
Lecture 13. Differential forms

In the last few lectures we have seen how a connection can be used to dif-
ferentiate tensors, and how the introduction of a Riemannian metric gives a
canonical choice of connection. Before exploring the properties of Rieman-
nian spaces more thoroughly, we will first look at a special class of tensors
for which there is a notion of differentiation that makes sense even without
a connection or a metric. These are called differential forms, and they play
an extremely important role in differential geometry.

13.1 Alternating tensors

We will first look a little more at the linear algebra of tensors at a point.
We will consider a natural subspace of the space of k-tensors, namely the
alternating tensors.

Definition 13.1.1 A k-tensor ω ∈ ⊗kT ∗
xM is alternating if it is antisym-

metric under interchange of any two of its arguments. Equivalently, for any
k vectors v1, . . . , vk ∈ TxM , and any permutation σ ∈ Sk,

ω(vσ(1), . . . , vσ(k)) = sgnσω(v1, . . . , vk),

where sgnσ = 1 if σ is an even permutation, sgnσ = −1 is σ is an odd
permutation.

The space of alternating k-tensors at x is denoted ΛkT ∗M . Note that
Λ1T ∗

xM = T ∗
xM , so alternating 1-tensors are just covectors.

There is a natural projection A : ⊗kT ∗
xM → ΛkT ∗

xM defined as follows:

AT (v1, . . . , vk) =
1
k!

∑

σ∈Sk

sgnσT (vσ(1), . . . , vσ(k)).

Then T is alternating if and only if AT = T .

Example 13.1.1 The geometric meaning of this definition is probably not clear
at this stage. An illustrative example is the following: Choose an orthonormal
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basis {φ1, . . . , φn} for T ∗
xM . Then we can define an alternating n-tensor A

by taking
A(v1, . . . , vn) = det[φi(vj)].

This is antisymmetric since the determinant is antisymmetric under inter-
change of any pair of columns. Geometrically, the result A(v1, . . . , vn) is the
(signed) n-dimensional volume of the parallellopiped generated by v1, . . . , vn.

Given a basis {∂1, . . . , ∂n} for TxM , we can define a natural basis for
ΛkT ∗

xM : For each k-tuple i1, . . . , ik, we define

dxi1 ∧ dxi2 ∧ . . . dxik = k!A
(
dxi1 ⊗ . . .⊗ dxik

)
.

Note that this is zero if the k-tuple is not distinct, and that if we change the
order of the k-tuple then the result merely changes sign (depending whether
the k-tuple is rearranged by an even or an odd permutation).

The factor k! is included in our definition for the following reason: If we
apply the alternating k-tensor dxi1 ∧ . . .∧ dxik (where i1, . . . , ik are distinct)
to the k vectors ∂i1 , . . . , ∂ik

, the result is 1. If we apply it to the same k
vectors in a different order (say, rearranged by some permutation σ), then
the result is just the sign of σ. Any other k vectors yield zero.

These ‘elementary alternating k-tensors’ have a geometric interpretation
similar to that in Example 13.1.1: The value of dxI(v1, . . . , vk) is the determi-
nant of the matrix with (m,n) coefficient dxim(vn), and this gives the signed
k-dimensional volume of the projection of the parallelopiped generated by
v1, . . . , vk onto the subspace generated by ∂i1 , . . . , ∂ik

. This relationship be-
tween alternating forms and volumes will be central in the next lecture when
we define integration of differential forms and prove Stokes’ theorem.

Proposition 13.1.1
(1). dxi1∧. . .∧dxik =

∑
σ∈Sk

sgnσ dxiσ(1)⊗. . .⊗dxiσ(k) = k!A(dxi1⊗. . .⊗dxik).
(2). For each k, {dxi1 ∧ . . . ∧ dxik : 1 ≤ i1 < . . . < ik ≤ n} is a basis for
ΛkT ∗

xM . In particular the space of alternating k-tensors at x has dimension
(n

k ) = n!
k!(n−k)! .

