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Abstract

In this thesis we outline new research in integer factorisation with applications to

public-key cryptography. In particular, we consider the number field sieve, the newest

and fastest known method for factorising integers used in public-key cryptosystems. We

improve so-called polynomial selection methods for the number field sieve. Polynomial

selection has been a major open problem for the number field sieve since its inception.

We address the problem by modelling polynomial yield, and giving methods for finding

polynomials with good yield. The improvements described here were used to obtain a

new factorisation record, the 140 digit RSA modulus RSA-140, and are being used to

obtain a further record by factorising a 512 bit RSA modulus RSA-155.
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The following symbols are used in this thesis without further definition.

Z the (rational) integers

Zn the integers modulo n

Q the rational numbers

R the real numbers

C the complex numbers

Z[x] the set of polynomials in x with integer coefficients

Q(α) the number field defined by α, with α ∈ C satisfying f(α) = 0
for some f ∈ Z[x] of degree d

Z[α] the ring of Z-linear combinations of {1, α, . . . , αd−1} with α
as above

O the ring of (algebraic) integers of Q(α)

(

n
q

)

the Legendre symbol for n mod q

ordpn the exponent of the largest power of p dividing n

ϕ(n) Euler’s phi function

⌊r⌋ the floor of r ∈ R
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Chapter 1

Introduction

Throughout life, and in particular throughout this thesis, N is a large integer requiring

factorisation.

Some integers N require factorisation simply because they’re large and interesting.

Some require factorisation because, as well as being large and interesting, they’re

important cryptographically. We are concerned with factorising integers of the latter

kind.

The most commonly used public-key cryptosystem is the RSA system. The security

of RSA relies on certain large N being difficult to factorise. The best measure of the

level of security offered by RSA is our ability to factorise such N .

Asymptotically and in practice, the fastest algorithm for factorising these integers

is the number field sieve. The speed at which the number field sieve factorises N is

determined by the supply of smooth integers (integers with no large prime factors)

of a particular form. Given a certain pair of polynomials f1(x), f2(x) ∈ Z[x] each

irreducible over Q and of degree di for i = 1, 2, we use the homogeneous polynomials

Fi(x, y) = ydifi(x/y). We search for coprime integer pairs a, b at which both F1(a, b)

and F2(a, b) are smooth. This search is the rate determining step in factorising N

using the number field sieve.

The area in which the number field sieve has had the greatest capacity for im-

provement is in the selection of these polynomials. “Better” polynomials are ones

which produce more smooth values. We call the problem of choosing better number

field sieve polynomials the polynomial selection problem.

Motivated by both assessing and compromising the security of RSA and similar

systems, we consider in this thesis the polynomial selection problem for the number

field sieve. The improvements given here were used to set a new record for factorisation

of “general” N , by factorising the 140 digit RSA modulus RSA-140. At the time of

writing, our improvements are also being used to factorise a 512 bit (155 digit) RSA

modulus RSA-155.

In this chapter we introduce the polynomial selection problem. In Section 1.1 we

consider the cryptographic context of the problem. In Section 1.2 we introduce the

1



2 Chapter 1: Introduction

strategy for factorising integers like RSA moduli. In Section 1.3 we outline very briefly

the number field sieve, and focus on the polynomial selection problem. We are then in

a position in Section 1.4 to outline the contribution of this thesis, and in Section 1.5

to outline the thesis itself.

1.1 Integer Factorisation and Public-Key Cryptography

Public-key cryptography [28] is a crucial aspect of modern communication networks.

Its aim is to ensure that communications over networks are secure.

Most public-key cryptosystems rely for their security on certain number-theoretic

problems being intractable. By a large margin, the most commonly used form of

public-key cryptography is the RSA cryptosystem. RSA, and some other systems like

it, rely for their security on the problem of integer factorisation. Most other public-

key cryptosystems in use rely for their security on instances of the discrete logarithm

problem. Our results also affect some of these systems.

Next we describe the RSA cryptosystem. We also mention some alternative public-

key cryptosystems relying on the discrete logarithm problem. Our treatment is very

brief. A good survey of public-key cryptosystems, from the perspective of their under-

lying number theoretic problem, is [79].

1.1.1 The RSA Public-Key Cryptosystem

In the RSA public-key cryptosystem [68] the public/private-key pair is generated from

two distinct large primes p, q of approximately the same size (in fact, they are usually

the same number of bits). Let N = pq. Choose e ∈ Z coprime to ϕ(N) = (p−1)(q−1)

and, using for example the extended Euclidean algorithm, compute

d ≡ e−1 mod ϕ(N).

The public-key is then the pair (e,N) and the private-key is d. Encryption of the

message block M occurs by computing

C ≡Me mod N.

Decryption occurs by computing

Cd ≡Med ≡M mod N.

Clearly, factorising N suffices to compromise the security of the system. Also,

factorising N is equivalent to factorising ϕ(N) (see for example [11]). Whether the

security of RSA is equivalent to factorising N is an open problem. For the paranoid,

there are versions of RSA whose security is provably “almost” equivalent to factorising

N [66], [84], although these methods suffer other disadvantages [73].



1.1 Integer Factorisation and Public-Key Cryptography 3

For practical purposes, RSA depends for its security on the difficulty of factorising

N , the RSA modulus. Hence, the level of security provided by the system depends

on our ability to factorise RSA moduli. Current recommendations of modulus length

of course depend on the level of security desired. The minimum recommended length

for financial and government communications requiring a high level of security is 1024

bits (319 digits). However, 512 bit moduli have been and still are commonly used.

For example, 512 bits is the default length on certain Internet browsers, and therefore

such moduli protect a large portion of electronic commerce conducted over the Internet.

Adi Shamir estimates that 512 bit RSA moduli protect approximately 95 % of Internet

electronic commerce [70].

1.1.2 Other Public-Key Systems

After integer factorisation, the most common problem on which the security of public-

key cryptosystems is based is the discrete logarithm problem. Let G be a finite group.

Without loss of generality we can assume G is cyclic, with generator g. Given a ∈ G,

the discrete logarithm problem in G is to compute x such that

gx = a.

Several cryptographic protocols rely on the discrete logarithm problem for their

security, for example the Diffie/Hellman key exchange protocol [28], ElGamal [31],

and elliptic curve systems [38].

The most desirable groups G for cryptographic purposes are the ones for which

• the group multiplication law can be implemented efficiently, and

• the discrete logarithm problem in G is believed to be difficult.

Two types of group have emerged in practice as satisfying these requirements; the

multiplicative group of a finite field and the group of points on an elliptic curve over

a finite field. We denote the first type by GF (q)∗ for q = pn, p prime, and the second

E(q). In both cases, q will usually be either p for odd p, or 2n with n ≥ 1.

There is an analogous version of the number field sieve for factorisation which com-

putes discrete logarithms in some groups of the first type, GF (q)∗. Our improvements

to the number field sieve for factorisation carry over to this version, and so have an

impact on the security of systems relying on these instances of the discrete logarithm

problem. We discuss this after giving more details on the number field sieve.

It is significant from the point of view of the security of elliptic curve cryptosystems

that there is no known analogue of the number field sieve addressing the elliptic curve

discrete logarithm problem. Hence, our improvements do not apply there. Since

progress on computing discrete logarithms in E(q) lags behind that on factorisation

and discrete logarithms in GF (q)∗, elliptic curve cryptography is emerging as the best

alternative to RSA.
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1.2 Factorisation of General Integers

We focus now on factorisation methods relevant to cryptographic applications.

Not all integers of a given size are equally difficult to factorise. Some are trivial,

and some are of a form that makes them susceptible to attack by special methods. In

particular, the elliptic curve method [50], [10], and the Pollard-rho method [62] find

“small” factors particularly well. The Pollard p − 1 method [61] succeeds in finding

factors p for which p − 1 contains no large prime factors. For security, RSA moduli

need to be integers which are amongst the most difficult to factorise. That is, they

need to be integers not susceptible to attack because of their particular form. We refer

to integers with no helpful special form as general integers. RSA moduli, integers

N = pq

for primes p and q which are both “large” and not far from
√
N , lie amongst the

general integers.

A family of algorithms has been developed for factorisation of general integers.

The family is characterised by the factorisation strategy adopted by its members.

The number field sieve is the newest and best performing member of the family. Its

immediate predecessor is an algorithm called the multiple polynomial quadratic sieve

(MPQS) [65], [74]. Several impressive factorisations of RSA moduli were performed

using MPQS before the number field sieve came into being. By way of background

to the number field sieve we now explain the factorisation strategy of algorithms in

the family, concentrating on MPQS and the number field sieve. For a more thorough

background on factorisation algorithms the reader should refer to, for example, [67].

1.2.1 Factorisation by Congruent Squares

Long before the introduction of the RSA cryptosystem, Fermat posed the forerunner

to the modern strategy. He noted that if positive integers x and y can be found for

which

N = x2 − y2

then a non-trivial factorisation of N follows immediately as the product (x−y)(x+y).

The task then is to find x and y, that is, to find the representation of N as a difference

of two squares. The definite article is used advisedly, every odd N which is a product of

two prime factors has a unique representation as a difference of two squares. Therein

lies a problem however; if N is large then finding the unique pair (x, y) becomes

difficult.

An improvement usually attributed to Kraithcik [43] partly overcomes this problem.

His suggestion is this: instead of requiringN to be a difference of two squares, we should

require only some multiple of N to be a difference of two squares. There are many
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multiples of N , so there should be many representations for which to search. Hence,

we now require integers x and y such that

x2 ≡ y2 mod N. (1.1)

That is, we require two congruent squares mod N . The trade-off is that we are no

longer guaranteed that the representation will produce a non-trivial factorisation of

N . We are guaranteed that N |(x− y)(x+ y), from which we may hope that

1 < gcd(x± y) < N. (1.2)

If for example, N = pq and both p and q divide x+y then (1.2) will not hold. However

it is simple to show that amongst a sample of representations (1.1) we can expect (1.2)

to hold in at least one half of the cases. Hence we say that given a representation as

in (1.1), we get a non-trivial factor of N as in (1.2), with probability at least one half.

If N is an RSA modulus then this probability is exactly one half. In practice, finding

many representations (1.1) requires only trivially more effort than finding just one, so

this does not present an obstacle.

Despite the fact that it is simple, finding two congruent squares mod N becomes

the strategy for factorising large general integers. Both MPQS and the number field

sieve adopt this strategy. The question now becomes how to construct the congruent

squares.

1.2.2 Congruent Squares from Smooth Polynomial Values

Congruent squares are constructed from so-called B-smooth integers.

Definition 1.2.1 An integer is B-smooth if its largest prime factor is at most B.

