
Lecture 11. Geodesics and completeness

In this lecture we will investigate further the metric properties of geodesics
of the Levi-Civita connection, and use this to characterise completeness of a
Riemannian manifold in terms of the exponential map.

11.1 Geodesic polar coordinates and the Gauss Lemma

Let (M, g) be a Riemannian manifold, and x ∈ M . Choose an orthonormal
basis {e1, . . . , en} for TxM , and induce an isomorphism from R

n to TxM .
This in turn induces a map from Sn−1 × (0,∞) → M , by sending (ω, r) to
expx (rω). This is called geodesic polar coordinates from x.

Proposition 11.1.1 In geodesic polar coordinates the metric takes the form

g(∂r, ∂r) = 1;
g(∂r, u) = 0,

for any u ∈ TSn−1.

In other words, the image under the exponential map of the unit radial
vector in TxM is always a unit vector, and the image of a vector tangent
to a sphere about the origin is always orthogonal to the image of the radial
vector. Think of a polar ’grid’ of radial lines and spheres in TxM , mapped
onto M by the exponential map TxM . Then this map says that the images
of the spheres are everywhere orthogonal to the images of the radial lines
(which are of course geodesics).

Proposition 11.1.1 is often called the Gauss Lemma.

Proof. The first part of the claim follows from the fact that ∂r is the tangent
vector to a geodesic, so ∇r∂r = 0. Hence by compatibility,

∂rg(∂r, ∂r) = 2g(∂r,∇r∂r) = 0,

and the length of ∂r is constant in the r direction. But when r = 0 we have
|∂r| = 1.
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To prove the second part of the proposition, let γ : [0, r] × (−ε, ε) → M
be given by γ(r, s) = expx(rω(s)), where ω(s) ∈ Sn−1(0) ⊂ TxM . Then in
TxM , ω′(s) is tangent to a sphere about the origin, and we need to show that
the image ∂s of this vector is orthogonal to the radial vector ∂r:

∂rg(∂r, ∂s) = g(∇r∂r, ∂s) + g(∂r,∇r∂s)
= g(∂r,∇s∂r)

=
1
2
∂sg(∂r, ∂r)

= 0,

since we know g(∂r, ∂r) = 1 everywhere. But as before, we have g(∂r, ∂s) = 0
when r = 0. �

M
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11.2 Minimising properties of geodesics

An important consequence of the Gauss Lemma is the fact that geodesics
of the Levi-Civita connection, restricted to sufficiently short intervals, have
smaller length than any other path between their endpoints.

Proposition 11.2.1 Let (M, g) be a Riemannian manifold, and ∇ the Levi-
Civita connection of g. Let γ : I → M be a ∇-geodesic. Then for any t ∈ I
there exists δ > 0 such that L

[
γ
∣
∣
[t0−δ,t0+δ]

]
= d(γ(t0 − δ), γ(t0 + δ)).
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Note that we cannot expect that geodesics minimise length on long inter-
vals – consider the example of the sphere S2: Geodesics are great circles, and
these achieve the distance between their endpoints on intervals of length no
greater then π, but not on longer intervals.

Minimising
segments A non-minimising

segment

S2

Proof. Choose ε sufficiently small so that expγ(t0−ε) is a diffeomorphism on
a ball of radius r > 2ε about the origin. For convenience we denote by p the
point γ(t0 − ε), and by q the point γ(t0 + ε).

g

p

r

q

g(t )

Now let σ be any other curve joining the points p and q. Suppose first that
σ remains in the set Br(p) = expp(Br(0)). Then we can write σ(t) = r(t)ω(t)
where r > 0 and |ω(t)| = 1. The squared length of the tangent vector σ′ is
then

|σ′(t)|2 = (r′)2g(∂r, ∂r) + 2rr′g(∂r, ω
′) + r2g(ω′, ω′)

= (r′)2 + r2|ω′|2

≥ (r′)2,

with equality if and only if ω′ vanishes. Therefore we have
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L[σ] ≥
∫

|r′|dt ≥ 2ε,

with equality if and only if ω is constant and r is monotone, in which case σ
is simply a reparametrisation on γ.

The other possibility is that σ leaves the ball. But then the same argument
applies on the portion of sigma joining p to the boundary of the ball, giving
L[σ] ≥ r > 2ε.

Therefore L[σ] ≥ L[γ], with equality if and only if σ is a reparametrisation
of σ. �

Proposition 11.2.2 Suppose γ : [0, 1] → M is a piecewise smooth path for
which L[γ] = d(γ(0), γ(1)). Then γ = σ ◦ f , where f : [0, 1] → [0, 1] is a
piecewise smooth monotone increasing function, and σ is a geodesic.

