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Integer Factorisation,
Elliptic Curves
and
Fermat Numbers*

*Six lectures on Algorithms, Trinity term 1999.
Copyright ©1999, R. P. Brent.

lec06

Abstract

We outline the integer factorisation algorithms
ECM, MPQS and NFS, and then compare their
expected performance on “typical” or “random”
large integers. Finally, we illustrate some of the
conclusions by giving a brief historical summary
of attempts to factor Fermat numbers.
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Outline
Part 1: ECM, MPQS and NFS

e Notation and definitions

¢ Elliptic curves over finite fields

The elliptic curve method (ECM)

e The quadratic sieve (QS and MPQS)
e The number field sieve (NFS)

— Special (SNFS)

— General (GNFS)

Part 2: Comparison Theorems

e Comparison of ECM and MPQS

e Comparison of ECM and GNFS

Part 3: History

e Attempts to factor Fermat numbers
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Notation

n and N always denote positive integers.

Ppr denotes a prime number with n decimal
digits, e.g. p3 = 163. Similarly, ¢,, denotes a
composite number with n decimal digits,
e.g. cqg = 1729.

log or In denotes the natural logarithm,
lg or log, denotes the logarithm to base 2.

Almost Always and Almost Never

If P(n) is a predicate, we say that P(n) holds
almost always if

i S NP

=1
N—o0 N

and we say that P(n) holds almost never if

< :
o R SNP@Y
N—oo N

Ezample (Erdés Kac): For any £ > 0,
n almost always has between (1 — ¢)loglogn
and (1 + ¢)loglogn prime factors.
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Elliptic Curves Over Finite Fields

A curve of the form
v=2>+ar+b (1)

over some field F is known as an elliptic curve.
A more general cubic in z and y can be reduced
to the form (1), which is known as the
Weierstrass normal form, by rational
transformations, provided char(F) # 2 or 3.
There is a well-known way of defining an
Abelian group (G, +) on an elliptic curve over a
field. If Py = (z1,y1) and P» = (z2,y2) are
points on the curve, then the point

Ps = (x3,y3) = P + P» is defined by —

(z3,y3) = (N2 — 21 — 20, Az1 —23) —91) ,

where

_ { (337% +a)/(2y1) if =P
(y1 — y2)/(z1 — z2) otherwise.

The zero element in G is the “point at infinity”,
(00, 00). We write it as 0.
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Geometric Interpretation

The geometric interpretation of “4” is
straightforward: the straight line P, P
intersects the elliptic curve at a third point

P} = (z3,—y3), and Pj is the reflection of Pj§ in
the z-axis.

More elegantly, if a straight line intersects the
elliptic curve at three points Q1, @2, Q3 then

Q1 +Q2+Q3=0.

N

Figure 1: The Group Operation

Brief Description of ECM

The elliptic curve method (ECM) for integer
factorisation was discovered by H. W. Lenstra,
Jr. in 1985. Various practical refinements were
suggested by Montgomery, Suyama, and others.

ECM uses groups defined by pseudo-random
elliptic curves over GF(p), where p > 3 is the
prime factor we hope to find. (Fortunately, we
don’t need to know p in advance.) By a
theorem of Hasse (1934), the group order g for
an elliptic curve over GF(p) satisfies

lg—p—1/<2yp.

By a result of Deuring, all g satisfying this
inequality are possible.

ECM is similar to an earlier method, Pollard’s
“p —1” method, but the p — 1 method has the
disadvantage that the group is fixed and the
method fails if p — 1 has a large prime factor.
We can think of ECM as a “randomised”
version of the p — 1 method.
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Lenstra’s Analysis of ECM

Consider applying ECM to a composite integer
N with smallest prime factor p. Making an
unproved but plausible assumption regarding
the distribution of prime factors of random
integers in “short” intervals, Lenstra showed
that ECM will find p in an expected number

W(p) = exp (\/(2 +0(1)) log plog logp)

of multiplications (mod N), where the “o(1)”
term tends to zero as p — oo.

In Lenstra’s algorithm the field F is the finite
field GF(p) of p elements, where p is a prime
factor of N. Since p is not known in advance,
computation is performed in the ring Z/NZ of
integers modulo N rather than in GF(p). We
can regard this as using a redundant group
representation.
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One Trial of ECM

A trial (or curve) is the computation involving
one random group G. The steps involved are —

1. Choose a parameter B.

2. Choose g, yg and a randomly in [0, N).
This defines b = 92 — (23 + azp) mod N.
Set P+ Py= (Io,yo).

3. For each prime < B take its maximal
power ¢ < B and set P + ¢P in the group
G defined by a and b.

If P = 0 then the trial succeeds as a factor of N
will have been found during an attempt to
compute an inverse mod N. Otherwise the trial
fails.

The work involved in a trial is O(B) group
operations. There is a tradeoff involved in the
choice of B, as a trial with large B is expensive,
but a trial with small B is unlikely to succeed.
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Optimal Choice of B

Making Lenstra’s plausible assumption, one
may show that the optimal choice of B is
B = p'/* where

o~ (2Inp/Inlnp)/? .
It follows that the expected run time is

T = p2/a+o(1/a) )

The exponent 2/« should be compared with 1
(for trial division) or 1/2 (for Pollard’s “rho”
method).

A Practical Problem

The optimal choice of B depends on the size of
the factor p. Since p is unknown, we have to
guess or use some sort of adaptive strategy.

Fortunately, the expected performance of ECM
is not very sensitive to the choice of parameters,
so the precise strategy does not matter much.

The Second Phase

Both the Pollard “p — 1”7 and Lenstra elliptic
curve algorithms can be speeded up by the
addition of a second phase. The idea of the
second phase is to find a factor in the case that
the first phase terminates with a group element
P # 0, such that |(P)| is reasonably small (say
O(B?)). Here (P) is the cyclic group generated
by P.

There are several possible implementations of
the second phase. One of the simplest uses a
pseudorandom walk in (P). By the birthday
paradox argument, there is a good chance that
two points in the random walk will coincide
after O(|(P)|'/?) steps, and when this occurs a
nontrivial factor of N can usually be found.
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Expected Performance of ECM

In Table 1 we give a small table of log;q W for
factors of D decimal digits. The precise figures
depend on assumptions about the
implementation.

Table 1: Expected work for ECM

digits D | log;a W
20 7.35
30 9.57
40 11.49
50 13.22
60 14.80
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Comparison with Pollard “rho”

10y rho

81 ecm

6 8 10 12 14 16 18

logo W versus decimal digits in factor

Because of the overheads involved with ECM, a
simpler algorithm such as Pollard’s “rho” is
preferable for finding factors of up to about ten
decimal digits, but for larger factors the
advantage of ECM becomes apparent.
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ECM Example

ECM can routinely find factors p of size about
30 decimal digits. The largest factor known to
have been found by ECM is the 53-digit factor

ps3 = 53625112691923843508117942\
311516428173021903300344567

of 2677 — 1, found by Conrad Curry in
September 1998 using a program written by
George Woltman and running on 16 Pentiums.

The group order for the lucky trial was

g = 2%.39.3079- 152077 - 172259 - 1067063 -
3682177 - 3815423 - 8867563 - 15880351

We expect only one in 2,400,000 curves to have
such a “smooth” group order.

Quadratic Sieve Algorithms

Quadratic sieve algorithms belong to a large
class of algorithms which try to find two integers
z and y such that z # +y (mod N) but

22 =19? (mod N). (2)

Once such z and y are found, then

GCD (z — y, N) is a nontrivial factor of N.

One way to find x and y satisfying (2) is to find
a set of relations of the form

u? = v2w; (mod N), (3)

where the w; have all their prime factors in a
moderately small set of primes (called the
factor base). Each relation (3) gives a row in a
matrix M whose columns correspond to the
primes in the factor base.
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Linear Algebra mod 2

Once enough rows have been generated, we can
use sparse Gaussian elimination in GF(2) to
find a linear dependency (mod 2) between a set
of rows of M. Multiplying the corresponding
relations now gives an expression of the

form (2). With probability at least 1/2, we have
xz # +y mod N so a nontrivial factor of N will
be found. If not, we need to obtain a different
linear dependency and try again.



