implementation of the
Hestenes method

Let A1 = A and V; = I. The Hestenes method
uses a sequence of plane rotations @; chosen to
orthogonalise two columns in

App1 = ApQr .

If the matrix V is required, the plane rotations
are accumulated using V11 = ViQ. Under
suitable conditions lim Qf = I, lim V;, = V and
lim Ay, = AV. The matrix A4 differs from Ay
only in two columns, say columns % and 7, and
the new columns are obtained from the old
columns by a plane rotation through a certain
angle 6, where |0] < 7/4.

It is desirable for a “sweep” of n(n —1)/2
rotations to include all pairs (7, 7) with ¢ < j.
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The chess tournament analogy

On a parallel machine we would like to
orthogonalise several pairs of columns
simultaneously. This should be possible so long
as no column occurs in more than one pair. The
problem is similar to that of organising a
round-robin tournament between n players.

A game between players 7 and j corresponds to
orthogonalising columns 4 and j, a round of
several games played at the same time
corresponds to orthogonalising several pairs of
(disjoint) columns, and a tournament where
each player plays each other player once
corresponds to a sweep in which each pair of
columns is orthogonalised. Thus, schemes which
are well-known to chess players can be used to
give orderings amenable to parallel
computation.

It is desirable to minimise the number of

parallel steps in a sweep, which corresponds to
the number of rounds in the tournament.
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Lazy players

On a parallel machine with restricted
communication paths there are constraints on
the orderings which we can implement
efficiently. A useful analogy is a tournament of
lazy chess players. After each round the players
want to walk only a short distance to the board
where they are to play the next round.

Using this analogy, suppose that each chess
board corresponds to a processor and each
player corresponds to a column of the matrix.

A game between two players corresponds to
orthogonalisation of the corresponding columns.
If the chess boards (processors) are arranged in
a linear array with nearest-neighbour
communication paths, then the players should
have to walk (at most) to an adjacent board
between the end of one round and the beginning
of the next round, i.e. columns of the matrix
should have to be exchanged only between
adjacent processors. Several orderings satisfying
these conditions are known.
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The number of steps in one sweep

Since A has n columns and at most |n/2] pairs
can be orthogonalised in parallel, a sweep
requires as least n — 1 parallel steps (n even) or
n parallel steps (n odd). The ordering of Brent
and Luk [6] attains this minimum, and
convergence can be guaranteed.
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Data distribution

As described, each processor deals with two
columns, so the column-wrapped representation
is convenient. However, the block or scattered
representations can also be used. The block
representation involves less communication
between processors than does the scattered
representation if the standard orderings are
used. However, the two representations are
equivalent if different orderings are used.

The scattered representation does not have a

load-balancing advantage here, since the matrix
does not change shape.
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The symmetric eigenvalue problem

There is a close connection between the
Hestenes method for finding the SVD of a
matrix A and the Jacobi method for finding the
eigenvalues of the symmetric matrix B = AT A.

Important differences are that the formulas
defining the rotation angle ¢ involve elements
b;; of B rather than inner products of columns
of A, and transformations must be performed
on the left and right instead of just on the right
(since (AV)T(AV) =VTBV).

Instead of permuting columns of A, we have to
apply the same permutation to both rows and
columns of B.

An implementation on a square systolic array of
n/2 by n/2 processors is possible, and can be
adapted to other parallel architectures. Again,
a blocked data representation is desirable to
minimise communication costs.
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Parallel merging and sorting

To conclude, we consider a “non-numerical”
problem — sorting data into order. It is assumed
that each item of data has a key and the keys
are totally ordered (an example is lexicographic
ordering).

First, consider a simpler problem: merging data

held on two processors (the solution of this
problem will be useful for sorting).
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The merge-exchange problem

Suppose processors P and ) each have n items
of data and the data on each processor is
already sorted. For example, if n = 4, processor
P might have (A, B, F, Z) and processor @
might have (C, D, E, Q).

The problem is to merge the 2n items of data
(we assume they are all distinct) into one sorted
list, and end with the first half of the list on
processor P and the last half on processor @. In
our example, P should end up with (A, B,C, D)
and Q with (E, F,G, Z).

We could transfer @’s data to P, merge it with
P’s data, then send the last half of the merged
list back to Q). However, this is inefficient
because P does all the work (Q is idle while P
is merging), and some data may be transferred
unnecessarily. Also, P needs more memory than
is required just to store 2n items.
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A solution — first find the median

Suppose the final sorted list is (A1, Ag, ..., A2y,
Thus, P ends up with (4;,...,Ay) and Q ends
up with (Ap+1,. .., A2,). If the processors can
determine, by a small amount of communication
and local computation, the value of the median
element A,,, then a more efficient solution is
possible —

P sends to @ all of its elements which are
greater than A,,, and @ sends to P all of its
elements which are less than or equal to A,.
Then, all each processor has to do is a local
merge.

Finding the median can be done by binary
search. At each stage, if the candidate median
is M say, each processor counts how many of its
elements exceed M, and sends the count to the
other processor. Each processor now can
determine how many elements in the final
sorted list will exceed M. If this number is
greater than n then M is increased, if less than
n then M is decreased, ...
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The communication tradeoff

Overall, there are about 1g(n) communication
steps to find the median. Thus on average, we
trade the time required to communicate O(n)
elements for O(lgn) communication startup
times. This is worthwhile if n is sufficiently
large.
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Sorting networks

A sorting network is a sorting circuit built from
comparators, which are circuit elements which
can sort two inputs (for the definition, see
Knuth, Vol. 3). For example:

1 2 3 4 5

The network shown will sort 6 items in 5 steps
using 12 comparators.
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A generalisation of sorting networks

In a sorting network, we can replace each
comparator by a “generalised comparator”
which takes two sorted lists, merges them, and
outputs the lower and upper halves of the result
(as in the merge-exchange problem considered
previously).

It can be shown that, provided the input and
output lists of the generalised comparators are
all of the same size k, and the initial inputs are
sorted lists of size k, then the generalised
network will sort correctly.

The restriction on input sizes is necessary, as
examples show, but can be circumvented by the
use of “virtual” elements, so is not a problem in
practice (see Tridgell and Brent [10]).
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Generic parallel sorting algorithm

We can take any serial algorithm which can be
implemented as a sorting network

(e.g. Batcher’s merge-exchange algorithm, see
Knuth [8, Algorithm M]), and convert it into a
parallel algorithm which uses the
merge-exchange operation.

Practical parallel sorting

Simply extending Batcher’s algorithm is
inefficient. A practical algorithm could add the
steps of pre-balancing, fast internal sorting, and
perhaps “almost sorting”. For details see
Tridgell and Brent [10].
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Other parallel sorting algorithms

There are many serial sorting algorithms, and
even more parallel algorithms. The main
competitors appear to be

e Algorithms based on merge-exchange, as
above.

e Algorithms based on sample-sort.
e Algorithms based on radix sort.

A disadvantage of the parallel algorithms based
on sample-sort and radix-sort is that they
require all to all communication, whereas
algorithms based on merge-exchange require
only processor to processor communication.

Another disadvantage of algorithms based on
radix sort is that the keys must have fixed
length and the ordering of keys can not be
defined by the user.

For more on parallel sorting, see Andrew
Tridgell’s thesis [12].
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