If the precise value of B is immaterial we refer to these simply as smooth integers.

There is a well known procedure for constructing squares from many smooth inte-

gers. Let π(B) denote the number of primes less than B. Suppose we collect K > π(B)

integers which are B-smooth. By some linear algebra modulo 2, we can be guaranteed

to find a subset of these K integers the product over which is a square.

How does this work? Let the smooth integers we collect be vi for i = 1, . . . ,K.

We record the factorisation of each vi over the primes at most B in an exponent vector

vi of length π(B). The j-th entry of vi is 1 when the j-th prime appears to an odd

exponent in vi, and 0 otherwise. That is, vi records the square-free portion of vi, with

ones denoting the “square-free primes” in vi. Now we find a subset S of the vi’s which

“pairs-up” the square-free primes appearing throughout the primes vi ∈ S. How? We

form a matrix over Z2 listing the vi for i = 1, . . . ,K as rows. Since K > π(B), the

number of columns, there is guaranteed to be a linear dependency, modulo 2, amongst

the rows. The set S now consists precisely of the elements vi corresponding to the
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rows vi which contribute to the dependency. The product over S is then guaranteed

to be a square, since all the square-free primes are “paired-up” across the product.

Hence, from sufficiently many smooth integers, we can construct a square integer after

some linear algebra modulo 2. In practice, N is very large and therefore so is the

corresponding matrix (typically there are millions of rows and columns).

Recall now that, more than just constructing squares, we are required to construct

congruent squares modulo N . To ensure that this will be the case on collection of

smooth integers, we require the smooth integers to be of a special form. In particular,

we require them to be values taken by certain polynomials. For the number field sieve

the mechanism by which we are guaranteed to get congruent squares from smooth

polynomial values is explained in Chapter 2. For now it suffices to know that both

MPQS and the number field sieve proceed by constructing congruent squares modulo

N , and that this occurs by collection of sufficiently many smooth values of certain

polynomials.

In MPQS, we collect smooth values of certain quadratic polynomials. The num-

ber field sieve is more complicated, because there we collect smooth values of pairs

of polynomials. For example, often one polynomial will be quintic whilst the other

is linear. In both MPQS and the number field sieve, the collection of these smooth

values is overwhelmingly the most time consuming stage of the process. This stage is

called sieving. Other stages are complicated and time consuming too - for example a

large matrix requires elimination modulo 2 - but sieving dominates the run-time of the

algorithms. The polynomial selection problem for the number field sieve involves re-

ducing the sieving effort required by choosing polynomials which produce many smooth

values.

1.2.3 Complexity Estimates

We now consider the relationship between the collection of smooth polynomial values

and the run-time of the algorithms. The asymptotic complexity analyses of both

MPQS and the number field sieve are tied to the appearance of smooth integers in

the context of each algorithm. The results of these analyses give an intuitive picture

of where the asymptotic advantage of the number field sieve lies, and what should be

exploited to best leverage this advantage in practice.

The following function is central to the analysis. Suppose we have real variables

v,w with 0 ≤ v ≤ 1. Let the L-function be given by

Lx[v,w] = exp
[

(w + o(1))
(

log x)v(log log x)1−v
) ]

.

The more important variable is v. Think of the L-function as interpolating (along v)

between polynomial and exponential functions of log x. Indeed, Lx[1, w] = xw+o(1)

and Lx[0, w] = (log x)w+o(1). The value of w is not immaterial, but makes a difference

asymptotically only if v is constant.
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N Date Algorithm Effort (MY) Ref.

RSA-100 Apr 91 MPQS 7 N/A
RSA-110 Apr 92 MPQS 75 [29]
RSA-120 June 93 MPQS 835 [25]
RSA-129 Apr 94 MPQS 5000 [2]
RSA-130 Apr 96 NFS 1000 [23]
RSA-140 Feb 99 NFS 2000 [16]
RSA-155 Sept 99 ? NFS < 10000

Table 1.1: RSA Challenge records

Algorithms in the “congruent squares” family typically have heuristic asymptotic

run-times described by the L-function. Heuristically, the time taken by MPQS to factor

N is LN [1/2, 1] as N → ∞. In fact, all general factorisation algorithms preceding

MPQS also have asymptotic run-time at best LN [1/2, c] for some c ≥ 1. The number

field sieve however, has asymptotic run-time

LN [1/3, (64/9)1/3 ] .

The appearance of v = 1/3 is exciting. It brings the number field sieve significantly

closer to a polynomial-time algorithm than its predecessors. We explore this issue

in Chapter 2. It is worth noting now that the reason the number field sieve defeats

other algorithms asymptotically is that the integers it requires to be smooth are much

smaller asymptotically than those of other algorithms. That is, asymptotically, the

number field sieve guarantees a much better supply of smooth polynomial values.

1.2.4 The RSA Factorisation Challenge

The number field sieve is clearly the state-of-the-art asymptotically, but what is the

situation in practice? State-of-the-art for general integer factorisation in practice is

measured by progress through the RSA Factorisation Challenge. The RSA Factorisa-

tion Challenge is a list of genuine RSA moduli. The Challenge is administered by RSA

Laboratories [69] precisely to encourage and keep track of factorisation research.

The challenge numbers begin at length 100 digits, and there is one at every length

110, 120, . . . , 500 digits. There are also moduli of length 155 digits (512 bits), 232

digits (768 bits), 309 digits (1024 bits) and 617 digits (2048 bits).

Table 1.1 shows progress through the list, including the record RSA-140 factorisa-

tion and the impending RSA-155 record.

The MIPS-years figures for the effort required to factorise each number are very

approximate. For RSA-130 and RSA-140 the figures are a little misleading. Lower, but

still conservative, “could-have-done-it-in” estimates for each are 500 and 1500 MIPS-
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years respectively. The prediction for RSA-155 is based on extrapolation from the 2000

MIPS-years figure for RSA-140. We re-visit this estimate in Chapter 6.

The integers of most interest to us are RSA-129, RSA-130, RSA-140 and RSA-

155. RSA-129 is not formally part of the RSA Challenge list, it is included here

for illustration purposes only. It was set as a challenge in the August 1977 edition of

Scientific American. Accompanying the challenge was the now infamous claim that the

RSA-129 modulus would be secure for 40 quadrillion years. The RSA-129 factorisation

is the last record set using MPQS. The RSA-130 record is significant because it is the

first set using the number field sieve. Notice the decrease in estimated MIPS-years

effort from RSA-129 to RSA-130. Notice also that the RSA-140 record, even with

the conservative estimate of effort, was still set with less than half the effort used for

RSA-129.

These figures refer only to the effort spent on the sieving stage of each algorithm;

the stage during which smooth polynomial values are collected. Certainly this is the

stage that requires the most effort, but particularly with the number field sieve, other

stages are also complicated and time consuming.

1.3 The Number Field Sieve Briefly

In this section we outline very briefly the steps involved in the number field sieve.

More details are given in Chapter 2. We also note the existence of an analogue of the

number field sieve for computing discrete logarithms in Zp−1. Finally we focus on the

polynomial selection problem.

The number field sieve was developed from ideas of Pollard [63] in 1988. It was

initially formulated to apply to integers of a special form (for which the polynomial

selection step is easy). This earlier version is now referred to as the special number

field sieve. The special number field sieve had early success with the factorisation of

the ninth Fermat number F9 [47]. Since the polynomial selection step is easy in the

special number field sieve, that is, an obvious pair of exceptionally good polynomials

is known in advance for N , its asymptotic run-time is only

LN [1/3, (32/9)1/3 ] .

For completeness we note that the largest integer factorised by the special number field

sieve is 10211 − 1 [17].

Our focus is on the polynomial selection step for N where no “special form” poly-

nomials are available. So we do not consider the special number field sieve any further

than to say it was extended to apply to general N in [14]. Implementations for general

N emerged soon thereafter ([5], [33], [12]). The RSA-140 and RSA-155 factorisations

use the implementation of [33], and a variation of [5].
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1.3.1 The Algorithm

Suppose we have two polynomials f1, f2 ∈ Z[x] which are irreducible over Q and have

a common root m mod N . Given αi ∈ C for which fi(αi) = 0 for i = 1, 2, distinct

squares are constructed in the number fields Q(αi). Viewed in ZN as images under

homomorphisms defined by sending each αi 7→ m, these squares give rise to (1.1).

The squares in Q(αi) are constructed from smooth values of the homogeneous

polynomials Fi(x, y) = ydifi(x/y) where di = deg fi. In fact, coprime integer pairs

(a, b) at which both F1(a, b) and F2(a, b) are smooth are sought. Such a pair is called

a relation. Relations are identified using a sieving process. Many millions of relations

are required for interestingly large values of N . Thus, collecting relations (sieving) is

a very time consuming process.

Once sufficiently many relations are collected, a large matrix is constructed over

Z2 much as in the procedure outlined at Section 1.2.2. Finding the squares in each

Q(αi) requires finding a linear dependency over Z2 amongst the rows of this matrix.

It is not the squares in Q(αi) that are required for (1.1) however, but the homomor-

phic images in ZN of their square roots. To find these images, we require the square

root of each square in Q(αi). Upon finding those square roots, computing the relevant

gcd will, with probability at least one half, produce a non-trivial factor of N .

Thus the number field sieve has the following steps:

1. Polynomial Selection

2. Sieving

3. Matrix Reduction

4. Square Root.

Steps 2–4 are well studied (which is not to suggest that there is no room for

improvement). Sieving methods are well developed. That is, we have efficient methods

for detecting whatever smooth polynomial values are there. The square root step is

essentially solved. There exists an algorithm for performing the matrix step, although

very large matrices are becoming a problem from an implementation perspective.

The polynomial selection step however, has been a major open problem since the

inception of the number field sieve. The problem is to choose polynomials which ensure

a good supply of smooth values in practice. The main aim in doing so is to decrease

sieving times. A pleasant side effect is that we can also, in the presence of other

techniques (see Chapter 2), reduce the expected matrix size. Before expanding on

polynomial selection in Section 1.3.3, we note another area affected by improvements

in polynomial selection.
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1.3.2 The Number Field Sieve for Discrete Logarithms

Algorithms for computing discrete logarithms in G fall into two categories; those which

work for arbitrary G, and those which rely on properties of particular group represen-

tations. We do not discuss the former category here, other than to say that the best

known algorithms in this category have run-times that are exponential in log h, where

h = |G|.
All known sub-exponential algorithms fall into the latter category. They are col-

lectively called index calculus algorithms. A survey of index calculus algorithms for

discrete logarithm computations is found in [72]. The general strategy of index calculus

algorithms is to compute the discrete logarithms of many small elements in G, then

express the desired logarithm as a linear combination of the small ones. The first stage,

computation of the logarithms of many small elements, is done in a similar manner

to general factorisation algorithms. That is, collection of sufficiently many “smooth”

elements followed by reduction of a large matrix. (One difference is that the matrix

reduction is done modulo l, for each large divisor l of h− 1, rather than modulo 2).