Proof. First observe that γ achieves the distance between any pair of its
points: If there were some subinterval on which this were not true, then
replacing γ by a shorter path on that subinterval would also yield a shorter
path from γ(0) to γ(1).

For any t ∈ (0, 1), there is a sufficiently small neighbourhood J of t in [0, 1]
such that γ

∣∣
J

is contained in a diffeomorphic image of the exponential map
from one of its endpoints, and so by the Gauss Lemma γ

∣∣
J

is a reparametrised
geodesic. �

This is a nice feature of the Levi-Civita connection: The geodesics of ∇
are precisely the length-minimising paths, re-parametrised to have constant
speed.

11.3 Convex neighbourhoods

We know that points which are sufficiently close to each other can be con-
nected by a unique ‘short’ geodesic. This result can be stated somewhat
more cleany in the special case of the Levi-Civita connection than it can in
the general case:

Proposition 11.3.1 Let (M, g) be a Riemannian manifold, and ∇ the Levi-
Civita connection of g. Then for every p ∈M there exist constants 0 < ε ≤ η
such that for every pair of points q and r in Bε(p) there exists a unique
geodesic γqr of length L[γqr] < η such that γqr(0) = q and γqr(1) = r.
Furthermore, L[γqr] = d(q, r).

Proof. The idea is exactly the same as the proof of Proposition 8.11.5: The
map ˜exp is a local diffeomorphism from a neighbourhood of (p, 0) in TM to a
neighbourhood of (p, p) in M ×M . Choose η sufficiently small to ensure that
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˜exp is a diffeomorphism on O = {(q, v)| q ∈ Bη, |v| ≤ η}, and then choose ε
sufficiently small to ensure that Bε(p) ×Bε(p) ⊂ ˜expO.

This gives the existence of a geodesic γqr of length less than η joining
q to r. Also γqr achieves the distance between its endpoints, by the Gauss
Lemma. �

We will improve the result slightly:

Proposition 11.3.2 For any p ∈M there exists a constant ε > 0 such that
for every pair of points q and r in Bε(p), there exists a unique geodesic γqr

for which γ(0) = q, γ(1) = r, and d(p, γ(t)) ≤ max{d(p, q), d(p, r)} for all
t ∈ [0, 1]. Furthermore L[γqr] = d(q, r).

Proof. By Proposition 11.5.1, Γij
k(0) = 0 in exponential normal coordinates.

Therefore there is η > 0 such that
∣∣∣
∑

k,i,j x
kΓij

kξiξj
∣∣∣ < 1

2

∑
k

(
ξk

)2 pro-

vided
∑

k

(
xk

)2
< 2η, and such that for some ε ∈ (0, η) the conditions of

Proposition 11.3.1 hold.
Then by Proposition 11.3.1 there is a geodesic γqr of length less than η

joining q to r; since p and q are within distance ε of p, the entire geodesic
γqr stays within distance 2η of p.

Now along γqr we compute:

d2

dt2
d(p, γ(t))2 =

d2

dt2

∑

k

(
xk

)2

= 2
d

dt

∑

k

(
xkẋk

)

= 2
∑

k

(
ẋk

)2
+ 2

∑

k

xk d
2

dt2
xk

= 2
∑

k

(
ẋk

)2 − 2
∑

k

xkΓij
kẋiẋj

≥ 2




∑

k

(
ẋk

)2 − 1
2

∑

[

(
ẋk

)2





≥ 0,

since we are within the ball of radius 2η about p. Therefore d(p, γ(t))2 is a
convex function along γqr, so the maximum value is attained at the endpoints.

�
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11.5 Completeness and the Hopf-Rinow Theorem

Now we are ready to prove the main result of this section:

Theorem 11.5.1 The Hopf-Rinow Theorem. Let (M, g) be a connected
Riemannian manifold. The following are equivalent:

(1). M is a complete metric space with the distance function d;
(2). exp is defined on all of TM (i.e. all geodesics can be extended indefi-

nitely);
(3). There exists p ∈M for which expp is definied on all of TpM .

Furthermore, each of these conditions implies

(*). For every p and q in M , there exists a geodesic γ : [0, 1] →M for which
γ(0) = p, γ(1) = q, and L[γ] = d(p, q).

Proof. (2) =⇒ (3) trivially. We prove (1) =⇒ (2), and then (3) =⇒ (∗p) and
((3) and (∗p)) =⇒ (1), where (∗p) is the statement that every point q ∈ M
can be connected to p by a length-minimising geodesic.