Proof. (1) is immediate, since the value on any k-tuple of coordinate basis
vectors agrees. To prove (2), we note that by Proposition 12.2.2, any alter-
nating tensor can be written as a linear combination of the basis elements
dxi1 ⊗ . . .⊗ dxik . Invariance under A shows that this is the same as a linear
combination of k-forms of the form A(dxi1 ⊗ . . .⊗ dxik), and these are all of
the form given. It remains to show the supposed basis is linearly independent,
but this is also immediate since if I = (i1, . . . , ik) then dxI(∂i1 , . . . , ∂ik) = 1,
but dxJ(∂i1 , . . . , ∂ik) = 0 for any increasing k-tuple J �= I. �

It follows that any alternating k-tensor T can be written in the form
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T =
∑

1≤i1<...<ik≤n

Ti1...ik
dxi1 ∧ . . . ∧ dxik

for some coefficients Ti1...ik
. Some caution is required here, because T can

also be written in the form

T =
1
k!

∑

i1,...,ik

Ti1...ik
dxi1 ∧ . . . ∧ dxik

where the coefficients are the same as above for increasing k-tuples, and to
be given from these by antisymmetry in other cases. Thus the coefficients in
this expression differ by a factor k! from those given in the expression after
Proposition 12.2.2.

13.2 The wedge product

The projection A immediately gives us a notion of product on alternating
tensors, which we have already implicity built into our notation for the basis
elements for ΛkT ∗

xM :

Definition 13.2.1 Let S ∈ ΛkT ∗
xM and T ∈ ΛlT ∗

xM be alternating tensors.
Then the wedge product S ∧ T of S and T is the alternating k + l-tensor
given by

S ∧ T =
(k + l)!
k!l!

A(S ⊗ T ).

This may not seem the obvious definition, because of the factor on the
right. This is chosen to make our notation consistent with that in our def-
inition of the basis elements: Take an increasing k-tuple i1, . . . , ik and an
increasing l-tuple j1, . . . , jl, and assume for simplicity that ik < j1. Then
we can form the alternating tensors dxi1 ∧ . . . ∧ dxik , dxj1 ∧ . . . ∧ dxjl and
dxj1 ∧ . . .∧ dxik ∧ dxj1 ∧ . . .∧ dxjl , and we would like to know that the third
of these is the wedge product of the first two.

Proposition 13.2.1
The wedge product is characterized by the following properties:
(i). Associativity: f ∧ (g ∧ h) = (f ∧ g) ∧ h;
(ii). Homogeneity: (cf) ∧ g = c(f ∧ g) = f ∧ (cg);
(iii). Distributivity: If f and g are in ΛkT ∗

xM then

(f + g) ∧ h = (f ∧ h) + (g ∧ h);

(iv). Anticommutativity: If f ∈ ΛkT ∗
xM and g ∈ ΛlT ∗

xM , then

g ∧ f = (−1)klf ∧ g;
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(v). In any chart,

(dxi1 ∧ . . .∧dxik)∧(dxj1 ∧ . . .∧dxjl) = dxi1 ∧ . . .∧dxik ∧dxj1 ∧ . . .∧dxjl .

Proof. We start by proving (v). Choose a chart about x. Then

(dxi1 ∧ . . . ∧ dxik) ∧ (dxj1 ∧ . . . ∧ dxjl)

=
(k + l)!
k!l!

A
(
(dxi1 ∧ . . . ∧ dxik) ⊗ (dxj1 ∧ . . . ∧ dxjl)

)

=
(k + l)!
k!l!

A




∑

σ∈Sk,τ∈Sl

sgnσ sgnτdxiσ(1)⊗. . .⊗dxiσ(k)⊗dxjτ(1)⊗. . .⊗dxjτ(l)





=
1
k!l!

∑

σ∈Sk,τ∈Sl

sgnσ sgnτdxiσ(1) ∧ . . . ∧ dxiσ(k) ∧ dxjτ(1) ∧ . . . ∧ dxjτ(l)

= dxi1 ∧ . . . ∧ dxik ∧ dxj1 ∧ . . . ∧ dxjl .

The homogeneity and distributivity properties of the wedge product are im-
mediate from the definition. From this we can deduce the following expression
for the wedge product in local coordinates: For S = Si1...ik

dxi1∧. . .∧dxik and
T = Tj1...jl

dxj1 ∧ . . . ∧ dxjl (summing over increasing k-tuples and l-tuples
respectively)

S ∧ T =
1
k!l!

∑

i1,...,ik,j1,...,jl

Si1...ik
Tj1...jl

dxi1 ∧ . . . ∧ dxik ∧ dxj1 ∧ . . . ∧ dxjl .

The associativity property can now be checked straightforwardly. Finally, we
derive the anticommutativity property (iv): If g = gi1...ik

dxi1 ∧ . . .∧dxik and
f = fj1...jl

dxj1 ∧ . . . ∧ dxjl , then

g ∧ f =
1
k!l!

∑

i1,...,ik,j1,...,jl

gi1...ik
fj1...jl

dxi1 ∧ . . . ∧ dxik ∧ dxj1 ∧ . . . ∧ dxjl

=
(−1)k

k!l!

∑

i1,...,ik,j1,...,jl

gi1...ik
fj1...jl

dxj1∧ dxi1∧. . .∧dxik ∧ dxj2 ∧ . . . ∧ dxjl

. . .

=
(−1)kl

k!l!

∑

i1,...,ik,j1,...,jl

gi1...ik
fj1...jl

dxj1 ∧ . . . ∧ dxjl ∧ dxi1 ∧ . . . ∧ dxik

= (−1)klf ∧ g.

�
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13.3 Differential forms

Definition 13.3.1 A k-form ω on a differentiable manifold M is a smooth
section of the bundle of alternating k-tensors onM . Equivalently, ω associates
to each x ∈ M an alternating k-tensor ωx, in such a way that in any chart
for M , the coefficients ωi1...ik

are smooth functions. The space of k-forms on
M is denoted Ωk(M).

In particular, a 1-form is a covector field. We will also interpret a 0-form
as being a smooth function on M , so Ω0(M) = C∞(M).

By using the local definition in section 13.2, we can make sense of the
wedge product as an operator which takes a k-form and an l-form to a k +
l-form, which is associative, C∞-linear in each argument, distributive and
anticommutative.

13.4 The exterior derivative

Now we will define a differential operator on differential k-forms.

Proposition 13.4.1 There exists a unique linear operator d : Ωk(M) →
Ωk+1(M) such that
(i). If f ∈ Ω0(M) = C∞(M), then df agrees with the differential of f

(Definition 4.2.1);
(ii). If ω ∈ Ωk(M) and η ∈ Ωl(M), then

d(ω ∧ η) = (dω) ∧ η + (−1)kω ∧ (dη);

(iii). d2 = 0.

Proof. Choose a chart ϕ : U → V with coordinate tangent vector fields
∂1, . . . , ∂n.

We will first produce the operator d acting on differential forms on U ⊆M .
On this region we have the smooth functions x1, . . . , xn given by the compo-
nents of the map ϕ. The differentials of these are the one-forms dx1, . . . , dxn,
and in agreement with condition (iii) we assume that d(dxi) = 0 for each i.

By induction and condition (ii), we deduce that d(dxi1 ∧ . . . ∧ dxik) = 0
for any k-tuple i1, . . . , ik.

Now let f = 1
k!

∑
i1,...,ik

fi1...ik
dxi1∧ . . .∧dxik . The linearity of d, together

with condition (ii) and condition (i), imply

df =
1
k!

∑

i0,i1,...,ik

∂i0fi1...ik
dxi0 ∧ dxi1 ∧ . . . ∧ dxik .
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One can easily check that this formula defines an operator which satisfies
the required conditions. In particular we can compute d2 to check that it
vanishes:

d2
(
ωi1...ik

dxi1 ∧ . . . ∧ dxik
)

= d
(
∂iωi1...ik

dxi ∧ dxi1 ∧ . . . ∧ dxik
)

= ∂j∂iωi1...ik
dxj ∧ dxi ∧ dxi1 ∧ . . . ∧ dxik

=
1
2

(
∂2ωi1...ik

∂xj∂xi
− ∂2ωi1...ik

∂xi∂xj

)
dxj ∧ dxi ∧ dxi1 ∧ . . . ∧ dxik

= 0.

To extend this definition to all of M we need to check that it does not
depend on the choice of coordinate chart. Let η be any other chart, with
components y1, . . . , yn. On the common domain of η and ϕ, we have xi =
F i(y), where F = ϕ ◦ η−1, and

dxi =
∂F i

∂yj
dyj .

This implies that

dxi1 ∧ . . . ∧ dxik =
∑

i1,...,ik,j1,...,jk

∂F i1

∂yj1
. . .
∂F ik

∂yjk
dyj1 ∧ . . . ∧ dyjk .