For the strategy to work in the discrete logarithm case G must have a represen-

tation which admits a notion of smoothness. Examples relevant to cryptography are

GF (p)∗ ∼= Zp−1 for odd p and GF (q)∗ where q = 2n with n large (say, n ≥ 160).

In the former case the representation is simply Zp−1 so smoothness is defined as for

integers. In the latter case the representation is the polynomial ring Z2[x]/〈g(x)〉 for

some irreducible polynomial g ∈ Z2[x] of degree n. A polynomial in the ring is consid-

ered smooth if its irreducible factors all have small degree compared to n. There is no

known sub-exponential attack on elliptic curve discrete logarithms precisely because

there is no known analogue of “smoothness” for elements in those groups.

The number field sieve applies to the computation of discrete logarithms in GF (p)∗,

equivalently, in Zp−1. Prior to the emergence of the number field sieve, the best

known algorithm for discrete logarithms in Zp−1 was the Gaussian Integers method of

[21]. This method has sub-exponential run-time Lp[1/2, 1]. Historically, this method

inspired the number field sieve for factorisation. Things turned in a complete circle

when Gordon showed in [36] that the number field sieve for factorisation could be

applied to compute discrete logarithms in Zp−1. Schirokauer’s improvement [71] gives

the algorithm now referred to as the number field sieve for discrete logarithms in Zp−1,

with heuristic asymptotic run-time

Lp[1/3, (64/9)
1/3 ] .

The most time consuming stage in the discrete logarithm number field sieve is,

as with factorisation, the collection of smooth polynomial values. The polynomial

selection problem for discrete logarithms is similar to that for factorisation. Any im-

provements for factorisation therefore, should carry over directly to discrete logarithms.



1.3 The Number Field Sieve Briefly 11

Record discrete logarithm calculations in Zp−1 lag somewhat behind the corre-

sponding factorisation record. Weber [80] has implemented Schirokauer’s algorithm.

Using this implementation the record general discrete logarithm computation using

the number field sieve is that for an 85 digit p in [81]. A larger record, a 129 digit p,

was set using the special number field sieve in [82]. The main reason for the lag behind

factorisation is that the matrix reduction is more difficult for the discrete logarithm

case than for the factorisation case. As mentioned above, the matrix must be reduced

modulo some large prime l, not just mod 2.

Our polynomial selection improvements are yet to be applied to the number field

sieve for discrete logarithms in Zp−1. We would expect significant improvements once

this is done. Not only will sieving time be greatly reduced, but as noted above, better

polynomial selection can reduce the expected matrix size.

1.3.3 The Polynomial Selection Problem

So far we have introduced the following:

• The asymptotic advantage of the number field sieve is that its polynomials guar-

antee a better supply of smooth values than is the case for previous algorithms.

• The polynomial selection problem concerns how to exploit this advantage in

practice. The aim is to choose polynomials which generate many smooth values

and so reduce the effort required in the time consuming sieving step.

• For N as large as the values we consider in Chapter 6, the matrix step is also

troublesome. An advantage of better polynomial selection is that the saving in

sieving time is sufficient that, in effect, sub-optimal smoothness bounds can be

chosen to decrease the matrix size.

There are essentially two known methods for generating suitable polynomial pairs.

For integers as large as, say, RSA-140, a modified base-m method is the better one.

With this method, we fix a degree d (for us usually d = 5) then seek m ≈ N1/(d+1)

and a polynomial f1 of degree d for which

f1(m) ≡ 0 (mod N). (1.3)

The polynomial f1 descends from the base-m representation of N . Indeed, we begin

with f1(x) =
∑d

i=0 aix
i where the ai are the coefficients of the base-m representation,

adjusted so that −m/2 ≤ ai < m/2.

The alternative polynomial selection method produces two quadratic polynomials

f1 and f2. As a function of the degree of the individual polynomials, this method

defeats the base-m method. However for sufficiently large integers (like RSA-140)

the combined degree of two quadratics f1 and f2 is too low to compete with quintic

polynomials chosen by the base-m method.
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In this thesis we examine polynomials produced by both methods. The problem

demands that we choose “good” polynomials. A polynomial’s “goodness” is determined

by its yield, that is, the number of smooth values it produces for a given smoothness

bound and in a given range. We consider the problem in three stages; first we decide

what to look for, then we decide how to look for it, then we find it.

1.4 Contribution of the Thesis

We characterize the contribution of this thesis into three areas.

1.4.1 Polynomial Yield

Here we decide what to look for. That is, we develop an understanding of polynomial

yield. Consider a single polynomial F . We take the yield of F to be influenced by two

factors, which we call size and root properties. Choosing good F requires choosing F

with a good combination of size and root properties.

By size we refer to the magnitude of the values taken by F . It has always been

well understood that size affects the yield of F .

Definition 1.4.1 A random value ir is an integer chosen uniformly at random from

{i ∈ Z : 1 ≤ i ≤ r}.

For a fixed smoothness bound the likelihood of a random value ir being smooth de-

creases rapidly as r → ∞, and does so in a well known manner. Hence, previous

approaches to polynomial selection have sought polynomials whose size is smallest.

The influence of root properties however has not been either well understood or

adequately exploited. By root properties we refer to the distribution of the roots of F

modulo small pk for p prime and k ≥ 1. In short, if F has many roots modulo small

pk, values of F “behave” as if they are smaller than they actually are.

We contribute an understanding of this effect by quantifying root properties and

modelling the interaction between size and root properties to determine polynomial

yield. Only once this is done can we know what is required for a particular polynomial

to have “good” yield.

1.4.2 Polynomial Selection

Once we understand what to look for, we develop methods for finding it. We seek

methods for generating polynomials with good combinations of size and root properties.

We contribute some tricks and techniques which help find such polynomials. As part

of this process we also contribute techniques for determining, without sieving, the

“goodness” of a particular polynomial.
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1.4.3 Polynomials for Record Factorisations

We used the improvements given in this thesis to select polynomials for the record

factorisation of RSA-140. We found a decrease by a factor of two in the expected

sieving time (extrapolated from RSA-130), because of the improved selection. We

found a decrease in the expected matrix size (that is, the number of rows or columns)

by a factor of about 1.4, because of the improved selection in the context of other

procedures (see Chapter 2). We used a polynomial pair whose yield is approximately

8 times that of a random selection.

We made further and better use of our techniques for the factorisation of RSA-155.

At the time of writing, the sieving task for RSA-155 is complete. We used a polynomial

pair whose yield is approximately 13.5 times that of a random selection. We expect

the factorisation in August/September of 1999.

Factorisation of a 512 bit RSA modulus is a significant milestone in integer fac-

torisation for cryptographic purposes, and effectively renders such moduli useless for

serious applications.

1.5 Outline of the Thesis

Chapter 2 contains mainly background material. In discussing the background material

we survey the relevant literature. The focus is on aspects most relevant to polynomial

selection.

Chapters 3–6 contain the bulk of the research. Chapters 3 and 4 are aimed at

developing our understanding of polynomial yield. Chapter 3 establishes the framework

mainly by parameterising root properties. Chapter 4 considers the effect of size and

root properties together. Initially we examine yield as a function of root properties

to check their effect and our paramaterisation. We then give a simple method of

estimating yield. Material contained in Chapters 3 and 4 appeared in [56] and [57].

In Chapters 5–6 we use our understanding of yield to address the polynomial se-

lection problem. Chapter 5 contains techniques for generating good polynomials. The

focus is on polynomials relevant to factorisation of large RSA moduli. In Chapter 6

we investigate these techniques, by re-examining the factorisation of RSA-130 and by

describing the polynomial selection for the RSA-140 and RSA-155 factorisations. Some

of the material contained in Chapters 5 and 6 appears in [16] and some was delivered

in [54].

Chapter 7 contains conclusions and suggestions for further work.
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Chapter 2

Background

In this chapter we give background material concerning the number field sieve. In

doing so, we survey the relevant literature. The focus is on issues directly relevant to

the polynomial selection problem.

In Sections 2.1 and 2.2 we examine the number field sieve broadly. In Section 2.1

we focus on the algorithm, its algebraic context, and its practical stages. In Section

2.2 we examine the asymptotic complexity analysis of the algorithm. In Section 2.3

we consider the polynomial selection problem specifically.

2.1 The Number Field Sieve

We saw a very brief description of the number field sieve in Chapter 1. Here we

elaborate, concentrating on matters relevant to polynomial selection.

In Section 2.1.1 we give a more detailed overview of the algorithm than that in

Chapter 1. We see from this overview that the algorithm lies in a complicated algebraic

context. The relevance of the smooth polynomial values is clear once placed in this

context. In Section 2.1.2 we survey the results on this issue. Since we then understand

why smooth polynomial values are important, we turn in Section 2.1.3 to how they are

found. That is, we discuss sieving methods. In Section 2.1.4 we consider the matrix

step. Rather than describe the algorithms used for reduction of the matrix, we focus on

the benefit received at the matrix stage from better polynomial selection. We illustrate

with the factorisation of RSA-140. Finally, in Section 2.1.5 we point to the literature

concerning the square-root stage.

2.1.1 Outline

Let f1(x) and f2(x) ∈ Z[x] be irreducible (over Z) polynomials. For ease of exposition,

for the moment we assume f1 and f2 are monic. We will relax this assumption soon.

Also, suppose there exists some m ∈ Z for which

f1(m) ≡ f2(m) ≡ 0 mod N.

15
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That is, f1 and f2 have a common root m mod N . This requirement is very limiting.

Finally, suppose that α1, α2 are complex roots of f1 and f2 respectively, with corre-

sponding number fields Q(α1) and Q(α2). Think of m as the analogue mod N of each

αi ∈ C for fi. The key point is that both f1 and f2 have the same analogue.

We define ring homomorphisms ϕ1 : Z[α1] → ZN and ϕ2 : Z[α2] → ZN by sending

α1 7→ m mod N and α2 7→ m mod N . For example

ϕ1

(

d−1
∑

i=0

aiα
i
1

)

=
d−1
∑

i=0

aim
i mod N

with ai ∈ Z being the coefficients of f1 and d the degree of f1.

Suppose that there exists a set S of coprime integer pairs (a, b) for which both

∏

(a,b)∈S

(a− bα1) = β2
1 for some β1 ∈ Z[α1], and

∏

(a,b)∈S

(a− bα2) = β2
2 for some β2 ∈ Z[α2].

Then

ϕ1(β
2
1) =

∏

(a,b)∈S

(ϕ1(a− bα1)) ≡
∏

(a,b)∈S

(a− bm) mod N, and

ϕ2(β
2
2) =

∏

(a,b)∈S

(ϕ2(a− bα2)) ≡
∏

(a,b)∈S

(a− bm) mod N,

giving

ϕ1(β1)
2 ≡ ϕ2(β2)

2 mod N.

The key point is that starting with polynomials which have a common root mod N

ensures that the squares ϕ1(β1)
2 and ϕ2(β2)

2 are congruent mod N . Now gcd(ϕ1(β1)±
ϕ2(β2),N) will be a non-trivial factor of N with probability at least 1/2, in the sense

described in Section 1.2.1.

The question therefore becomes how to construct the set S. It is here that smooth

polynomial values become relevant. Associated with each polynomial fi is the binary

homogeneous polynomial

Fi(x, y) = ydfi(x/y). (2.1)

Where possible, which is not often, we omit the subscript i.

Note 2.1.1 Throughout this thesis, we use the upper case F to denote the homoge-

nous binary version given in (2.1) of the corresponding lower case f ∈ Z[x].
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Our set S is constructed by collecting smooth values of the polynomials Fi. In

particular, we collect coprime integer pairs (a, b) at which both F1(a, b) and F2(a, b)

are B-smooth for some smoothness bound B. We call such an (a, b) pair a relation. In

fact it suffices if either of F1(a, b) or F2(a, b) is almost smooth, as we discuss in Section

2.1.3. By a simple extension of the linear algebra procedure we saw in Section 1.2.2,

from enough (a, b) relations, a set S of (a, b) can be found for which each

∏

(a,b)∈S

Fi(a, b) (2.2)

is square in Z. Furthermore, by the construction we explain below, each product (2.2)

being square in Z makes it practically certain that each

∏

(a,b)∈S

(a− bαi) (2.3)

is the required square β2
i ∈ Z[αi]. The implication from (2.2) to (2.3) is certainly not

obvious in advance.

In practice, a sieving process is used to identify relations. This is the so-called

sieving stage. Since many smooth values are required, and smooth values are rare, this

is overwhelmingly the most time consuming stage of the algorithm. Indeed, the time

taken by sieving dominates the run-time analysis of the entire algorithm. That is why

good polynomial selection is so crucial to decreasing the time taken to factorise N :

good polynomial selection increases the number of smooth values produced by F .

On completion of sieving we find S by reduction modulo 2 of a large sparse matrix.

Although this does not require as much CPU effort as sieving, the matrix reduction is

a highly non-trivial process.

On construction of S we have a product of millions of large algebraic numbers

(typically a, b are also in the order of millions). The product is a square β2
i ∈ Z[αi].

We need βi. Hence, a square root of the large algebraic number β2
i must be taken.

This also is a non-trivial exercise.

Thus, the number field sieve has the following steps.

1. Polynomial Selection: Select f1 and f2 (equivalently, F1 and F2), with a

common root mod N to produce many smooth values.

2. Sieving: Collect relations. That is, find coprime (a, b) at which both F1(a, b)

and F2(a, b) are B-smooth, or almost B-smooth, for some bound B.

3. Matrix Reduction: Reduce a large sparse matrix over Z2 to find the required

set S.

4. Square Root: Given
∏

(a,b)∈S(a − bαi) = β2
i for some βi ∈ Z[αi], find βi (and

hence ϕi(βi)).
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On completion of Step 4, computing gcd(ϕ1(β1) ± ϕ2(β2),N) will, with probability

at least 1/2, give a non-trivial factor of N . Construction of one set S corresponds to

finding one linear dependency amongst the rows of the large matrix. Finding several

dependencies costs only trivially more time, so in fact we find sufficiently many sets S
to make us practically certain of obtaining a non-trivial factor of N at this stage.

It remains to justify the implication from (2.2) to (2.3). We do this in the next

subsection. In doing so we also relax some of our simplifying assumptions.

2.1.2 Congruent Squares from Smooth Polynomial Values

We assume some familiarity with algebraic number theory. Useful background refer-

ences are [75], [8] and [18].

We have the polynomial f(x) (at this stage we still assume that f is monic) with α

such that f(α) = 0, the number field Q(α) whose ring of algebraic integers is O, and

we consider elements a−bα ∈ Q(α). Ultimately we wish to extract enough information

(by sieving) about the multiplicative structure in Q(α) of each a− bα, to deduce that

the product over some set of a− bα is square.

Multiplicative structure in O is difficult to visualise. Moreover, sieving over ele-

ments in Q(α) is a complicated proposition. Multiplicative structure in Z however, is

easy to visualise, and sieving over integers is an entirely attractive proposition. We

make the transition from Q(α) to Z using the norm map. Usually the norm of an

element ζ ∈ Q(α) tells something about the multiplicative structure in Q(α) of ζ. It

turns out that for ζ ∈ Q(α) of the particular form ζ = a−bα, the norm tells everything

about the multiplicative structure in Q(α) of ζ.

That is, complete information about the ideal factorisation of 〈a − bα〉 (the ideal

generated by a− bα) can be deduced from the integer factorisation of its norm. Now,

it also turns out that the norm of each element a − bα is given by the value of our

homogeneous polynomial, F (a, b). Hence, the integer factorisation of F (a, b) (which

we discover by sieving) gives information on the multiplicative structure of 〈a − bα〉,
and that information suffices in practice to construct the requisite square in Q(α).

In the remainder of this subsection we elaborate on this argument, essentially giving

an exposition of the results in [14] and elsewhere. After recalling some basic facts, we

explain the argument in a simple case. That is, we assume that in Q(α) we have

Z[α] = O. In general of course possibly Z[α] ⊂ O. We refer to number fields in which

the assumption holds as convenient number fields. We then relax the assumption, and

consider the argument in what we call arbitrary number fields. That requires the use

of a probabilistic device using quadratic characters. Finally, we relax the assumption

that f is monic.
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Convenient Number Fields

Under the assumption that O = Z[α] we have available in Z[α] the full theory of unique

factorisation into prime ideals of ideals in O. Recall the following basic facts.

• For an element ζ ∈ Q(α), the norm N of ζ is given by,

N(ζ) =
d
∏

i=1

σi(ζ),

where d is the degree of Q(α) (and of f) and the σi are the d embeddings of Q(α)

in C. The norm N is multiplicative.

• For an ideal q of O, the norm N of q is given by

Nq = |O/q| .

The norm N is multiplicative. Moreover,

N〈ζ〉 = N(ζ)

where 〈ζ〉 denotes the ideal generated by ζ.

• For every non-trivial prime ideal p of O, we have Np = pδ for a unique (rational)

prime p, and for some postive integer δ. We call δ the degree of the ideal p.

• Rational primes p decompose in O as follows;

〈p〉 =

g
∏

i=1

pei

i ,

for positive integers ei. Each ei is called the ramification index of p at pi. With

δi being the degree of pi we have

g
∑

i=1

eiδi = d.

A prime p for which some ei > 1 is called a ramified prime.

Let ep(ζ) = ordpN(ζ). We have

∏

p

pep(ζ) = N(ζ) = N〈ζ〉 = N(
∏p pvp(ζ))

where p ranges across the prime ideals of O, p ranges across the rational primes, and

for positive integers vp(ζ) (the p-adic valuations of ζ). We are now interested in the

relationship between ep(ζ) and vp(ζ) when ζ is square. Since factorisation into prime

ideals in O is unique, ζ is square if and only if every vp(ζ) is even. For this to be the

case it is necessary, but not sufficient, that every ep(ζ) is even. If either
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• the rational prime p is contained in more than one, say two, distinct prime ideals

pi and pj , or

• N(p) = pδ for some δ > 1,

then ep(ζ) can be even whilst vp(ζ) is not.

We avoid the first obstruction by keeping track of appearances of p in N(ζ) in a

more particular manner than just ep(ζ). We will use exponents ep,r(ζ), with possibly

more than one r for each p, and insist that each of these are even in our purported

square rather than just each ep(ζ) begin even. The second obstruction is avoided by

the special form of our elements ζ = a− bα.

The following theorem gives the means for overcoming the first obstruction. It can

be found in for example [14] and [48], or viewed as a consequence of Theorem 4.8.13

of [18].

Theorem 2.1.2 Let p be a rational prime and let

R(p) = {r ∈ Zp : f(r) ≡ 0 mod p}.

Then the first degree prime ideals of O with norm p are in one-to-one correspondence

with the pairs (p, r) for r ∈ R(p).

Since we are assuming that Z[α] = O, we can index the first degree primes of Z[α]

by the pairs (p, r). In fact, for p ↔ (p, r) and ζ =
∑d−1

i=0 aiα
i in Z[α],

p|ζ ⇔
d−1
∑

i=0

air
i ≡ 0 mod p. (2.4)

The following theorem, found for example in [14] and [47], overcomes the second

obstruction.

Theorem 2.1.3 For coprime integers a and b, every prime ideal of O dividing 〈a−bα〉
is a first degree prime ideal.

For the particular elements a− bα we obtain from (2.4) and Theorem 2.1.3 that

a− bα ∈ p ⇔ a− br ≡ 0 mod p. (2.5)

So, we now have an exact correspondence between the valuations of ideals p ↔ (p, r)

dividing a− bα and the exponent ep,r of p in N(a− bα). That is,

N(a− bα) = N(
∏p pvp(a−bα)) =

∏

p

pep,r(a−bα),

with vp(a − bα) = ep,r(a − bα). Hence, we have the desired correspondence between

norm factorisations and multiplicative structure in Q(α).

The following theorem ties the norm values to the values of F (see for example

[83]).
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Theorem 2.1.4 In Q(α) we have F (a, b) = N(a− bα).

We can now describe the sieving framework for F .

Definition 2.1.5 An element ζ ∈ Q(α) is B-smooth exactly when its norm is B-

smooth.

Smooth elements a − bα ∈ Z[α] can be found by sieving over the polynomial values

F (a, b) with first degree prime ideals of Z[α] = O, indexed by (p, r), by checking the

right hand side of (2.5). The factor base consists of all first degree prime ideals of Z[α]

with norm p < B for some bound B. Given sufficiently many B-smooth a − bα, by

linear algebra over Z2 there exists a set S of (a, b) for which

∑

(a,b)∈S

ep,r(a− bα) ≡ 0 mod 2 (2.6)

for all primes p ↔ (p, r) in the factor base. If O = Z[α], then (2.6) is sufficient to

guarantee that
∏

(a,b)∈S(a− bα) is a square in Z[α].

Arbitrary Number Fields

We now drop the pretence that O = Z[α]. We no longer have at our disposal in Z[α]

the theory of uniqueness of factorisation into prime ideals in O. Instead we look more

generally to prime ideals of arbitrary orders of Q(α). Denote Q(α) by K. An order is

a subring of K which as a Z-module is finitely generated and of rank d = degK (see

[18] Section 4.6). Clearly Z[α] is an order. The maximal order O satisfies properties

not satisfied by arbitrary orders A. In [14] the authors present results which tie the

ideal structure in arbitrary orders A to the known structure in O. We are interested

in the case A = Z[α], with the aim of re-establishing the connection between norm

factorisations of F (a, b) and ideal factorisations in A.

The following result from [14] introduces homomorphisms lp. Think of the lp as

generalisations, to arbitrary orders, of p-adic valuations in O.

Theorem 2.1.6 Let A be an order of O. There is, for each prime p of A, a group

homomorphism lp : K∗ → Z, such that the following hold:

1. lp ≥ 0 for all ζ ∈ A, β 6= 0;

2. if ζ ∈ A and ζ 6= 0, then lp(ζ) > 0 if and only if ζ ∈ p;

3. for all ζ ∈ K∗ we have lp(ζ) = 0 for all but finitely many p, and

∏p Nplp(ζ) = |N(ζ)|,

where p ranges over the primes of A.



22 Chapter 2: Background

The functions lp are deduced from the structure in O as follows. Let q be a prime in

O lying above the prime p in A (that is, p = A ∩ q). The field O/q is an extension

of A/p of degree δ say. Then, informally, lp counts δ appearances of p in A for every

appearance of q in O. Applying Theorem 2.1.6 to ζ = a− bα gives the following.

Corollary 2.1.7 Let a and b be coprime integers and let p be a prime of Z[α]. If p is

not a first degree prime then lp(a− bα) = 0. If p is a first degree prime corresponding

to the pair (p, r) then lp(a− bα) = ep,r(a− bα).

Hence, we have again captured an exact correspondence between the integer fac-

torisation of N(a− bα) and the ideal factorisation of 〈a− bα〉. Now, by linear algebra

over Z2 we are able to find a set S of coprime pairs (a, b) for which

∑

(a,b)∈S

ep,r(a− bα) ≡ 0 mod 2. (2.7)

We saw previously, by uniqueness of factorisation of prime ideals in O, that if O = Z[α]

then (2.7) is sufficient to guarantee that
∏

(a,b)∈S(a − bα) is a square in Z[α]. This is

not the case in general for the following reasons (from [14]).

1.
∏

(a,b)∈S(a− bα)O may not even be a square in O, since we have considered only

primes of Z[α].

2. Even if
∏

(a,b)∈S(a−bα)O is a square in O , it may not be the square of a principal

ideal in O.

3. Even if
∏

(a,b)∈S(a− bα)O is the square of a principal ideal in O,
∏

(a,b)∈S(a− bα) is not necessarily a square generator.

4. Even if
∏

(a,b)∈S(a− bα) is a generator β2 (for some β ∈ O) of a principal square

ideal, β does not necessarily lie in Z[α].

Obstruction 4 can easily be overcome, since if
∏

(a,b)∈S(a − bα) is a square in O
then

f ′(α)2 ·
∏

(a,b)∈S

(a− bα) = ω2

for some ω ∈ Z[α] . The remaining obstructions are overcome using quadratic charac-

ters.

Quadratic Characters

The use of quadratic characters was first suggested by Adleman [1]. Let V be the

(multiplicative) group of ζ ∈ K∗ for which lp(β) ≡ 0 mod 2 for all primes p of Z[α].
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That is, V contains the elements which, judging by the primes of Z[α], look like squares

in K. Not all of them are, so K∗2 ⊂ V where K∗2 is the multiplicative group of squares

in K. Now, V/K∗2 forms a vector space over Z2. In [14] (Theorem 6.7) it is shown

that there exists a “small” upper bound on the dimension of the vector space. Since

V is in that sense not too much larger than K∗2, it is plausible that there exists a

probabilistic method by which, given ζ ∈ V , it is practically certain that in fact the

element ζ ∈ K∗2. Quadratic characters give us such a method.

Let q be an odd prime and let s ∈ R(q) be such that the ideal (q, s) does not lie in

the factor base. Also, let

χq(a− bα) =

(

a− bs

q

)

.

The essence of using quadratic characters χq is the following. We can be practically

certain that if ζ ∈ Z[α] satisfies χq(ζ) = 1 for sufficiently many first degree primes q

not lying above ζ, then ζ is a square in K.

In practice, extra columns are annexed to the matrix over Z2 whose rows represent

the relations. Each extra column corresponds to a test prime q. The entry in the row

corresponding to entry (a, b) and column correpsonding to q is 1 if χq(a + bα) = −1

and zero otherwise. Hence a linear dependency amongst the rows ensures

χq ∏

(a,b)∈S

(a− bα)



 =
∏

(a,b)∈S

(

a− bs

q

)

= 1

for all test primes q. If sufficiently many q are chosen,
∏

(a,b)∈S(a− bα) is almost cer-

tainly a square in Z[α]. Obstructions 1–3 are overcome in one hit, and the relationship

in (2.7) captures square appearances of ideals.

Non-monic Polynomials

So far we have assumed f and F are monic. Allowing f to be non-monic gives smaller

coefficients - some of the “size” of the coefficients can be pushed onto the leading coef-

ficient. For example, the monic base-m method gives m = O(N1/d) and ai = O(N1/d).

Non-monic base-m polynomials have m = O(N1/(d+1)) and ai = O(N1/(d+1)). It is

crucial that we are again able to capture the correspondence between the integer fac-

torisation of N(a − bα) and the ideal factorisation of a − bα. Allowing non-monic

polynomials requires some minor adjustments, and we outline these below.

The significance to this point of f being monic is that α being a root of f guarantees

that α ∈ O, so Z[α] is an order of O. If ad 6= ±1 that is not necessarily the case. It

turns out however that A = Z[α] ∩ Z[α−1] is an order of O (see [14]). So Theorem

2.1.6 is again available.

Let ω be a zero of F (x, ad). If α = ω/ad then

F (ω, ad) = 0 ⇒ F (α, 1) = f(α) = 0
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since F is homogeneous. Now, Z[ω] is an order (ω ∈ O), and ad(a − bα) = ada − bω.

Also,

F (a, b) = N(ada− bω),

so we have

F (a, b) = adN(a− bα),

compared with Theorem 2.1.4.

Recall that in the monic case we are able to index the first degree primes of Z[α]

by pairs (p, r) for r ∈ R(p). If we now identify r with r1/r2 whenever r2 6= 0 then it

makes sense to consider the set {(r1, r2) ∈ Z2
p : F (r1, r2) ≡ 0 mod p}. In fact we define

R′(p) =
{

(r1, r2) ∈ Z2
p : F (r1, r2) ≡ 0 mod p

}

∪ {∞} ,

and in the case r2 = 0 we identify r ∈ R(p) with ∞ ∈ R′(p). Now, let ep,r(a, b)

as before denote the exponent in N(a − bα) corresponding to the ideal (p, r). Then

Theorem 2.1.6 admits homomorphisms lp (where p ranges across the prime ideals of

A) for which

ep,r(a, b) =

{

lp(a− bα) if r 6= ∞
lp(a− bα) + ordpad if r = ∞,

(see [14] and [59]).

So, with non-monic polynomials, we again capture the correspondence between

norm and ideal factorisations that gives rise to a practical method of sieving. Thus,

the significance of smooth polynomial values is that they carry enough information

on the multiplicative structure in Q(α) of the corresponding elements, to enable the

construction of squares in Z[α].

Aside 2.1.8 For another application which uses this correspondence, see the literature

regarding practical solution of Thue-Mahler equations [76].

Since we now understand how sieving corresponds to deducing multiplicative struc-

ture in Q(α), we should consider how sieving occurs.

2.1.3 The Sieving Step

In this subsection we survey sieving techniques and variations thereof which are relevant

to the factorisations discussed in Chapter 6. The main sieving techniques are lattice

sieving and line sieving, and the main variations are large prime variations.
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Sieving Methods

The use of sieving techniques in factorisation was first proposed for the quadratic sieve.

Indeed, this innovation allowed the quadratic sieve to out-perform its competitors at

the time. The idea is that given p and a polynomial W (x), the integer values of x for

which p|W (x) are regularly spaced mod p. Start with an array of W (x) values for x in

some range, and a particular x0 at which p|W (x0), the remaining x at which p|W (x)

satisfy

x ≡ x0 mod p.

Moreover, division of W (x) by p can be mimicked by subtraction from logW (x) of

log p. So, starting instead with an array of logW (x) values, subtract log p from each

array entry corresponding to x ≡ x0 mod p. After sieving with all p in the factor base,

array entries which are below some threshold are called candidate relations, and are

checked for smoothness by actually factorising them.

In the number field sieve, the (a, b) pairs for which F (a, b) contains an appearance of

the factor base element (p, r) are regularly spaced mod p. Sieving is therefore available

as a means of relation collection. As we saw in the previous subsection, if p ↔ (p, r)

for some r ∈ R′(p) is an ideal in the factor base, then for coprime (a, b) we have

p|F (a, b) ⇔ a− br ≡ 0 mod p.

This gives rise to an obvious method of sieving. Start with an array of values logF (a, b).

Fix b and find the first a = a0 (in the relevant range) for which a0 ≡ br mod p.

Then subtract log p from the array entries corresponding to a0 and to the remaining

a ≡ a0 mod p. Then increment b. This is called classical sieving and was the first

method suggested for the number field sieve ([14], [63] and [48]).

John Pollard then suggested the improvement which he called lattice sieving [64].

An extension was implemented in [35]. Lattice sieving is substantially faster than

classical sieving, and has all but replaced it in practice.

The idea of lattice sieving is as follows. Fix a set Q of primes q for which F has

at least one root modulo each q. Each q ∈ Q is called a special q. Sieving occurs

only over those (a, b) for which it is known that q|F (a, b) for some q ∈ Q. If q is not

too small, then knowing that q|F (a, b) renders it more likely that F (a, b) is smooth.

Clearly, smooth values of F (a, b) without a divisor in Q will be missed, but Q is chosen

to ensure that the cost in missed relations is much less than the gain in efficiency.

We receive a gain in efficiency because it is quick to generate, given a factor base

element (q, s) with q ∈ Q, the (a, b) pairs for which q|F (a, b) and a/b ≡ s mod p. Such

pairs form a lattice Lq,s in the (a, b) plane, so can be generated quickly using a reduced

lattice basis.

