Estimation of sums over zeros of the Riemann zeta-function

Richard P. Brent Australian National University and CARMA, University of Newcastle

10 Dec 2020

Copyright © 2020, R. P. Brent

Richard Brent Dave Platt and Tim Trudgian

• Image: A image:

크

Abstract

Consider sums of the form $\sum \phi(\gamma)$ where ϕ is a given function and γ ranges over the ordinates of nontrivial zeros of the Riemann zeta-function in a given interval. We show how the numerical estimation of such sums can be accelerated, improving in many cases on a well-known lemma of Lehman (1966), and give an example involving an analogue of the harmonic series.

This is joint work with Dave Platt and Tim Trudgian.

For a preprint, see https://arxiv.org/abs/2009.13791.

< 日 > < 回 > < 回 > < 回 > < 回 > <

Motivation

- In analytic number theory we often encounter sums of the form ∑ φ(γ) where the sum is taken over the nontrivial zeros ρ = β + iγ of ζ(s), perhaps restricted to some interval [T₁, T₂] or [T₁, ∞).
- For example, consider $\sum_{0 < \gamma \leq T} 1/\gamma^2$. In some applications it is sufficient to know that the sum converges as $T \to \infty$. In other applications, especially when obtaining "explicit" bounds, we may need numerical upper and lower bounds on the sum (for specific values of *T*, or as $T \to \infty$).
- Similarly for ∑_{0<γ≤T} 1/γ, except that here the sum diverges as T → ∞, and we may want bounds on its rate of growth.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Some notation

 \mathcal{F} is the set of positive γ , where $\rho = \beta + i\gamma$ is a non-trivial zero of $\zeta(s)$.

If $0 < T \notin \mathcal{F}$, then N(T) is #zeros with $0 < \gamma \leqslant T$ and $S(T) = \pi^{-1} \arg \zeta(\frac{1}{2} + iT)$ defined in the usual way.

If $T \in \mathcal{F}$ then $N(T) = \lim_{\varepsilon \to 0} \frac{N(T+\varepsilon)+N(T-\varepsilon)}{2}$, and similarly for S(T).

 $\sum_{T_1 \leq \gamma \leq T_2} \phi(\gamma)$ indicates that if $\gamma = T_1$ or $\gamma = T_2$ then the term $\phi(\gamma)$ is given weight $\frac{1}{2}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Some useful results

In Titchmarsh, Ch. 9, we find N(T) = L(T) + Q(T), where

$$L(T) = \frac{T}{2\pi} \left(\log \left(\frac{T}{2\pi} \right) - 1 \right) + \frac{7}{8}$$

and the "remainder term" Q(T) = S(T) + O(1/T). More precisely, we can prove that, for all $t \ge 2\pi$,

$$|Q(t)-S(t)|\leqslant \frac{1}{150t}.$$

It is known that $S(T) \ll \log T$, so $Q(T) \ll \log T$. Also, if $S_1(T) := \int_0^T S(t) dt$, then $S_1(T) \ll \log T$. Explicit bounds on S(T) and $S_1(T)$ are known.

●▶ ■ つへで

Lehman's Lemma - motivation

We want to estimate sums of the form

 $\sum_{T_1\leqslant \gamma\leqslant T_2}'\phi(\gamma)\,.$

We can think of this as a Riemann sum approximating

 $\int_{T_1}^{T_2} \phi(t) w(t) \, dt,$

where w(t) is a weight function that takes into account the non-uniform spacing of the γ s. The natural weight function is

$$w(t) := L'(t) = \frac{1}{2\pi} \log(t/2\pi).$$

Lehman's lemma bounds the error (the difference between the sum and integral) if we use this weight function.

◆□ → ◆ □ → ◆ □ → □ □

Lehman's Lemma

Lemma (Lehman, 1966) If $2\pi e \leq T_1 \leq T_2$ and $\phi : [T_1, T_2] \mapsto [0, \infty)$ is monotone decreasing on $[T_1, T_2]$, and

$$E(T_1, T_2) := \sum_{T_1 \leqslant \gamma \leqslant T_2}' \phi(\gamma) - \frac{1}{2\pi} \int_{T_1}^{T_2} \phi(t) \log(t/2\pi) dt,$$

then

$$|E(T_1,T_2)| \leq A\left(2\phi(T_1)\log T_1 + \int_{T_1}^{T_2} \frac{\phi(t)}{t} dt\right),$$

where A is an absolute constant. Remark 1: We may take A = 0.28. Remark 2: If $\int_{T_1}^{\infty} \phi(t)/t \, dt < \infty$, we can allow $T_2 \to \infty$.

□ > < E > < E > □ E

Assumption: From now on we assume that $\phi(t)$ is in $C^2[T_0, \infty)$ and satisfies $\phi'(t) \leq 0$ and $\phi''(t) \geq 0$ on $[T_0, \infty)$.

These conditions are stronger than those assumed in Lehman's Lemma.