Now we can check that if we define the operator d in the y coordinates, then
d(dxi1 ∧ . . . ∧ dxik) = 0:

d
(
dxi1 ∧ . . . ∧ dxik

)
=

∑

I,J

d
(
∂F i1

∂yj1
. . .
∂F ik

∂yjk
dyj1 ∧ . . . ∧ dyjk

)

=
∑

I,J,j0

k∑

m=1

∂2F im

∂yjm∂yj0

∏

p	=m

∂F ip

∂yjp
dyj0 ∧ . . . ∧ dyjk

=
1
2

∑

I,J,j0

k∑

m=1

(
∂2F im

∂yjm∂yj0
− ∂2F im

∂yj0∂yjm

)

×




∏

p	=m

∂F ip

∂yjp



 dyj0 ∧ . . . ∧ dyjk

= 0

It follows (by linearity and distributivity) that the differential operators de-
fined in the two charts agree. �

The differential operator may seem somewhat mysterious. The following
example may help:
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Example 13.4.1 (The exterior derivative on R
3) The exterior derivative in

R
3 captures the differential operators which are normally defined as part of

vector calculus: First, the differential operator of a 0-form (i.e. a function f)
is just the differential of the function, which we can identify with the gradient
vector field ∇f .

Next, consider d applied to a 1-form: For purposes of visualisation, we
can identify a 1-form with a vector field by duality: The 1-form ω = ω1dx

1 ∧
ω2dx

2 + ω3dx
3 is identified with the vector field (ω1, ω2, ω3). Applying d to

ω, we obtain

dω = d(ωidx
i)

= ∂jωidx
j ∧ dxi

= (∂1ω2 − ∂2ω1)dx1 ∧ dx2 + (∂2ω3 − ∂3dx
2)dx2 ∧ dx3

+ (∂3ω1 − ∂1ω3)dx3 ∧ dx1.

The result is a 2-form. We identify 2-forms with vector fields again, by sending
adx1 ∧ dx2 + bdx2 ∧ dx3 + cdx3 ∧ dx1 to the vector field (b, c, a). With this
identification, the exterior derivative on 1-forms is equivalent to the curl
operator on vector fields.

Finally, consider d applied to a 2-form (which we again associate to a
vector field V = (V1, V2, V3)). We find

d
(
V3dx

1 ∧ dx2 + V1dx
2 ∧ dx3 + V2dx

3 ∧ dx1
)

=
(
∂3V3 + ∂1V1 + ∂2V2)dx1 ∧ dx2 ∧ dx3

)

= (divV ) dx1 ∧ dx2 ∧ dx3.

Thus the exterior derivative acting on 2-forms is equivalent to the divergence
operator acting on vector fields. The familiar identities from vector calculus
that the curl of a gradient is zero and that the divergence of a curl is zero
are therefore special cases of the identity d2 = 0.

13.5 Pull-back invariance

Now we will prove a remarkable result which really makes the theory of
differential forms work:

Proposition 13.5.1 Suppose M and N are differentiable manifolds, and
F : M → N is a smooth map. Then for any ω ∈ Ωk(N) and η ∈ Ωl(N),

F∗(ω ∧ η) = F∗(ω) ∧ F∗η

and
d(F∗ω) = F∗(dω).
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Proof. The proof of the first statement is immediate from the definition. The
second statement is proved by an argument identical to that used to prove
that the definition of the exterior derivative does not depend on the chart in
Proposition 13.4.1, except that the map F may be a smooth map between
Euclidean spaces of different dimension. �

13.6 Differential forms and orientability

There is a useful relationship between orientability of a differentiable manifold
Mn and the space of n-forms Ωn(M):

Proposition 13.6.1 A differentiable manifold M is orientable if and only if
there exists an n-form ω ∈ Ωn(M) which is nowhere vanishing on M .

Proof. Suppose there exists such an n-form ω. Let A be the set of charts
ϕ : U → V for M for which ω(∂1, . . . , ∂n) > 0. Then A is an atlas for M ,
since any chart for M is either in A or has its composition with a reflection
in A — in particular charts in A cover M . Furthermore A is an oriented
atlas: For any pair of charts ϕ and η in A with non-trivial common domain
of definition in M , we have

∂
(η)
i =

(
Diη ◦ ϕ−1

)j

i
∂

(ϕ)
j ,

and therefore by linearity and antisymmetry of ω,

ω(∂(η)
1 , . . . , ∂(η)

n ) = detD(η ◦ ϕ−1)ω(∂(ϕ)
1 , . . . , ∂(ϕ)

n ).