Within Lq,s we continue sieving with each prime p < q which occurs in the factor

base. Sieving with p occurs in one of two ways, by rows or by vectors. Denote by (c, e)



26 Chapter 2: Background

the coordinate system in Lq,s with respect to its reduced basis. Sieving by rows fixes e

and, analogously to classical sieving, sieves the factor base elements (p, r) with p < q

along e. Sieving by vectors regards pairs in the (c, e) plane corresponding to (a, b) pairs

for which p|F (a, b) with a/b ≡ r mod p, as a sub-lattice (abbreviated to Lq,p) of Lq. A

basis for Lq,p is not always well-defined. If not, then this (p, r) is sieved by rows. If so,

then Lq,p is generated from a reduced basis. More complete details of these processes

are to be found in [35].

Line sieving (see [33] for details) is similar to lattice sieving by rows. It corresponds

to lattice sieving with fixed b. That is, for each special q, fix b then perform lattice

sieving on all (a, b) for which q|F (a, b), then increment b. Incrementing b is a com-

paratively expensive operation. Typically, polynomials generated for use with the line

siever are re-written so that b is not changed often. Indeed, often b is fixed at b = 1.

This is made more efficient by the use of “skewed” bases for the relevant sub-lattices

in the (a, b) plane.

For the most part in this thesis we use the number field sieve implementation

described in [33]. In Chapter 6 we refer to the siever in this implementation as the

CWI siever. We also report in Chapter 6 on some sieving performed using the lattice

siever of [35], adjusted to use the “skewed” basis representations mentioned above. We

refer in Chapter 6 to this adjusted lattice siever as the AKL siever.

Remark 2.1.9 To this point we have spoken only of algorithmic, or “software” con-

siderations in sieving. Adi Shamir recently proposed a hardware variation [70]. He

proposes an opto-electrical device specifically designed to perform sieving operations.

In [70] the device is presented only for MPQS sieving, but adjustment for the number

field sieve should not be difficult. The device, called TWINKLE, is only in the con-

ceptual stages at present. If built, it would be a cheap platform on which to perform

sieving up to 500–1000 times faster than conventional workstations today.

Notice that improvements like TWINKLE to sieving procedures are still subject

to new advances in polynomial selection. Polynomials which have good yield do so

independently of the sieving device used. The sieving device determines the amount

of wall-clock time required to detect that yield.

Large Prime Variations

This time can be reduced considerably by accepting F -values which are almost smooth.

Such a variation to sieving is known as a large prime variation.

Large prime variations to MPQS are well known, see for example [49] and [7]. We

have two smoothness bounds, B1 and B2 with B1 < B2. During sieving, polynomial

values are accepted if they contain at most two so called large primes between B1 and

B2, but are otherwise B1-smooth. Relations containing no large primes are called full
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relations. Relations containing exactly one or two large primes are called 1LP- and

2LP-relations respectively. 1LP- and 2LP-relations are referred to collectively as large

prime relations.

In the same way that the primes at most B1 need to be “paired-up” to form squares,

so do the large primes. In MPQS with two large primes (P 2-MPQS) this is usually

thought of as a graph theory problem. Let G = (V,E) be the graph whose vertices are

the large primes appearing in the relations and the notional vertex 1, and for which

{P1, P2} ∈ E exactly when the large primes P1 and P2 appear in the same large prime

relation. A 1LP-relation is represented by the edge {P1, 1}. Finding a fundamental

cycle in G corresponds to finding a subset of the large prime relations in which every Pi

occurring across the subset does so exactly twice. Hence, the large primes are “squared

up” by finding fundamental cycles in G.

In MPQS with only one large prime (P -MPQS), the number of cycles obtained

(cycles in P -MPQS are better thought of as “matches”) as a function of the number of

large prime relations gathered has been analysed ([49], [7], [55]). For P 2-MPQS, this

analysis is an open problem. One possibility for insight is the theory of random graphs

(for example [60]). Most random graph models assume that the probability of a given

edge occuring is uniform across E, however see [42] for a treatment with non-uniform

edge probabilities.

Large prime variations to the number field sieve are complicated by the presence

of two polynomials, each with their own factor base. With smoothness bounds B1 and

B2, we consider an (i, j)LP-relation to be one for which F1 is iLP-smooth and F2 is

jLP-smooth. We refer to such a variation with i ≤ I and j ≤ J as the number field

sieve with (I+J) large primes. In [30] an implementation is presented with I = J = 2.

In subsequent chapters we deal mainly with each polynomial individually, so we refer

just to a particular value being iLP-smooth.

The problem of “squaring up” the large primes is complicated significantly in the

number field sieve by the presence of two factor bases. Thinking about the problem in

terms of cycle finding in graphs is less instructive than with MPQS. Nevertheless we

still refer to a set of large prime relations in which every large prime occurring in each

factor base does so exactly twice in that factor base, as a cycle.

In [30] the number of cycles obtained as a function of the number of relations

gathered is considered. The authors observe smooth growth in the number of cycles

initially, followed by a sudden, almost vertical increase. This phenomena has become

known as cycle explosion. Cycle explosion has been observed in other large factori-

sations (for example, [23]). Indeed, practitioners now expect cycle explosion for large

factorisations, and are able to tell that it is imminent (we do not elaborate on this).

However, cycle explosion has not been analysed. Connections to the behaviour of ran-

dom graphs have again been noted, but the existence of two factor bases complicates

matters even more than the unresolved P 2-MPQS case. It may be useful to think of
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the number field sieve case in terms of a hypergraph whose edges span the distinct

factor bases. If so, then it is worth noting that [41] extends Kovalenko’s result [42] on

non-uniform edge probabilities, to hypergraphs.

Finally we note that in the RSA-140 and RSA-155 factorisations discussed in Chap-

ter 6, the CWI siever has I = 3 for the non-linear polynomial F1, and J = 2 for the

linear F2. The AKL siever has I = J = 2, as in [30] and [23].

2.1.4 The Matrix Step

Before discussing the matrix step itself, we mention an important pre-computation

called filtering. Filtering is a process which reduces the amount of data entering the

matrix, by removing less useful relations. For example, a relation involving an ideal

that does not occur in any other relations, is useless. We do not elaborate on fil-

tering here, see [33]. We do however, emphasize that (especially given the following

remarks on troublesome matrix sizes) good filtering strategies are becoming increas-

ingly important. For a description of the filtering strategy applied during the RSA-140

factorisation, see [16] and [15]. For earlier considerations similar to filtering (aimed at

reducing the number of relations per cycle amongst the large prime relations) see [26].

We now consider the matrix reduction itself. We are required to reduce a large

sparse matrix over Z2. Peter Montgomery’s implementation of the Blocked Lanczos

Algorithm over Z2 described in [33] and [52] addresses the problem. For earlier con-

siderations see [44]. We do not give details of these algorithms.

In practice however, the matrix reduction is becoming a bottleneck. In its present

form, the Lanczos implementation runs only on a single machine. The matrices re-

quiring reduction are very large. The problem is exacerbated using the number field

sieve, as opposed to MPQS, because the number field sieve requires a factor base for

each polynomial. In fact, the matrix reduction becomes a major practical issue for fur-

ther record factorisations. Our improvements to polynomial selection however, have

an impact on this problem, as do good filtering strategies.

In the next section we meet the following heuristic guide to the expected size of

the matrix for factoring some N2. If S(N2,N1) is the ratio of sieving effort required

to factorise N2 compared to that of N1, and M(N2,N1) is the similar ratio for the

relative matrix size, then

M(N2,N1) ≈
√

S(N2,N1). (2.8)

Extrapolation using the asymptotic run-time estimate LN [1/3, (64/9)1/3 ] for sieving

gives

S(RSA-140,RSA-130) ≈ 4,

so we expect

M(RSA-140,RSA-130) ≈ 2.
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The RSA-130 matrix had approximately 3.5 million rows and columns. A matrix of

the expected size 7 million would be troublesome. However, the RSA-140 matrix had

only 4.7 million rows and columns, and 4.7/3.5 ≈ 1.3.

How does this discrepancy between expected and actual size come about? Because

of our improvements to polynomial selection used for the RSA-140 factorisation, we

found that

S(RSA-140,RSA-130) ≈ 2.

From this, we expect

M(RSA-140,RSA-130) ≈
√

2,

which is close to the value obtained. So, better polynomial selection not only decreases

sieving time, but helps restrict the size of the matrix.

Note however, that it is only possible to exploit the improved yield to restrict the

matrix size if good filtering strategies are in place. For us this is certainly the case. In

fact, sieving now continues longer than is strictly necessary, so that there is a bigger

pool of relations. From this pool it is hoped that a combination of relations can be

chosen by filtering to lead to a smaller (or less dense) matrix.

Further extrapolation using the L-function gives

S(RSA-155,RSA-140) ≈ 7.0.

This gives

M(RSA-155,RSA-140) ≈ 2.6,

and a matrix for RSA-155 well in excess of 10 million rows and columns. This would

be problematic. However, according to the analysis in Chapter 6, we made better

use of our new polynomial selection methods for RSA-155 than for RSA-140, and so

obtained a better polynomial (relatively speaking) for RSA-155. We can expect this

to affect both the sieving effort and the size of the matrix favourably.

Further possibilities regarding the matrix step are discussed in Chapter 7.

2.1.5 The Square Root Algorithm

The square root stage of the number field sieve was initially expected to be a technical

difficulty for large N . However, thanks again to Peter Montgomery, the problem is

essentially solved.

An early method for extracting the relevant square root is outlined in [14]. The

method relies on Hensel lifting. However the integers involved in the last few liftings

are very large, so that even with fast multiplication techniques, the time taken to

multiply them is prohibitive.
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In [22] the author suggests a method based on the Chinese Remainder Theorem,

that avoids these large multiplications. However, that method requires d = degF to

be odd.

Montgomery’s method relies on ideal arithmetic (in fact on arithmetic of fractional

ideals). That is, it makes use of the fact that the ideal factorisation of each a− bα is

known, to reduce the problem to a manageable size. Details can be found in [51] and

[33], with some minor variations in [59].

2.2 Smooth Integers

We now focus on the study of smooth integers, particularly from an analytic perspec-

tive. Recall from Chapter 1 that we refer to an integer chosen uniformly at random

from those at most r as a random value ir. In Chapters 3–6 we make extensive use

and abuse of well-known results concerning the asymptotic probability that ir is r1/u-

smooth (for fixed u ≥ 1 as r → ∞). In Section 2.2.1 we survey the relevant results on

this probability.

We then consider in Section 2.2.2 smooth integers in the context of the number

field sieve. The focus is again on asymptotic considerations. We give an exposition of

the asymptotic complexity analysis of the number field sieve. The aim is to understand

the connection between the asymptotic run-time of the algorithm and the polynomial

values which are required to be smooth.