In most applications $\phi(t)$ is in $C^{\infty}[T_0, \infty)$. Thus, essentially the only new condition is that $\phi''(t) \ge 0$.

Our lemma

Lemma (BPT, 2020) If $2\pi \leqslant T_0 \leqslant T_1 \leqslant T_2$ and

$$E(T_1, T_2) := \sum_{T_1 \leqslant \gamma \leqslant T_2}' \phi(\gamma) - \frac{1}{2\pi} \int_{T_1}^{T_2} \phi(t) \log(t/2\pi) \, dt \,,$$

(as in Lehman's lemma), then

 $E(T_1, T_2) = \phi(T_2)Q(T_2) - \phi(T_1)Q(T_1) + E_2(T_1, T_2), \text{ where}$ $E_2(T_1, T_2) = -\int_{T_1}^{T_2} \phi'(t)Q(t) dt, \text{ and}$ $|E_2(T_1, T_2)| \leq 2(A_0 + A_1 \log T_1) |\phi'(T_1)| + (A_1 + A_2)\phi(T_1)/T_1.$

Remark 3: We may take $A_0 = 2.067$, $A_1 = 0.059$, $A_2 = 0.007$.

Idea of the proof

Write the sum as a Stieltjes integral involving dN(t) = dL(t) + dQ(t), then use integration by parts to obtain the first expression for E_2 as an integral involving $\phi'(t)Q(t)$ (so far this is as in the proof of Lehman's Lemma).

Replace Q(t) by S(t) in the integral, and bound the error introduced, using $Q(t) - S(t) \ll 1/t$.

Use integration by parts again to obtain an integral involving $\phi''(t)S_1(t)$, and bound this integral using an explicit bound on $S_1(t)$. This gives a bound involving integrals of $\phi''(t)$ and $\phi''(t) \log t$.

Finally, use integration by parts once again, to avoid expressions involving $\phi''(t)$, and simplify.

It is interesting to note that some terms involving T_2 cancel. This also occurs in the proof of Lehman's lemma.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Corollary – convergent sums

Theorem (BPT, 2020)

Suppose that $2\pi \leq T_0 \leq T$ and $\int_T^{\infty} \phi(t) \log(t/2\pi) dt < \infty$. Let

$$E(T) := \sum_{T \leqslant \gamma}' \phi(\gamma) - \frac{1}{2\pi} \int_T^\infty \phi(t) \log(t/2\pi) \, dt \, .$$

Then $E(T) = -\phi(T)Q(T) + E_2(T)$, where

$$E_2(T) = -\int_T^\infty \phi'(t)Q(t)\,dt$$

and

 $|E_2(T)| \leq 2(A_0 + A_1 \log T) |\phi'(T)| + (A_1 + A_2)\phi(T)/T.$

Proof. Let $T_2 \to \infty$ in our lemma, and replace T_1 by T.

Example

Consider the convergent sum $c_1 := \sum_{\gamma>0} 1/\gamma^2$. A first approximation is the sum over $0 < \gamma \leq T$ (a finite sum involving $\ll T \log T$ terms). The error is $\sum_{\gamma>T} 1/\gamma^2 \sim \log(T)/2\pi T$. We can do better by using Lehman's lemma with

 $(T_1, T_2) \rightarrow (T, \infty)$. This gives

$$\sum_{\gamma \geqslant T}' 1/\gamma^2 = \frac{1}{2\pi} \int_T^\infty \frac{\log t/2\pi}{t^2} dt + E(T),$$

where $|E(T)| \leq 0.28(0.5 + 2 \log T)/T^2$.

Using integration by parts, the integral here is $\frac{1 + \log(T/2\pi)}{2\pi T}$. Thus, using Lehman's lemma decreases the error bound by a factor of order *T*, from $O(\log(T)/T)$ to $O(\log(T)/T^2)$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ◇◇◇

Example continued

If we use our theorem instead of Lehman's lemma, the error term becomes $E_2(T)$, where

$$|E_2(T)| \leqslant \frac{8.334 + 0.236 \log T}{T^3}$$

Thus, we get another factor of order *T*, from $O(\log(T)/T^2)$ to $O(\log(T)/T^3)$.

For example, taking T = 1000 (corresponding to the first 649 nontrivial zeros), we have the following error bounds.

- Naive truncation of series: 9.7×10^{-4} .
- Using Lehman's lemma: 4.009×10^{-6} .
- Using our theorem: 9.965×10^{-9} .

The improvement over Lehman's lemma is a factor of 400.

ロトメポトメミトメミト・ミ

```
Corollary (BPT, 2020)
```

 $c_1 = 0.0231049931154189707889338104 + \vartheta(5\times 10^{-28}),$ where $|\vartheta|\leqslant 1.$

Proof.

This follows from our theorem by an interval-arithmetic computation using the first $n = 10^{10}$ zeros, with $T = 3293531632.542 \cdots \in (\gamma_n, \gamma_{n+1})$.