By assumption, ω(∂(η)
1 , . . . , ∂

(η)
n ) and ω(∂(ϕ)

1 , . . . , ∂
(ϕ)
n ) are positive and non-

zero. It follows that detD(η ◦ ϕ−1) > 0.
Conversely, suppose M has an oriented atlas A = {ϕα : Uα → Vα}α∈A.

Let {ρβ}β∈J be a partition of unity subordinate to the cover {Uα : α ∈ I},
so that for each β ∈ J there exists α(β) ∈ I such that suppρβ ⊆ Uα(β).
Define

ω =
∑

β∈J
ρβ dx

1
ϕα(β)

∧ . . . ∧ dxn
ϕα(β)

.

Then ω is everywhere non-zero, since dx1
ϕα(β1)

∧ . . . ∧ dxn
ϕα(β1)

is a positive
multiple of dx1

ϕα(β2)
∧ . . . ∧ dxn

ϕα(β2)
for β1 �= β2. �

We can interpret this in a slightly different way: For each x ∈ M , let
OrxM be the set of equivalence classes of non-zero alternating n-tensors at
x, where ω ∼ η if ω is a positive multiple of η. OrxM has exactly two elements
for each x ∈M . Then we take OrM = ∪x∈MOrxM , which is the orientation
bundle of M . On any chart ϕ : U → V for M , the restriction of this bundle
to U is diffeomorphic to U × Z2, but this is not necessarily true globally.
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A slight modification of the proof of Proposition 13.6.1 gives the result
that M is orientable if and only if the orientation bundle ofM is trivial (that
is, diffeomorphic to M × Z2).

13.7 Frobenius’ Theorem revisited

Differential forms allow an alternative formulation of the Theorem of Frobe-
nius that we proved in Lecture 7 (Proposition 7.3.5). In order to formulate
this, let D be a k-dimensional distribution on M . We relate this distribution
to differential forms by considering the subspace Ω0(D) of Ω(M) consisting
of differential forms which yield zero when applied to vectors in the distri-
bution D. This subspace is closed under C∞ scalar multiplication and under
wedge products.

Proposition 13.7.1 The distribution D is integrable if and only if the sub-
space Ω0(D) is closed under exterior differentiation.

Proof. First suppose D is integrable. Then locally we can choose charts ϕ :
U → V ⊆ R

k × R
n−k where the first k directions are tangent to D.

In such a chart, forms in Ωl
0(D) have the form

ωi1...il
dxi1 ∧ . . . ∧ dxil

where ωi1...il
= 0 whenever i1, . . . , il ≤ k. This implies that ∂mωi1...il

= 0 for
i1, . . . , il ≤ k and arbitrary m. Applying the exterior derivative, we find

dω = ∂mωi1...ik
dxm ∧ dxi1 ∧ . . . ∧ dxik

which is clearly in Ωl+1
0 (D).

Next suppose D is not integrable. Then by Frobenius’s theorem we can
find vector fields X and Y in X (D) such that [X,Y ] /∈ X (D), say in particular
[X,Y ]x /∈ Dx for some x ∈ M . Choose a 1-form ω ∈ Ω1

0(D) such that
ωx([X,Y ]x) �= 0 (How would you construct such a 1-form?)

Then we compute:

dω(X,Y ) = XiY j(∂iωj − ∂jωi)

= Xi∂i(Y jωj) − Y j∂j(Xiωi) −Xi(∂iYj)ωj + Y j(∂jXi)ωi

= Xω(Y ) − Y ω(X) − ω([X,Y ])
�= 0 at x,

since ω(Y ) = 0 and ω(X) = 0 everywhere, and ω([X,Y ]) �= 0 at x by
assumption. Therefore Ω0(D) is not closed under exterior differentiation. �
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Exercise 13.7.1 The identity dω(X,Y ) = Xω(Y )− Y ω(X)− ω([X,Y ]) for
the exterior derivative of a one-form generalises to an expression for exterior
derivatives of k-forms: If ω ∈ Ωk(M), then

dω(X0, . . . , Xk) =
k∑

i=0

(−1)iXiω(X0, . . . , X̂i, . . . , Xk)

+
∑

0≤i<j≤k

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk).

Prove this identity.