Sieving

In quadratic sieve algorithms the numbers w;
are the values of one (or more) polynomials
with integer coefficients. This makes it easy to
find relations by sieving. The inner loop of the
sieving process has the form

while j < bound do

begin

s[i]  slj] +

Jj<itg

end
Here bound depends on the size of the
(single-precision real) sieve array s, ¢ is a small
prime or prime power, and c is a
single-precision real constant depending on ¢
(¢ = A(q) =logp if ¢ = p®, p prime).
It is possible to use scaling to avoid floating
point additions, which is desirable on a small
processor without floating-point hardware.
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MPQS

MPQS is a quadratic sieve method which uses
several polynomials to improve the efficiency of
sieving (an idea of Montgomery). MPQS can,
under plausible assumptions, factor a number N
in time

O(exp(c(In N Inln N)Y/2)) |

where ¢ ~ 1. The constants involved are such
that MPQS is usually faster than ECM if N is
the product of two primes which both exceed
N'/3. This is because the inner loop of MPQS
involves only single-precision operations.

P-MPQS and PP-MPQS

In the “one large prime” (P-MPQS) variation
w; is allowed to have one prime factor exceeding
B (but not too much larger than B). This is
analogous to the second phase of ECM and
gives a similar performance improvement.

In the “two large prime” (PP-MPQS) variation
w; can have two prime factors exceeding B —
this gives a further performance improvement at
the expense of higher storage requirements.
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MPQS Examples

MPQS has been used to obtain many impressive
factorisations. Arjen Lenstra and Mark
Manasse (with many assistants scattered around
the world) have factored several numbers larger
than 10199, For example, the 116-decimal digit
number (3329 + 1)/(known small factors) was
split into a product of 50-digit and 67-digit
primes. The final factorisation is

3P 41 = 22.547-16921 - 256057 - 36913801 -
177140839 - 1534179947851 -
2467707882284001426665277\
9036768062918372697435241 - per

Such factorisations require many years of CPU
time, but a real time of only a month or so
because of the number of different processors
which are working in parallel.
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The Magic Words are - - -

At the time of writing, the largest number
factored by MPQS is the 129-digit “RSA
Challenge” number RSA129. It was factored in
1994 by Atkins et al. RS&A had predicted in
Scientific American that it would take millions
of years to factor RSA129.

The factors of RSA129 allow decryption of a
‘secret’ message from RS&A. Using the
decoding scheme 01 = 4,02 = B,...,26 = Z,
and 00 a space between words, the decoded
message reads

THE MAGIC WORDS ARE SQUEAMISH
OSSIFRAGE

It is certainly feasible to factor larger numbers
by MPQS, but for numbers of more than about
110 decimal digits GNFS is faster. For example,
to factor RSA129 by MPQS required 5000
Mips-years, but to factor the slightly larger
number RSA130 by GNFS required only 1000
Mips-years.
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The Special Number Field Sieve
(SNFS)

Most of our numerical examples have involved
numbers of the form

a®tb, (4)

for small @ and b, although the ECM and
MPQS factorisation algorithms do not take
advantage of this special form.

The special number field sieve (SNFS) is a
relatively new (c. 1990) algorithm which does
take advantage of the special form (4). In
concept it is similar to the quadratic sieve
algorithm, but it works over an algebraic
number field defined by a, e and b.

The details are rather technical and depend on
concepts from algebraic number theory, so we
simply give two examples to show the power of
the algorithm.
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SNFS Example 1
Consider the 155-decimal digit number

Fy=N=22 41

as a candidate for factoring by SNFS. Note that
8N = m5 4 8, where m = 219, We may work in
the number field Q(a), where « satisfies

a®+8=0,
and in the ring of integers of Q(«). Because
m’+8=0 (mod N),

the mapping ¢ : @ — m mod N is a ring
homomorphism from Z[a] to Z/NZ.

The idea is to search for pairs of small coprime
integers u and v such that both the algebraic
integer u + av and the (rational) integer u + mw
can be factored. The factor base now includes
prime ideals and units as well as rational
primes.
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Example 1 continued

Because
o(u+ av) = (u+mov) (mod N),

each such pair gives a relation analogous to (3).
The prime ideal factorisation of u + av can be
obtained from the factorisation of the norm

u® — 8v® of u + awv. Thus, we have to factor
simultaneously two integers u + mv and

|u® — 8v®%|. Note that, for moderate u and v,
both these integers are much smaller than N, in
fact they are O(N'/4), where d = 5 is the
degree of the algebraic number field.

