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Outline

A version of the prime number theorem is ψ(x) ∼ x as x →∞.
RH implies that ψ(x)− x � x1/2 log2 x .
Let

I(X ) :=

∫ 2X

X
(ψ(x)− x)2 dx .

RH implies that I(X ) � X 2, i.e. X 2 � I(X )� X 2.
In this talk I will outline a proof that limX→∞ I(X )/X 2 does not
exist.
I will briefly mention upper and lower bounds on I(X )/X 2 for
large X . There won’t be time to discuss proofs of these results,
but they are available in the arXiv preprint
https://arxiv.org/abs/2008.06140.
This is joint work with Dave Platt and Tim Trudgian.
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Note on use of the Riemann Hypothesis

In order to simplify the presentation, we shall assume the
Riemann Hypothesis (RH) in this talk.
Most of the results (including the result on non-existence of a
limit) are independent of RH, but the proofs are different (and
usually trivial) if RH is false.
For example, I(X )/X 2 is unbounded if RH is false, so in this
case we can not hope to prove that I(X )/X 2 has a finite limit.
For details of which results depend on RH, see our arXiv
preprint.
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Classical results

The (second) Chebyshev function is ψ(x) =
∑

n6x Λ(n),
where Λ(n) is the von Mangoldt function.
One form of the prime number theorem is ψ(x) ∼ x as x →∞.
We consider the error term ψ(x)− x , or sometimes
(ψ(x)− x)/x1/2.

Some classical results are:

Helge von Koch (1901) proved ψ(x)− x � x1/2 log2 x .

Littlewood (1914) proved that (ψ(x)− x)/x1/2 is unbounded,
more precisely

ψ(x)− x = Ω±(x1/2 log log log x).
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The explicit formula for ψ(x)

Our proofs depend on the “explicit” formula for ψ(x):

ψ(x)− x = −
∑

|=(ρ)|6T

xρ

ρ
+ O

(
x log2 x

T

)

for T > T0, x > X0, x > T . Here ρ is a nontrivial zero of ζ(s).

See, for example, Montgomery and Vaughan, Theorem 12.5.
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The mean square error

From computational results, as well as the explicit formula
for ψ(x), it is plausible that ψ(x)− x is “usually” of order x1/2.
This suggests considering the mean square error

I(X ) :=

∫ 2X

X
(ψ(x)− x)2 dx ,

which we expect to be of order∫ 2X

X
x dx � X 2.

The next slide shows the behaviour of I(X )/X 2 for X 6 1011.
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I(X )/X 2 for X 6 1011, sampled every 105

0 5× 1010 1011
0.04

0.08

0.12
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Upper and lower bounds on I(X )/X 2 (summary)

Cramér (1922) showed that I(X )/X 2 is bounded.
(New) explicit bounds, for all sufficiently large X , are

1
5374

6
I(X )

X 2 6 0.8603.

The lower bound improves on Stechkin and Popov (1996),
who obtained a constant 1/40000 (small but positive).
The upper bound improves on Pintz (1982), who stated that
I(X )/X 2 6 1 for all sufficiently large X . As far as we know, no
proof of this upper bound has ever appeared (until now).
It would require another talk to give details of these results, but
they are available in our arXiv preprint.
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The non-existence result – outline of proof
We outline a proof that limX→∞ I(X )/X 2 does not exist.
It is easier to work with

J(X ) :=

∫ X

0
(ψ(x)− x)2 dx .

and deduce results for I(X ) = J(2X )− J(X ).
It is not hard to show that limX→∞ I(X )/X 2 exists
if and only if limX→∞ J(X )/X 2 exists.
The nonexistence of limX→∞ J(X )/X 2 follows from

lim inf
X→∞

2J(X )/X 2 6 c1

and
lim sup
X→∞

2J(X )/X 2 > c2,

where c1 and c2 are certain constants with c1 < c2.
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The constants c1 and c2

Let ρ = 1
2 + iγ be a generic nontrivial zero of ζ(s), with

multiplicity mρ. Then

c1 :=
∑

distinct ρ

m2
ρ

|ρ|2 < 0.047

(see Montgomery and Vaughan, §13.1), and

c2 :=
∑
ρ1,ρ2

2
ρ1ρ2(1 + ρ1 + ρ2)

> 0.104,

with the usual convention for multiple zeros (if they exist).
Both sums are absolutely convergent, and it is easy to obtain
the upper bound on c1. The lower bound on c2 is more difficult.
Observe that c2 is real, and the “diagonal” terms in c2
(i.e. those with ρ1 = ρ2) sum to c1.
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The liminf result (sketch)

Let

G(X ) :=

∫ X

1

(
ψ(x)− x

x1/2

)2 dx
x
.

From Montgomery and Vaughan, Thm. 13.6 and Ex. 13.1.1.3,

G(X ) ∼ c1 log X as X →∞.

Now G(X )/ log X can be regarded as a logarithmically weighted
mean square of (ψ(x)− x)/x1/2, while 2J(X )/X 2 is a linearly
weighted mean square of the same function.
Thus, it is plausible, and not hard to prove (using integration by
parts), that

lim inf
X→∞

2J(X )/X 2 6 c1 6 lim sup
X→∞

2J(X )/X 2.
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The limsup result (sketch)
Fix ε > 0. From the explicit formula, with X > T sufficiently
large (depending on ε),∫ X

T
(ψ(x)− x)2 dx =

∫ X

T

∑
|γ1|,|γ2|6T

x1+i(γ1−γ2)

ρ1ρ2
dx + E1(X ,T ),

where E1(X ,T ) is a manageable error term. Thus

J(X )

X 2 =
∑

|γ1|,|γ2|6T

X i(γ1−γ2)

ρ1ρ2(2 + i(γ1 − γ2))
+ E2(X ,T ),

where E2(X ,T ) is also manageable (details omitted).
Now, using Dirichlet’s theorem, there exist arbitrarily large X
such that all the X iγ for |γ| 6 T are close to unity, and

2J(X )

X 2 > c2 − ε.
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The final step
We have to prove that c2 > c1. Recall that

c2 =
∑
ρ1,ρ2

2
ρ1ρ2(1 + ρ1 + ρ2)

.

Since c2 is real, we only need to consider the real parts of
terms in the sum. Define a truncated sum of real parts

S(Y ) :=
∑

|γ1|,|γ2|6Y

<
(

2
ρ1ρ2(1 + ρ1 + ρ2)

)
.

Although the terms in this sum can have either sign, the
negative terms are dominated by the (positive) diagonal terms,
so we can show that S(Y ) is monotonic non-decreasing. Thus,
for all Y > 0, the finite sum S(Y ) gives a lower bound on c2.
To prove that c2 > c1, it is sufficient to take Y = 70, i.e. to
consider the contribution of the (2×)17 smallest nontrivial zeros
of ζ(s).
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A sharper bound on c2

If we take Y = 74920.83, i.e. we sum over the smallest
(2×)105 nontrivial zeros of ζ(s), we obtain

c2 > S(Y ) > 0.104.
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Final remarks

Make a change of variables x = eu, X = eU and define
f (u) := (ψ(x)− x)/x1/2.
It is known [Montgomery and Vaughan, Thm. 13.6] that

lim
U→∞

1
U

∫ U

0
f (u)2 du = c1

(and the limit does exist). Now∫ U+log 2

U
f (u)2 du =

∫ 2X

X

(ψ(x)− x)2

x
dx
x
� I(X )

X 2 .

Thus, an explanation of why the limit of I(X )/X 2 does not exist
is that, on a log scale, we are averaging over too short an
interval.
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