2.2.1 Smooth Integers Generally

Let Pj(n) denote the j-th largest factor of n. Also for x, y ∈ Z let

ψ(r,B) = |{n ∈ Z+ : n ≤ r and P1(n) ≤ B}|.

For u ∈ R with u ≥ 0 we define

ρ(u) = lim
r→∞

ψ(r, r1/u)

r
for u > 1 (2.9)

and ρ(u) = 1 otherwise. This is called the Dickman function, since Dickman studied

in [27] the limit in (2.9). Think of ρ(u) as the asymptotic probability that a random

value ir has its largest prime factor at most r1/u. That is, ρ(u) is the asymptotic

probability that the random value ir is B-smooth with u = (log r)/ logB.

The Dickman function is well studied, see [58] for a survey of the results. For our

purposes it suffices to note the following. It is well known that the Dickman function

satisfies

ψ(r, r1/u) = rρ(u) +
r(1 − γ)ρ(u− 1)

log r
+O

(

r

log2 r

)

, (2.10)
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where γ is Euler’s constant [40]. In our range of interest, the second term in (2.10)

contributes to the second significant figure of ρ(u).

We denote by P (r,B) the probability that a random value ir is B-smooth. Using

(2.10) we obtain

P (r,B) ≈ ρ(u) + (1 − γ)
ρ(u − 1)

log r
(2.11)

as an approximation to P (r,B) which is adequate for our purposes. We use this

approximation throughout Chapters 4–6.

Calculating ρ(u)

To do so, we need to be able to calculate ρ(u). The Dickman function satisfies the

differential-difference equation

uρ′(u) + ρ(u− 1) = 0 (2.12)

for u ≥ 1 [27]. It follows immediately that ρ(2) = 1 − log 2. It also follows that ρ(u)

can be computed by numerical integration from

ρ(u) =
1

u

∫ u

u−1
ρ(t)dt,

see [77]. This method is also used to compute ρ(u) in [39] and [40].

A more effective method is described in [3]. There it is noted that for integers

l ≥ 0 there exist analytic functions ρ(l)(u) that agree with ρ(u) on the interval [l−1, l].

Hence, we may obtain Taylor series expansions on those intervals. Moreover, given the

Taylor expansion for ρ(l)(u), the Taylor expansion for ρ(l+1)(u) can be obtained.

So, to calculate ρ(u) on [l − 1, l] we use

ρ(l)(l − ξ) =
∞
∑

i=0

c
(l)
i ξi.

For l = 2 we have c
(2)
0 = 1 − log 2 and c

(2)
i = 1/i2i for i ≥ 1 (see [3]). Otherwise

c
(l)
i =

i−1
∑

j=0

c
(l−1)
j

ili−j

for i > 0, and

c
(l)
0 =

1

l − 1

∞
∑

j=1

c
(l)
j

j + 1
.

In [3] it is noted that calculating coefficients c
(l)
j for j = 1, . . . 55 is sufficient to cal-

culate ρ(l)(u) to a relative error of about 10−17. Throughout this thesis, when ρ(u) is

computed we implicitly use the method of [3].
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Remark 2.2.1 New results of Bernstein suggest that computing tight upper and lower

bounds on ψ(r,B) may become a viable alternative to computing ρ(u) [4]. Since full

details are not yet available, we leave this as a subject of further study.

Generalisations of the Dickman Function

There are several generalisations of the Dickman function. Here we mention some that

are useful for analysing the appearance of large prime relations, particularly 1LP- and

2LP-relations. Since we do not make great use of these functions in what follows, we

mention them here only briefly.

A thorough analysis of the appearance of relations with up to h large primes requires

we know something about the joint distribution of the sizes of the h+1 largest factors

of random values. Let

ψ(r,B1, . . . , Bk) = ψk(r,B)

= |{n ∈ Z+ : n ≤ r and Pj(n) ≤ Bj for j = 1, . . . , k}|.

Also, let

ρ(u1, . . . , uk) = ρk(u) = lim
r→∞

ψk(r,B)

r
(2.13)

with uj = (log r)/ logBj . Vershik investigated in [78] the limit (2.13), and it receives

further attention in [10]. Think of ρk(u) as the asymptotic joint probability that a

random value ir has its j-th largest prime factor at most r1/uj for j = 1, . . . , k.

The functions ρ2(u) and ρ3(u) are particularly relevant to our 1LP- and 2LP-

smoothness considerations. The Taylor series method for computing ρ(u) is extended

in [3] to compute ρ2(u). A further extension is given in [45] to compute ρ3(u). The

details are best left to the references; we make use of these methods only very briefly

in Chapter 4.

For the most part, instead of calculating ρ2(u) and ρ3(u) we make use of a sim-

plifying assumption. We assume that the appearance of Pj(n) is independent of Pi(n)

for i = 1, . . . , j − 1. Clearly this is not true, but it does suffice for our purposes.

2.2.2 Smooth Integers and the Number Field Sieve

Recall from Chapter 1 that we define

Lx[v,w] = exp
[

(w + o(1))
(

log x)v(log log x)1−v
) ]

.

Asymptotically the number field sieve is exciting because it achieves v = 1/3 whereas

all previous algorithms achieve at best v = 1/2. As background to the polynomial

selection problem, we should understand how the number field sieve achieves v = 1/3

in its run-time estimate. We are concerned only with the time taken by the sieving

stage, since this is the rate determining step.
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The L-function arises in the analysis of general factorisation algorithms because it

is connected to the optimal choice of parameters controlling the appearance of smooth

integers. For a fixed smoothness bound, smaller integers are more likely to be smooth

than larger integers. Ignoring for the moment the question of how the smooth values

are collected, the better general factoring algorithms tend to be those which require

smaller integers to be smooth. The following theorem (from [14], see [48] for another

version) renders the L-function useful to our analysis by quantifying this relationship.

Theorem 2.2.2 Let g(B) be a function defined on B ≥ 2 for which g(B) ≥ 1 and

g(B) = B1+o(1) as B → ∞. Then as x→ ∞,

xg(B)

ψ(x,B)
≥ Lx[1/2,

√
2],

uniformly for B ≥ 2. Moreover,

xg(B)

ψ(x,B)
= Lx[1/2,

√
2] (2.14)

if and only if

B = Lx[1/2, 1/
√

2] (2.15)

as x→ ∞.

The expression

xg(B)

ψ(x,B)
(2.16)

measures the effort required to find at least B random values ix which are B-smooth

(g(B) is an upper bound on the effort required to test each number for B-smoothness).

Theorem 2.2.2 seeks the value of B that minimizes (2.16). The value (2.15) does so,

and the minimum value of the required effort is given by (2.14).

Thereom 2.2.2 is also the source of the heuristic guide to relative matrix size given

in (2.8). The matrix has approximately B rows and columns. Hence, we can ex-

pect a matrix of size approximately (2.15) rows and columns from a sieving effort of

approximately (2.14) operations. Observing that

Lx[1/2, 1/
√

2] =
(

Lx[1/2,
√

2]
)1/2

gives (2.8).

Loosely stated, Theorem 2.2.2 says the following. If x = x(N) is the bound on

integers which are required to be smooth by some algorithm A for factoring N , then

with an optimal choice of parameters the asymptotic run-time of A is

Lx[1/2,
√

2]. (2.17)
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The exercise now becomes estimating x as a function of N .

For example, MPQS has x = O(N1/2). Substituting this into (2.17) gives

Lx[1/2,
√

2] = exp
[(√

2 + o(1)
)

(logN
1

2 )
1

2 (log logN
1

2 )
1

2

]

= exp

[

(1 + o(1)) (logN)
1

2 (log(
logN

2
))

1

2 )

]

= exp
[

(1 + o(1)) (logN)
1

2 (log logN)
1

2

]

= LN [1/2, 1] ,

which is the heuristic asymptotic run-time of MPQS. The bound x = O(N1/2) is

exponential in logN . By repeating the argument above it is clear that for all such

exponential bounds x = O(N1/k) with k > 1, the run-time is LN [1/2,
√

2/k]. That is,

no exponential bound on x will defeat v = 1/2. To do so requires a bound on x which

is at worst sub-exponential.

In the number field sieve, a sub-exponential bound on x is achieved. The extent of

the sub-exponentiality we again measure using the L-function. The bound on x is

x = LN [2/3, (64/3)1/3 ] . (2.18)

It is a simple matter of substitution to check that (2.18) combined with (2.17) gives

the stated run-time for the number field sieve of LN [1/3, (64/9)1/3 ]. It is not such a

simple matter to derive (2.18). We outline this now.

Remark 2.2.3 We assume for consistency with [14] that f1 is chosen to be the monic

base-m representation of N . That gives ai and m both O(N1/d). In practice we use

non-monic f1 of course, but this does not affect the asymptotic analysis (d → d + 1

as d→ ∞). We drop the assumption when deducing practical guidelines for choosing

fixed d in Chapter 3.

We have variables N, d and B already defined, and we introduce U to be the

maximum value of |a| and b across the sieve region. The idea of the analysis is that

we first deduce (using Theorem 2.2.2), for fixed N and d, an asymptotic run-time for

optimal choices of U and B. Then we choose a degree which minimizes, as a function

of N as N → ∞, this run-time. The choices of U and d fix the size of the integers

inspected for smoothness.

In essence, the integers inspected for smoothness are forced to be sub-exponential

in logN by increasing d, very slowly, as a function of N . The compromise for d is

between a high rate of change of f at high d, and large coefficients at low d.

The main steps are as follows. The values required to be smooth are bounded by

x(N) = F1(a, b) · F2(a, b) ≤ (d+ 1)m2Ud+1 ≤ 2dm2Ud+1. (2.19)
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Given Remark 2.2.3, (2.19) gives

F1(a, b) · F2(a, b) ≤ 2dN2/dUd+1. (2.20)

Assume for the moment that values F1(a, b) · F2(a, b) are as likely to be smooth as

random integers of the same size. In practice we will rely on this not being true, but

the assumption suffices asymptotically. Using this assumption, Theorem 2.2.2, and

(2.20), it is shown in [14] that optimal choices of B and U ensure that the asymptotic

run-time is

exp

[

(1 + o(1))

(

d log d+
√

(d log d)2 + 4 log(N1/d) log log(N1/d)

)]

. (2.21)

Now we need to choose d to minimize (2.21). As is pointed out in [14], the minimum

value of (2.21) must occur when

(d log d)2 = O
(

log(N1/d) log log(N1/d)
)

. (2.22)

Intuitively, it is clear that d ought to have the form

O
(

(logN)j(log logN)k
)

(2.23)

since the appearance of d on the left hand side of (2.22) must match the form of the

right hand side. Assuming d is of that form and ignoring for the moment the implicit

constants, gives

(d log d)2 ≈ (logN)2j(log logN)2(k+1), and

log(N1/d) log log(N1/d) ≈ (logN)1−j(log logN)1−k,

from which we obtain j = 1/3 and k = −1/3. Substituting these values yields the

constant implicit in (2.23).