<日本

크

Divergent sums – existence of a limit $F(T_0)$

We can handle certain divergent sums in much the same way as convergent sums.

Theorem (BPT, 2020)

Suppose that $T_0 \ge 2\pi$, and

$$\int_{T_0}^{\infty} \frac{\phi(t)}{t} \, dt < \infty.$$

Then there exists

$$F(T_0) := \lim_{T \to \infty} \left(\sum_{T_0 \leq \gamma \leq T}' \phi(\gamma) - \frac{1}{2\pi} \int_{T_0}^T \phi(t) \log(t/2\pi) \, dt \right),$$

and

$$F(T_0) = -\phi(T_0)Q(T_0) - \int_{T_0}^{\infty} \phi'(t)Q(t)\,dt.$$

イロト イ理ト イヨト イヨト

2

Example - a "harmonic" series

Corollary (BPT, 2020) Let $G(T) := \sum_{0 < \gamma \leq T}^{\prime} 1/\gamma$. Then there exists

$$H := \lim_{T \to \infty} \left(G(T) - \frac{\log^2(T/2\pi)}{4\pi} \right)$$

and

$$H = \int_{2\pi}^{\infty} \frac{Q(t)}{t^2} dt - \frac{1}{16\pi}.$$

Proof.

Take $\phi(t) = 1/t$ and $T_0 = 2\pi$ in our Theorem, and observe that $Q(2\pi) = 1/8$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Example continued

Remark 1. The definition of *H* is analogous to the usual definition of Euler's constant *C*:

$$C := \lim_{N \to \infty} \left(\sum_{n=1}^{N} \frac{1}{n} - \log N \right),$$

and the expression for H is analogous to the result

$$C=1-\int_1^\infty\frac{x-\lfloor x\rfloor}{x^2}\,dx\,.$$

Remark 2. Hassani (2016) asked about the existence of the limit *H*. Hassani and several other authors gave bounds on G(T), but did not prove the existence of *H*.

Remark 3. An independent proof of the existence of *H* uses only integration by parts (as in the proof of Lehman's lemma) and the fact that $Q(t) \ll \log t$. For details, see Theorem 1 of https://arxiv.org/abs/2009.05251...

Divergent sums – approximation of $F(T_0)$

Theorem (BPT, 2020)

Suppose that $2\pi \leq T_0 \leq T_1$ and that $\phi(t)$ and $F(T_0)$ are as in the previous theorem. Then

$$F(T_0) = \sum_{T_0 \leqslant \gamma \leqslant T_1} \phi(\gamma) - \frac{1}{2\pi} \int_{T_0}^{T_1} \phi(t) \log(t/2\pi) dt \\ - \phi(T_1)Q(T_1) + E_2(T_1),$$

where

 $|E_2(T_1)| \leq 2(A_0 + A_1 \log T_1) |\phi'(T_1)| + (A_1 + A_2)\phi(T_1)/T_1.$

Remark. The bound on $|E_2|$ is the same as in the convergent case. This is not surprising, since both results depend on our Lemma.

Example – approximation of H

Suppose we wish to approximate the constant *H* by summing over $\gamma \in (0, T]$). Lehman's lemma gives

$$H = G(T) - \frac{\log^2(T/2\pi)}{4\pi} + A\vartheta\left(\frac{2\log T + 1}{T}\right),$$

where $|\vartheta| \leq 1$, and we can take A = 0.28.

However, we can do better by a factor of order T. Using the theorem above, we obtain

$$H = G(T) - rac{\log^2(T/2\pi)}{4\pi} - rac{Q(T)}{T} + E_2(T),$$

where

$$|E_2(T)| \leqslant rac{4.2 + 0.12 \log T}{T^2}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Numerical approximation of H

Corollary Let H be defined as above. Then

 $H = -0.0171594043070981495 + \vartheta(10^{-18}),$

where $|\vartheta| \leq 1$.

Proof.

This follows from the method on the previous slide, using an interval-arithmetic computation using the first $n = 10^{10}$ zeros, with $T = \gamma_n \approx 3293531632.4$.

References

R. P. Brent, D. J. Platt, and T. S. Trudgian,

On a harmonic sum over non-trivial zeros of the Riemann zeta-function, *Bull. Austral. Math. Soc.*, online 20 Nov. 2020. Also https://arxiv.org/abs/2009.05251.

R. P. Brent, D. J. Platt, and T. S. Trudgian, Accurate estimation of sums over zeros of the Riemann

zeta-function, https://arxiv.org/abs/2009.13791.

M. Hassani, Explicit approximation of the sums over the imaginary part of the non-trivial zeros of the Riemann zeta function, *Appl. Math. E-Notes* **16**:109–116, 2016.

R. S. Lehman, On the difference $\pi(x) - \text{li}(x)$, Acta Arith. **11**:397–410, 1966.

E. C. Titchmarsh, *The Theory of the Riemann Zeta-function*, 2nd ed. (edited by D. R. Heath-Brown), Oxford, 1986.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□