Lecture 19. The Cartan Moving Frame
Method

In this lecture we will explore the use of differential forms to compute con-
nection coeflicients and curvatures for given Riemannian metrics.
We start with a technical Lemma (Cartan’s Lemma):

Lemma 19.1 Let w;, i = 1,...,n be a collection of 1-forms on a region
U which form a basis for the space of covectors at each point. Suppose n;;,
1 <1i,5 <n be a collection of 1-forms which satisfy

Zﬁij /\qu =0
j=1

for each i, and
Nij + nji = 0
for each i and j. Then 1;; =0 for all i and j at every point of U.

Proof. We can write uniquely

Nij = Zaijkwk-

k

The identity 1;; A w; then becomes

aijk — Qikj =0
for each 4, j and k. The second identity gives

a;jk + aji = 0.
Thus we have

Aijk = —0jik = —Qjki = Qkji = Qkij = —Qikj = —Qijk,
so that a;;; = 0 and 7;; = 0. O
To proceed, suppose we have a manifold M equipped with a Riemannian

metric g, such that there is a smoothly defined orthonormal collection of
vector fields eq,...,e,. Let wy,...,w, be the dual basis of 1-forms.
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Then we have the following result:

Proposition 19.2 There exists a unique collection of 1-forms w;; for 1 <
1,7 <n such that

dw; = wij N\ wj
and

wij + Wi = 0.

Proof. We start by proving uniqueness: Suppose that w;; is any other collec-
tion of one-forms satisfying the same conditions. Then let n;; = w;; — wy;.
Then we have

mj/\wj :inj/\wjfwij/\wj :dwifdwi:()

and
nij +1ji = 0.
By Lemma 19.1, we have 7;; = 0, and therefore w;; = @;;.
Now we prove existence. We set w;; = g(Ve,€;,e;)wi, where V is the
Levi-Civita connection of g. We use the identity

dw(X,Y) =Xw(Y) - Yw(X) —w([X,Y)])

from section 13.7. Applying this with w = w;, X = ¢; and Y = e, we find
(noting w;(e;) = d;5) that

dwi(ex,er) = —wi(lex, e1]) = —wi(Ve,er — Veer) = —Liii + Tk
and
wij Awj(er,er) = g(Vepei,ej)di — g(Veeise;)0ik = Trit — g

The fact that these two agree follows from the compatibility of the connection
with the metric, which gives

0 =exrdij = Ikij + Lkji-
The same identity shows that w;; +w;; = 0. O

The 1-forms w;; are called the connection I1-forms corresponding to the
frame {e;}. Once these have been computed, we can compute the curvature
as follows:

Proposition 19.3 For any orthonormal frame {e;}, the curvature 2-form
1
2; = — 5 tijrmwe A wi

can be computed from the connection 1-forms as follows:
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Qij = dwij — Wik N\ Wy

Proof. From the proof of the previous proposition, we have w;;(ex) =
9(Ve,€i,e;). Taking the exterior derivative, we find

dwij(ex, €r) = exwij(er) — ewsj(ex) — wij([ex, el)

=erg(Veeisej) —eg(Veyeires) = 9(Vie, e€in€5)
=9(Ve,Ve€ise;) +9(Ve€i, Ve, €5)

= 9(Ve,Veyeirej) — g(Vepeis Vee;)

= 9(Viey,e1€i5 €5)
= —Rijr + wip(er)wjp(er) — wip(er)wjp(er)
= (£2i 4 wip N wpj)(ex, e1)

|

An important special case to keep in mind is the following: If n = 2, then
we have the simple set of equations

dw1 = w12 N\ w2
dwg = —W12 N w1

(o = dwno.

In this case it is very easy to find the connection 1-form ws, since if we write
w1 = awi + bwa, then
dwi(er,e2) =a

and
d(.UQ (61, 62) = —b

so that
w12 = dw1 (61, 62)(4]1 — dwg(el, 62)(4}2.

The connection 2-form is also particularly simple in this case, since the
curvature tensor has only one component up to symmetries: Ri912 = K, the
Gauss curvature. Thus we have

.912 = —le N wa.

Fzxample 19.4 We will compute the curvatures of the Riemannian metric g;; =
f20;; on a region of R", where f = f(z™).

Here we have an obvious orthonormal frame given by e¢; = f~10;, and the
corresponding basis of 1-forms w; = fdxz’. Computing exterior derivatives,
we find

dw; = d(fdz') = f'dx™ A dx’.

This gives the equations
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wij Nwj = f//win N w;
for i < n, and
Wnj AN w5 = 0.
Now define 1-forms 7;; by taking 1;; = w;; for i < j < n, nin, = win + [/ f2w;
for i < m, and requiring 7;; + 17;; = 0. Then the equations read:
Tij A\ Wi = 0.

Therefore by Cartan’s Lemma, 7;; = 0 everywhere, and we deduce that
wij =0fori<j<mnand wy, =—f/fw.
Taking exterior derivatives, we find:

dwij =0
for i < j < n, and
dwin = =(f'/F) | [Pwn Aw;.

Also we have
Wik Nwgn =0

since the sum over k has either £k = n, hence wg, = 0, or k& < n, hence
wir = 0. On the other hand we have

Wik A wkj = Win A wnj = 7(f/)2/f4wi A Wj.

Combining these identities, we find

Qi = (f")?) fPwi Aw;
for i < j < n, and

Qin = (f'/ 1) ] Fwi A wy.

This shows that

Rinin = 7(fl/f)//f27
for1 <i<n-—1, and and

Rijij = —(f)*/1*

for 1 <4 < j < n, while (except for symmetries) all other curvature compo-
nents are zero.

An important special case of this example is where f(x) = 2~!. Then we
find (f'/f)'/f* =1 and (f")?/f* = 1, and therefore all sectional curvatures
of this metric are equal to —1.