Using these and related ideas, Lenstra et al
factored Fy in June 1990, obtaining

Fy = 2424833
745560282564788420833739\
5736200454918783366342657 - pog ,

where pgg is an 99-digit prime, and the 7-digit

factor was already known (although SNFS was
unable to take advantage of this).
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Detalils

The collection of relations took less than two
months on a network of several hundred
workstations. A sparse system of about 200,000
relations was reduced to a dense matrix with
about 72,000 rows. Using Gaussian elimination,
dependencies (mod 2) between the rows were
found in three hours on a Connection Machine.
These dependencies implied equations of the
form 22 = 42 mod Fy. The second such
equation was nontrivial and gave the desired
factorisation of Fy.
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SNFS Example 2

The current SNFS record is the 211-digit
number 102! — 1, factored early in 1999 by a
collaboration called “The Cabal”. In fact,
102! — 1 = 32 . pg3 - p11g, where

pos = 69262455732438962066278\
23226773367111381084825\
88281739734375570506492\
391931849524636731866879

and pi118 may be found by division.
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Details

The factorisation of N = 102! — 1 used two
polynomials

f(z) =z —10%

and
g(z) = 1025 — 1

with common root m = 10%% mod N. After
sieving and reduction a sparse matrix over
GF(2) was obtained with about 4.8 x 10® rows
and weight (number of nonzero entries) about
2.3 x 108, an average of about 49 nonzeros per
row. Montgomery’s block Lanczos program
took 121 hours on a Cray C90 to find 64
dependencies. Finally, the square root program
needed 15.5 hours on one CPU of an SGI Origin
2000, and three dependencies to find the two
prime factors.
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The General Number Field Sieve
(GNFS)

The general number field sieve (GNFS or just
NFS) is a logical extension of the special
number field sieve (SNFS).

When using SNFS to factor an integer N, we
require two polynomials f(z) and g(x) with a
common root m mod N but no common root
over the field of complex numbers.

If N has the special form a® £ b then it is
usually easy to write down suitable polynomials
with small coefficients, as illustrated by the two
examples given above.

If N has no special form, but is just some given
composite number, we can also find f(z) and
g(z), but they no longer have small coefficients.
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The “Base m” Method

Suppose that g(z) has degree d > 1 and f(z) is
linear. d is chosen empirically, but it is known
from theoretical considerations that the
optimum value is

p (31nN>1/3
Inln N ’

We choose m = | N'/4| and write

d
N = Z ajmj
=0

where the a; are “base m digits” and aq = 1.
Then, defining

d
f(x):x_m7 g(x):Za]x],
7=0

it is clear that f(z) and g(z) have a common
root m mod N. This method of polynomial
selection is called the “base m” method.
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Other Ingredients of GNFS

Having found two appropriate polynomials, we
can proceed as in SNFS, but many difficulties
arise because of the large coefficients of g(z).
The details are the subject of several theses.
Suffice it to say that the difficulties can be
overcome and the method works!

Due to the constant factors involved, GNFS is
slower than MPQS for numbers of less than
about 110 decimal digits, but faster than MPQS
for sufficiently large numbers, as anticipated
from the theoretical run times.
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Some Difficulties Overcome

Some of the difficulties which had to be
overcome to turn GNFS into a practical
algorithm are:

e Polynomial selection. The “base m”
method is not very good. Brian Murphy
has shown how a very considerable
improvement (by a factor of more than ten
for number of 140 digits) can be obtained.

e Linear algebra. After sieving a very large,
sparse linear system over GF(2) is
obtained, and we want to find
dependencies amongst the rows. It is not
practical to do this by Gaussian
elimination because the “fill in” is too
large. Montgomery showed that the
Lanczos method could be adapted for this
purpose. (This is nontrivial because a
nonzero vector z over GF(2) can be
orthogonal to itself, i.e. 7z = 0.) His
program works with blocks width 64.
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Difficulties continued

e Square roots. The final stage of GNFS
involves finding the square root of a (very
large) product of algebraic numbers. Once
again, Montgomery found a way to do
this.

e An idea of Adleman, using quadratic
characters, is essential to ensure that the
desired square root exists with high
probability.
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Scalability of GNF'S

At present, the main obstacle to a fully parallel
and scalable implementation of GNFS is the
linear algebra. Montgomery’s block Lanczos
program runs on a single processor and requires
enough memory to store the sparse matrix. In
principle it should be possible to distribute the
block Lanczos solution over several processors of
a parallel machine, but the communication to
computation ratio will be high. There is a
tradeoff here — by increasing the time spent on
sieving we can reduce the size and weight of the
resulting matrix.