Suppose (M,d) is a complete metric space. If (2) does not hold, then there
is p ∈M , v ∈ TpM with |v| = 1, and T <∞ such that γ(t) = expp(tv) exists
for t < T but not for t = T .

p

y

B  (y)e

But d(γ(s), γ(t)) ≤ |s− t|, so γ(t) is Cauchy as t approaches T . By com-
pleteness, γ(t) converges to a limit y ∈ M as t → T . Choose ε > 0 such
that the ball Bε(y) is convex in the sense of Proposition 10.3.2. Then for
s, t > T − ε we have γ(s) and γ(t) contained in this geodesically convex set,
and γ a geodesic joining them; therefore γ achieves the distance between γ(s)
and γ(t):

d(γ(s), γ(t)) = |t− s|, for t, s > T − ε.
Then we have by continuity of the distance function,

d(γ(t), y) = lim
s→T

d(γ(t), γ(s)) = lim
s→T

(s− t) = T − t = L[γ
∣
∣
(t,T )

].

Therefore γ|(t,T ) is a minimising path, and must be a radial geodesic from y:
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γ(t) = expy(w(T − t)).

But then γ can be extended beyond y by taking t > T in this formula. This
is a contradiction, so condition (2) must hold.

Next we prove (3) =⇒ (∗p). Let p ∈ M be such that (3) holds, and
q ∈ M any other point. Choose ε > 0 such that expp is a diffeomorphism
on a set containing the closure of Bε(0). If q ∈ Bε(p) then we are done, so
assume not. Then Sε(p) = expp(Sε(0)) is the image of a compact set under a
continuous map, and so the function d(., q) attains its minimum on this set.
In other words, there exists r = expp(εv) such that d(r, q) = d(Sε(p), q) =
inf{d(r′, q) : r′ ∈ Sε(p)}. Then we must have

d(p, q) = ε+ d(r, q).

The inequality d(p, q) ≤ ε + d(r, q) follows by the triangle inequality since
d(p, r) = ε, and the other inequality follows because any path from p to q
must pass through Sε(p).

Define γ(t) = expp(tv).

q

p
r

S (p)
e

g

Let A ⊂ [0, d(p, q)] be the set of t for which

d(p, q) = t+ d(γ(t), q).

A is non-empty, as we have just shown; it is closed, by continuity of the
distance function and because γ can be extended indefinitely. We also have
that t ∈ A implies [0, t] ⊂ A: If s < t we have by the triangle inequality and
the fact that γ|[0,t] is a minimising path

d(p, q) = t+ d(γ(t), q)
= s+ (t− s) + d(γ(t), q)
≥ s+ d(γ(s), q)
≥ d(p, q),

so equality must hold throughout, and s ∈ A.
Finally, we will prove that A is open in [0, d(p, q)]. This will imply A =

[0, d(p, q)], so in particular d(γ(d(p, q)), q) = 0, and γ(d(p, q)) = q.
Suppose T ∈ A, and write p′ = γ(T ). Choose δ > 0 such that expp′ is a

diffeomorphism on Bδ(0). If q ∈ Bδ(p′), then write q = expp′(d(p′, q)w), and
define
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σ(t) =
{
γ(t), for t ≤ T ;
expp′ ((t− T )w) for t ≥ T .

Then σ is a curve joining p to q, and by assumption

d(p, q) = T + d(p′, q) = L[σ].

Therefore σ is a minimising curve, hence a geodesic, so σ(t) = expp(t) for all
t ∈ [0, d(p, q)] and we are done.

Otherwise, q /∈ Bδ(p′), and we can choose r′ ∈ Sδ(p′) such that d(r′, q) =
d(Bδ(p′), q). Then as before, we have

d(p′, q) = δ + d(r′, q),

and so by assumption

d(p, q) = d(p, p′) + d(p′, q) = T + δ + d(r′, q).

Let σ be the unit speed curve given by following γ from p to p′, then following
the radial geodesic from p′ to r′. Then L[σ] = d(p, p′) + δ. Therefore,

d(p, q) = L[σ] + d(r′, q).

p

q

p'g

S (p')
d

r'

It follows that L[σ] = d(p, r′), since if there were any shorter path σ′ from
p to r′, we would have

d(p, q) ≤ L[σ′] + d(r′, q) < L[σ′] + d(r′, q) = d(p, q)

which is a contradiction. Therefore σ is a geodesic, and σ(t) = γ(t); and
[0, T + δ] ⊂ A. Therefore A is open as claimed, and we have proved (∗p).

Now we complete the proof by showing that (3) and (∗p) together imply

condition (1). For p satisfying (3) and (∗p), let Mk = expp

(
Bk(0)

)
. This is

the image of a compact set under a continuous map, and so is compact. By
(∗p) we have ∪∞

k=1Mk = ∞.
Suppose {zi} is a Cauchy sequence in M . Then in particular {zi} is con-

tained in some Mk, and hence converges by the compactness of Mk.
This completes the proof of the Theorem. �




