## The Mean Square Error in the Prime Number Theorem does not have a Limit

Richard P. Brent Australian National University and CARMA, University of Newcastle

#### 7 Oct 2020

#### Copyright © 2020, R. P. Brent

크

#### Outline

A version of the prime number theorem is  $\psi(x) \sim x$  as  $x \to \infty$ . RH implies that  $\psi(x) - x \ll x^{1/2} \log^2 x$ . Let

$$I(X) := \int_X^{2X} (\psi(x) - x)^2 \, dx.$$

RH implies that  $I(X) \simeq X^2$ , i.e.  $X^2 \ll I(X) \ll X^2$ .

In this talk I will outline a proof that  $\lim_{X\to\infty} I(X)/X^2$  does not exist.

I will briefly mention upper and lower bounds on  $I(X)/X^2$  for large X. There won't be time to discuss proofs of these results, but they are available in the arXiv preprint

https://arxiv.org/abs/2008.06140.

This is joint work with Dave Platt and Tim Trudgian.

(日) (圖) (E) (E) (E)

#### Note on use of the Riemann Hypothesis

In order to simplify the presentation, we shall assume the Riemann Hypothesis (RH) in this talk.

Most of the results (including the result on non-existence of a limit) are independent of RH, but the proofs are different (and usually trivial) if RH is false.

For example,  $I(X)/X^2$  is unbounded if RH is false, so in this case we can not hope to prove that  $I(X)/X^2$  has a finite limit. For details of which results depend on RH, see our arXiv preprint.

▲御▶ ▲理▶ ▲理▶

### **Classical results**

The (second) Chebyshev function is  $\psi(x) = \sum_{n \leq x} \Lambda(n)$ , where  $\Lambda(n)$  is the von Mangoldt function.

One form of the prime number theorem is  $\psi(x) \sim x$  as  $x \to \infty$ .

We consider the error term  $\psi(x) - x$ , or sometimes  $(\psi(x) - x)/x^{1/2}$ .

Some classical results are:

Helge von Koch (1901) proved  $\psi(x) - x \ll x^{1/2} \log^2 x$ .

Littlewood (1914) proved that  $(\psi(x) - x)/x^{1/2}$  is unbounded, more precisely

$$\psi(x) - x = \Omega_{\pm}(x^{1/2} \log \log \log x).$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ◆○○

## The explicit formula for $\psi(x)$

Our proofs depend on the "explicit" formula for  $\psi(x)$ :

$$\psi(\mathbf{x}) - \mathbf{x} = -\sum_{|\Im(\rho)| \leq T} \frac{\mathbf{x}^{\rho}}{\rho} + O\left(\frac{\mathbf{x}\log^2 \mathbf{x}}{T}\right)$$

for  $T \ge T_0$ ,  $x \ge X_0$ ,  $x \ge T$ . Here  $\rho$  is a nontrivial zero of  $\zeta(s)$ .

See, for example, Montgomery and Vaughan, Theorem 12.5.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

#### The mean square error

From computational results, as well as the explicit formula for  $\psi(x)$ , it is plausible that  $\psi(x) - x$  is "usually" of order  $x^{1/2}$ . This suggests considering the mean square error

$$I(X):=\int_X^{2X}(\psi(x)-x)^2\,dx,$$

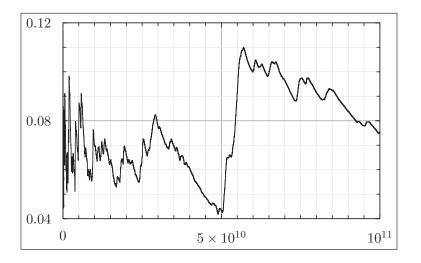
which we expect to be of order

$$\int_X^{2X} x \, dx \asymp X^2.$$

The next slide shows the behaviour of  $I(X)/X^2$  for  $X \leq 10^{11}$ .

(日本) (日本) (日本)

# $I(X)/X^2$ for $X \leq 10^{11}$ , sampled every $10^5$



Upper and lower bounds on  $I(X)/X^2$  (summary)

Cramér (1922) showed that  $I(X)/X^2$  is bounded. (New) explicit bounds, for all sufficiently large X, are

 $\frac{1}{5374} \leqslant \frac{l(X)}{X^2} \leqslant 0.8603.$ 

The lower bound improves on Stechkin and Popov (1996), who obtained a constant 1/40000 (small but positive).

The upper bound improves on Pintz (1982), who stated that  $I(X)/X^2 \le 1$  for all sufficiently large *X*. As far as we know, no proof of this upper bound has ever appeared (until now).

It would require another talk to give details of these results, but they are available in our arXiv preprint.

ロト・西ト・ヨト・

The non-existence result – outline of proof

We outline a proof that  $\lim_{X\to\infty} I(X)/X^2$  does not exist. It is easier to work with

$$J(X):=\int_0^X (\psi(x)-x)^2\,dx.$$

and deduce results for I(X) = J(2X) - J(X).

It is not hard to show that  $\lim_{X\to\infty} I(X)/X^2$  exists if and only if  $\lim_{X\to\infty} J(X)/X^2$  exists.

The nonexistence of  $\lim_{X\to\infty} J(X)/X^2$  follows from

 $\liminf_{X\to\infty} \ 2J(X)/X^2 \leqslant c_1$ 

and

$$\limsup_{X\to\infty} \ 2J(X)/X^2 \geqslant c_2,$$

where  $c_1$  and  $c_2$  are certain constants with  $c_1 < c_2$ .

#### The constants $c_1$ and $c_2$

Let  $\rho = \frac{1}{2} + i\gamma$  be a generic nontrivial zero of  $\zeta(s)$ , with multiplicity  $m_{\rho}$ . Then

$$c_1 := \sum_{\text{distinct } \rho} \frac{m_{\rho}^2}{|\rho|^2} < 0.047$$

(see Montgomery and Vaughan, §13.1), and

$$c_2 := \sum_{\rho_1,\rho_2} \frac{2}{\rho_1\overline{\rho_2}(1+\rho_1+\overline{\rho_2})} > 0.104,$$

with the usual convention for multiple zeros (if they exist).

Both sums are absolutely convergent, and it is easy to obtain the upper bound on  $c_1$ . The lower bound on  $c_2$  is more difficult. Observe that  $c_2$  is real, and the "diagonal" terms in  $c_2$ (i.e. those with  $\rho_1 = \rho_2$ ) sum to  $c_1$ .

イロト 不良 と 不良 と 一日

## The liminf result (sketch)

Let

$$G(X):=\int_1^X \left(\frac{\psi(x)-x}{x^{1/2}}\right)^2 \frac{dx}{x}.$$

From Montgomery and Vaughan, Thm. 13.6 and Ex. 13.1.1.3,

 $G(X) \sim c_1 \log X$  as  $X \to \infty$ .

Now  $G(X)/\log X$  can be regarded as a logarithmically weighted mean square of  $(\psi(x) - x)/x^{1/2}$ , while  $2J(X)/X^2$  is a linearly weighted mean square of the same function.

Thus, it is plausible, and not hard to prove (using integration by parts), that

$$\liminf_{X\to\infty} 2J(X)/X^2 \leqslant c_1 \leqslant \limsup_{X\to\infty} 2J(X)/X^2.$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ◆□ ● ◆○○

#### The limsup result (sketch)

.

Fix  $\varepsilon > 0$ . From the explicit formula, with  $X \ge T$  sufficiently large (depending on  $\varepsilon$ ),

$$\int_{T}^{X} (\psi(x)-x)^2 dx = \int_{T}^{X} \sum_{|\gamma_1|, |\gamma_2| \leqslant T} \frac{x^{1+i(\gamma_1-\gamma_2)}}{\rho_1 \overline{\rho_2}} dx + E_1(X,T),$$

where  $E_1(X, T)$  is a manageable error term. Thus

$$\frac{J(X)}{X^2} = \sum_{|\gamma_1|, |\gamma_2| \leqslant T} \frac{X^{i(\gamma_1 - \gamma_2)}}{\rho_1 \overline{\rho_2} (2 + i(\gamma_1 - \gamma_2))} + E_2(X, T),$$

where  $E_2(X, T)$  is also manageable (details omitted). Now, using Dirichlet's theorem, there exist arbitrarily large *X* such that all the  $X^{i\gamma}$  for  $|\gamma| \leq T$  are close to unity, and

$$\frac{2J(X)}{X^2} \geqslant c_2 - \varepsilon.$$

・ロト ・四ト ・ヨト ・ヨト

#### The final step

We have to prove that  $c_2 > c_1$ . Recall that

$$c_2 = \sum_{
ho_1,
ho_2} rac{2}{
ho_1 \overline{
ho_2} (1 + 
ho_1 + \overline{
ho_2})} \,.$$

Since  $c_2$  is real, we only need to consider the real parts of terms in the sum. Define a truncated sum of real parts

$$S(Y) := \sum_{|\gamma_1|, |\gamma_2| \leqslant Y} \Re\left(\frac{2}{\rho_1 \overline{\rho_2}(1 + \rho_1 + \overline{\rho_2})}\right)$$

Although the terms in this sum can have either sign, the negative terms are dominated by the (positive) diagonal terms, so we can show that S(Y) is monotonic non-decreasing. Thus, for all  $Y \ge 0$ , the finite sum S(Y) gives a lower bound on  $c_2$ . To prove that  $c_2 > c_1$ , it is sufficient to take Y = 70, i.e. to consider the contribution of the (2×)17 smallest nontrivial zeros of  $\zeta(s)$ .

#### A sharper bound on c<sub>2</sub>

If we take Y = 74920.83, i.e. we sum over the smallest  $(2 \times) 10^5$  nontrivial zeros of  $\zeta(s)$ , we obtain

 $c_2 \geqslant S(Y) > 0.104.$ 

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Ξ.

#### **Final remarks**

Make a change of variables  $x = e^u$ ,  $X = e^U$  and define  $f(u) := (\psi(x) - x)/x^{1/2}$ . It is known [Montgomery and Vaughan, Thm. 13.6] that

$$\lim_{U\to\infty}\frac{1}{U}\int_0^U f(u)^2\,du=c_1$$

(and the limit does exist). Now

$$\int_{U}^{U+\log 2} f(u)^2 \, du = \int_{X}^{2X} \frac{(\psi(x)-x)^2}{x} \, \frac{dx}{x} \asymp \frac{I(X)}{X^2} \, .$$

Thus, an explanation of why the limit of  $I(X)/X^2$  does not exist is that, on a log scale, we are averaging over too short an interval.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

#### References

#### R. P. Brent, D. J. Platt, and T. S. Trudgian,

The mean square of the error term in the prime number theorem, https://arxiv.org/abs/2008.06140.

H. Cramér, Ein Mittelwertsatz in der Primzahltheorie, *Math. Z.* **12** (1922), 147–153.

H. Montgomery and R. C. Vaughan, *Multiplicative Number Theory, I. Classical Theory*, CUP, Cambridge, 2007.

J. Pintz, On the mean value of the remainder term of the prime number formula, in *Elementary and Analytic Theory of Numbers (Warsaw, 1982)*, Banach Center Publ. 17, PWN, Warsaw, 1985, 411–417.

S. B. Stechkin and A. Yu. Popov, The asymptotic distribution of prime numbers on the average, *Russian Math. Surveys* **51**, 6 (1996), 1025–1092.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□