If special hardware is built for sieving, as
pioneered by Lehmer and recently proposed (in
more modern form) by Shamir, the linear
algebra will become relatively more important.
The argument is similar to Amdahl’s law: no
matter how fast sieving is done, we can not
avoid the linear algebra.
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RSA140

At the time of writing, the largest number
factored by GNFS is the 140-digit RSA
Challenge number RSA140. It was split into the
product of two 70-digit primes in February,
1999, by a team coordinated from CWT,
Amsterdam. The amount of computer time
required to find the factors was about 2000
Mips-years.

The two polynomials used were
f(z) = x — 34435657809242536951779007
and

g(z) = +439682082840z°
+390315678538960z*
—73873252938929945722°
—19027153243742988714824>
—63441025694464617913930613x
+318553917071474350392223507494 .
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Polynomial Selection

The polynomial g(z) was chosen (by the
method of Murphy and Montgomery) to have a
good combination of two properties: being
unusually small over the sieving region, and
having unusually many roots modulo small
primes and small prime powers. The effect of
the second property alone makes g(z) as
effective at generating relations as a polynomial
chosen at random for an integer of 121 decimal
digits. In effect judicious polynomial selection
removed at least 19 digits from RSA140,
making it much easier to factor.

The polynomial selection took 2000 CPU-hours
on four 250 MHz SGI Origin 2000 processors.
This is about 200 Mips-years, or 10% of the
total factorisation time. It might have been
better to spend a larger fraction of the time on
polynomial selection — this is an interesting
tradeoff.
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Sieving

Sieving was done on about 125 SGI and Sun
workstations running at 175 MHz on average,
and on about 60 PCs running at 300 MHz on
average. The total amount of CPU time spent
on sieving was 8.9 CPU-years (about 1900
Mips-years).

The Linear Algebra

The resulting matrix had about 4.7 x 10% rows
and weight about 1.5 x 108 (about 32 nonzeros
per row). Using Montgomery’s block Lanczos
program, it took almost 100 CPU-hours and
810 MB of memory on a Cray C916 to find 64
dependencies among the rows of this matrix.
Calendar time for this was five days.

RSA155

At the time of writing, an attempt to factor the
512-bit number RSA155 is well underway. I am
willing to bet £100 that it will be factored
before the year 2000.
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Summary of Part 1

I have sketched some algorithms for integer
factorisation. The most important are ECM,
MPQS and GNFS. The algorithms draw on
results in elementary number theory, algebraic
number theory and probability theory. As well
as their inherent interest and applicability to
other areas of mathematics, advances in public
key cryptography have lent them practical
importance.

Despite much progress in the development of
efficient algorithms, our knowledge of the
complexity of factorisation is inadequate. We
would like to find a polynomial time
factorisation algorithm or else prove that one
does not exist. Until a polynomial time
algorithm is found or a quantum computer
capable of running Shor’s algorithm is built,
large factorisations will remain an interesting
challenge.
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Predictions

From the predicted run time for GNFS, we
would expect RSA155 to take 6.5 times as long
as RSA140. On the other hand, Moore’s law
predicts that circuit densities will double every
18 months or so. Thus, as long as Moore’s law
continues to apply and results in
correspondingly more powerful parallel
computers, we expect to get almost 4 decimal
digits per year improvement in the capabilities
of GNFS, without any algorithmic
improvements. A similar argument applies to
ECM, for which we expect slightly more than 1
decimal digit per year in the size of factor found.

(When) Is RSA Doomed ?

512-bit RSA keys are clearly insecure. 1024-bit
RSA keys should remain secure for at least
thirty years, barring the unexpected (but
unpredictable) discovery of a completely new
algorithm which is better than GNFS, or the
development of a practical quantum computer.
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Part 2: Comparison of Algorithms

We now compare the expected behaviour of
ECM, MPQS and GNFS on large, “random”
or “typical” integers (not integers chosen by a
cryptographer).

If N is a (large) integer with prime factors

p1 > p2 > ..., we assume that the expected
time to factor N by these three methods is
Teem(N), Turgs(N), Tenrs(N) respectively,
where

log Tecm = \/(2 + 0(1)) log p2 log log pa

log Tapgs = \/(1 + o(1)) log N loglog N

log Tanrs = \3/(0—}— 0(1))log N (loglog N)?

Here c is some positive constant, and the o(1)
terms are as pp — 0o or N — oo.
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ECM and MPQS

Theorem

Tupgs(N) > eV 8 NTpoar(N) almost always.
Idea of Proof

<log TMPQS)2 S log N
logTeem / — (2+0(1)) log pa

but from the known distribution of log p2/ log N
this is at least 1 4+ £ with probability at least

1 — O(e?). Thus, the Theorem holds if eV'°&
is replaced by any f(N) satisfying

log f(N) =0 (\/logNloglogN) .

Corollary

For all € > 0, Tecm < €Tmpgs holds almost
always.
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ECM and GNFS

Theorem

For all e > 0, Tgnrs < €eTgcm holds almost
always.

However, this is not the full story, because ECM
can find small factors quickly, and after dividing
them out GNFS can finish the factorisation
more quickly than if ECM had not been used.

Let ngvM(N) be the expected time for ECM to

find at least Ak prime factors of N, where k is
the total number of prime factors of N. (It does
not matter how we count multiple factors.)
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The “two thirds” Theorem

Let K be any positive constant, and A € [0, 1].

If A < 2/3 then Ty, < KTanrs almost

always;

if A > 2/3 then TS, > KTgnps almost
always.

Thus, it is better to use a combination of ECM
and GNFS than either alone, and with a
sensible strategy we expect to find about two
thirds of the prime factors by ECM and the
remaining one third by GNFS.
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Part 3: Some History of Fermat
Numbers

For a nonnegative integer n, the n-th Fermat
number is F, = 22" 4+ 1. Tt is known that F), is
prime for 0 < n < 4, and composite for

5 < n < 23. Also, for n > 2, the factors of F,,
are of the form

I

In 1732 Euler found that 641 =5-27+ 1 is a
factor of Fy, thus disproving Fermat’s belief
that all F,, are prime!. Euler apparently used
trial division by primes of the form 64k + 1.

No Fermat primes larger than Fy are known,
and a probabilistic argument makes it plausible
that only a finite number of F,, (perhaps only
Fy,..., Fy) are prime. It is known that F), is
composite for 5 < n < 23.

1«Back of envelope” proof: working mod 641,
5.27 = —1 =522 = 1, but 5* = —2*, 50 23?2 = —1.
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Factorisation of Fermat Numbers

The complete factorisation of the Fermat
numbers Fg, F7,. .. has been a challenge since
FEuler’s time. Because the F,, grow rapidly in
size, a method which factors F,, may be
inadequate for Fj,41.

Fg

In 1880, Landry factored Fg = 274177 - p14 .
Landry’s method was never published in full,
but Williams has attempted to reconstruct it.

Hand Computations

In the period 1877-1970, several small factors of
F,, for various n > 9 were found by taking
advantage of the special form of these factors.
For example, in 1903 Western found the factor
py = 2424833 = 37 - 216 1 1 of Fy.

Significant further progress was only possible
with the development of the digital computer
and more efficient algorithms.
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F7
In 1970, Morrison and Brillhart factored

F7 = 59649589127497217 - pao

by the continued fraction method. This method
has now been superseded by MPQS which,
perhaps surprisingly, has never been the first to
factor a Fermat number.

Fy
In 1980, Brent and Pollard factored
Fg3 = 1238926361552897 - pga

by a modification of Pollard’s “rho” method.
The “rho” method is now largely superseded by
ECM.

Nowadays, F7 and Fg are “easy” to factor by
ECM or MPQS.
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Fy

Logically, the next step after the factorisation of
Fg was the factorisation of Fy. It was known
that

Fg = 2424833 - C148

The 148-digit composite number resisted attack
by methods such as Pollard rho, Pollard p £ 1,
and the elliptic curve method (ECM), which
would have found “small” factors. It was too
large to factor by the continued fraction method
or even by MPQS.

The difficulty was finally overcome by the
invention of the (special) number field sieve
(SNF'S), based on a new idea of Pollard.

In 1990, Lenstra, Lenstra, Manasse and Pollard,
with the assistance of many collaborators and
approximately 700 workstations scattered
around the world completely factored Fy by
SNFS. As we already mentioned, the
factorisation is

Fy = 2424833 - pag - pog .
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F10

After the factorisation of Fy in 1990, Fig was
the “most wanted” number in various lists of
composite numbers.

F19 was proved composite in 1952 by Robinson,
using Pépin’s test on the SWAC. A small factor,
45592577, was found by Selfridge in 1953 (also
on the SWAC). Another small factor,
6487031809, was found by Brillhart in 1962 on
an IBM 704. Brillhart later found that the
cofactor was a 291-digit composite.

Using ECM 1 found a 40-digit factor psg =

4659775785220018543264560743076778192897

of Fig in October, 1995. The 252-digit cofactor
C291/pao passed a probabilistic primality test
and was soon proved to be prime using the
method of Atkin and Morain (based,
appropriately, on elliptic curves). Thus, the
complete factorisation of Fig is

Fio = 45592577 - 6487031809 - pao - p2s2 .
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Fll

F11 was completely factored in 1988, before the
factorisation of Fy and Fyg. In fact,

F11 = 319489 -974849 -
167988556341760475137 -
3560841906445833920513 - psea

The two 6-digit factors were found by
Cunningham in 1899, and I found the remaining
factors in May 1988, using ECM on a Fujitsu
VP100. The 564-digit factor passed a
probabilistic primality test, and a rigorous proof
of primality was provided by Morain.

The reason why Fi1 could be completely
factored before Fg and Fig is that the difficulty
of completely factoring numbers by ECM is
determined mainly by the size of the
second-largest prime factor of the number.

The second-largest prime factor of Fy; has 22
digits and is much easier to find by ECM than
the 40-digit factor of Fyg or the 49-digit factor
of F 9.
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Summary, Fs,... Fq;

A brief summary of the history of factorisation
of Fs,..., Fy is given in the Table.

Table 2: Complete factorisation of F,,, n=15,...,11

n Factorisation Date Comments
5 P3 - P7 1732 Euler
6 P6 - Pla 1880 Landry
7 P17 - P22 1970 Morrison and Brillhart
8 P16 - P62 1980 | Brent and Pollard (p16, pe2)
1980 | Williams (primality of pgz)
9 P7 - P49 - P99 1903 | Western (p7)
1990 Lenstra et al (pag, pgg)
10 P8 * P10 * P40 - P252 1953 Selfridge (ps)
1962 | Brillhart (p10)
1995 | Brent (pao, p252)
11 | pe - pg - P21 - P22 - P56 1899 | Cunningham (pg, pg)
1988 | Brent (p21,p22,P564)
1988 Morain (primality of psea4)
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F12

The smallest Fermat number which is not yet
completely factored is Fio. It is known that

Fio = 114689 -26017793 -
63766529 - 190274191361 -
1256132134125569 - c1187 ,

where the 16-digit factor was found by Baillie in
1986, using the Pollard p — 1 method (and
rediscovered in 1988 using ECM).

F12 has at least seven prime factors, spoiling a
“conjecture” based on the observation that F,
has exactly n — 6 prime factors for 8 <n < 11.
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Fi3
It is known that

Fi3 = 2710954639361 -
2663848877152141313 -
3603109844542291969 -
319546020820551643220672513 - c2391 ,

where the 13-digit factor was found by
Hallyburton and Brillhart (1975), and the two
19-digit factors were found by Crandall (1991).
I found the 27-digit factor in June 1995, using
ECM on an IBM PC equipped with a Dubner
Cruncher board.

F14

F14 = c4933 is composite, but no nontrivial
factors are known. The smallest prime factor
probably has at least 30 decimal digits.

F15

Fi5 = 1214251009 - 2327042503868417 - cog40,

where the 13- and 16-digit prime factors were
found by Kraitchik (1925) and Gostin (1987).
In July, 1997, Brent, Crandall, Dilcher & Van
Halewyn found a 33-digit factor

p33 = 168768817029516972383024127016961

using ECM. The quotient is cggog-

Fi6

Fig = 825753601 -
188981757975021318420037633 - c19694

where the 9-digit factor was found by Selfridge
(1953), and the 27-digit factor was found in
December 1996 by Brent, Crandall & Dilcher
using ECM.
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Fi7

F18

Fi17 = 31065037602817 - ¢ .

Fig = 18631489 - 81274690703860512587777 - ¢ ,

where the 23-digit factor was found by
MclIntosh and Tardif in April 1999, using ECM.

F197"'7F24

Flg, Fog, Fa1, Faog are composite and some small
factors are known.

Fb59 is composite but no factors are known.

The status of Fb4 is unknown.
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