The result is that the optimal value of d as N → ∞ is

d =
(

31/3 + o(1)
)

(

logN

log logN

)1/3

. (2.24)

At fixed N in our range of interest, some information is lost in the approximations

and assumptions leading to (2.24). For the asymptotic result however, (2.24) is use-

ful; substituting the optimal value of d back into (2.21) gives the LN [1/3, (64/9)1/3 ]

estimate. Substituting the optimal values of U and B into (2.20) leads, after some

manipulation, to (2.18).

Hence, in essence, the number field sieve defeats other algorithms asymptotically

because the size of the values required to be smooth is sub-exponential in logN . This is

guaranteed asymptotically by controlling, through d, the size of the relevant polynomial

values, thereby encouraging the polynomials to produce more smooth values.
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Leveraging this advantage in practice requires using polynomials which do indeed

output many smooth values. Asymptotically the advantage comes from increasing d

as N → ∞. Differences in yield between polynomials of fixed degree do not affect the

asymptotics. Indeed, not even the difference between monic and non-monic F1 affects

the asymptotics. We should not ignore what is revealed in the asymptotics, neither

will we ignore what is hidden.

2.3 Polynomial Selection

From Sections 2.1 and 2.2 we understand that (and why) smooth polynomial values

are crucial to the performance, in practice and asymptotically, of the number field

sieve. So we arrive at the polynomial selection problem. That is, given N , how do we

find polynomial pairs for N which produce many smooth values ?

We distinguish two aspects of this problem; generating candidate pairs at all, and

generating good candidate pairs. We saw in Section 2.1 that to ensure the squares

obtained from smooth values of F1 and F2 are congruent mod N , f1 and f2 must have

a common root mod N . This requirement makes the first aspect, generating candidate

pairs at all, non-trivial. Our focus in this thesis is on the second aspect, generating

good candidate pairs. We will assume procedures for generating pairs satisfying the

relevant requirements. The main purpose of this section is to describe such procedures,

that is, procedures addressing the first aspect.

There is an obvious method for generating f1, f2 with a common root mod N . It

is called the base-m method, and was suggested for use in the number field sieve in

[14]. We saw this method briefly in Section 1.3.3. With d = degF1 fixed in advance

and m = O(N1/(d+1)), the coefficients of (non-monic) f1 are taken from the base-m

expansion of N and are therefore expected to satisfy ai = O(N1/(d+1)). Then f2 is the

linear polynomial x−m. The base-m method is restrictive, in that m must be small to

keep f2 and the coefficients of f1 small. In general, there may exist many more pairs

f1, f2 with an arbitrarily large common root m mod N . Since both such polynomials

are likely to be non-linear, we refer to methods giving these polynomials as non-linear

methods.

In Section 2.3.1 we describe what little known is about non-linear selection methods.

It transpires that the base-m method is still the best known method for large N . We

give more background on the base-m method in Section 2.3.2.

2.3.1 Non-linear Methods

The first step in non-linear selection methods is an algorithm due to Peter Montgomery,

reported in [33]. It finds pairs of quadratic polynomials with a common root m mod

N , each of whose coefficients are O(N1/4). Analysis of the algorithm reveals that this
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O(N1/4) is O(N1/2d) at d = 2. We call this method Montgomery’s Two Quadratics

method.

Let (d1, d2) = (deg f1,deg f2), and dT = d1 + d2. We refer to (d1, d2) as the degree

pair for f1, f2. Montgomery’s Two Quadratics method gives the degree pair (2, 2).

Since dT = 4, the comparable base-m pair is (3, 1). For the integers we consider in

Chapter 6, (5, 1) is the appropriate base-m degree pair. Whilst we might expect two

quadratic polynomials to be competitive with cubic base-m pairs, we cannot expect a

pair of quadratic polynomials to be competitive beyond, say, integers of length 110–120

digits.

There are however, prospects of extending Montgomery’s Two Quadratics method

to higher degrees. In particular, we seek two polynomials each of degree d and each

of whose coefficients are O(N1/2d). We are most interested in the degree pair (3, 3),

since this may be competitive with (5, 1) base-m polynomial pairs. Below we describe

Montgomery’s Two Quadratics method, and possibilities for extension.

Montgomery’s Two Quadratics Method

The description given here is essentially reproduced from [33] with some details omit-

ted. Suppose we have two quadratic polynomials f1(x) = a2x
2 + a1x + a0 and

f2(x) = b2x
2 + b1x+ b0 in Z[X]. Let

a =





a0

a1

a2



 and b =





b0
b1
b2



 .

The key observation is this: f1 and f2 have a common root m modulo N if and only

if a and b are orthogonal (over ZN with respect to the standard inner product) to the

vector

c =





1
m
m2



 .

The elements of c form a geometric progression over ZN with ratio m. The space

orthogonal to a and b has rank 1 (see [33]), therefore any c in that space whose

elements are in the same progression will suffice to generate the space.

So, Montgomery begins with such a vector c, and then constructs a basis for the

space orthogonal to c. Indeed, if p is a prime such that p <
√
N , the Legendre symbol

(N/p) = 1, and c1 a square root mod p of N with |c1 −N1/2| ≤ p/2, then

c =





c0
c1
c2



 =





p
c1

(c21 −N)/p





is a suitable c with ci = O(N1/2). The ratio of the elements of c over ZN is m =

c1p
−1 mod N . The multiplication by p−1 mod N is what causes m to take arbitrarily

large values modN .
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The following vectors a′ and b′ are both orthogonal over ZN to c, and in fact span

the sub-lattice of Z3 orthogonal to c. We have

a′ =





c1
−p
0



 and b′ =





(c1(c2s mod p) − c2)/p
−(c2s mod p)

1



 .

By reducing the basis {a′,b′} a basis {a,b} can be found for which

‖a‖ · ‖b‖ = O(‖c‖) = O(N1/2).

In practice both ‖a‖ and ‖b‖ are O(N1/4). Each p gives a distinct pair of polynomials,

so what remains is to search amongst many pairs of polynomials, for the best ones.

Remark 2.3.1 The number field sieve can be generalised to use k polynomials all

with a common root m mod N . An early but highly theoretical suggestion along

these lines is contained in [20]. A more practical version is suggested in [32]. Crucial

to the success of this suggestion is an adequate means of polynomial selection. The

implementation described in [32] uses Montgomery’s Two Quadratics method with

small coprime linear combinations of the polynomials found. We refer to this scheme

again briefly in Chapters 4 and 7.

Extensions to Higher Degree

The fact which endears quadratic polynomials to Montgomery’s construction is that

the space orthogonal to a and b has rank 1. In general, we desire two polynomials of

degree d with coefficient vectors a,b ∈ Zd+1. The space orthogonal to a and b has

rank d − 1. So now we need d − 1 polynomials whose coefficient vectors (of length

d+ 1) are mutually orthogonal to the same geometric progression mod N .

Montgomery suggests generating them in the following manner [53]. Suppose we

begin with a single vector c ∈ Z2d−1 whose coefficients are in geometric progression

modulo N . The d−1 coefficient vectors are now read off from c; they are precisely the

sequences of length d + 1 consisting of consecutive elements of c. We need to enforce

some restriction on ‖c‖, to control ‖a‖ · ‖b‖. We again assume that in practice ‖a‖ ≈
‖b‖. That being the case we need ci = O(N1−1/d) to ensure that ai ≈ bi = O(N1/2d)

if a and b are constructed in this way.

Hence, polynomials with (d, d) degree pairs would follow from the construction

of small geometric progressions c ∈ Z2d−1 mod N (where small means each ci =

O(N1−1/d)). At d = 3, we require geometric progression mod N of length 5 with each

ci = O(N2/3). Initial experiments and counting arguments suggested that for large

N , such progressions could be difficult to find. Hence we do not pursue this here (see

Chapter 7).
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Notice that the “small geometric progressions” construction gives deg f1 = deg f2.

Other combinations may be preferable, for example with dT = 6 the pair (4, 2) could

be useful. Methods to generate such polynomials are not known.

2.3.2 The Base-m Method

For large N therefore, the base-m method is still the method of choice. The base-

m method is very simple, here we describe it and some existential arguments in the

literature concerning approximately optimal choices of such polynomials.

Let the coefficients of the base-m representation of N be a
(m)
i . That is,

N =
d
∑

i=0

a
(m)
i mi.

with 0 ≤ a
(m)
i < m. More generally, the base-m representation of kN for some small

k ∈ Z can be taken. For ease of expositition we assume that just the representation of

N is taken.

It is not necessary that the polynomial F (x, 1) = f(x) be the true base-m expansion

of N , simply that

f(m) ≡ 0 mod N. (2.25)

Any alteration can be made to the coefficients of f provided the property (2.25) is pre-

served. An alteration which leaves f with smaller coefficients is, at least heuristically,

useful. In particular, if ai > ⌊m/2⌋ then making the replacements

ai 7→ ai −m and

ai+1 7→ ai+1 + 1 (2.26)

leaves the representation with smaller ai, whilst preserving (2.25). We assume below

that f has been reduced in this way, working from i = 0, . . . , d through the coeffi-

cients. Note that some authors perform a LLL reduction [46] on the lattice created

by transformations of this type in the hope of finding slightly smaller coefficients (see

[80] and [85]). We omit this computation and proceed simply with the adjustment at

(2.26). More details of our procedures emerge in Chapter 5.

A slight variation on the base-m method is suggested in [14]. The suggestion uses

the full “homogeneity” of F1 and F2. That is, instead of fixing m as a root mod

N of f1(x), fix (m1,m2) as a root mod N of F1(x, y). Then F2(x, y) is given by

F2(x, y) = m2x−m1y. The advantage in doing so is that some of the size borne by a

single value m can be shared across m1 and m2, and so across the coefficients of F2.

Essentially, this is the analogue for F2 of using non-monic F1.
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Remark 2.3.2 Unfortunately, choosing good base-m polynomials is already a difficult

problem, so choosing good base-(m1,m2) polynomials has received little attention in

the literature. It is noted in [5] however that this method could be re-considered should

improvements be made to the choice of base-m polynomials that make it worthwhile

(see Chapter 7).

For the moment then, we are stuck with (possibly modified) base-m polynomials.

How good can we expect these polynomials to be? There is some discussion on this

question in [14] and [5]. Next we summarise these discussions, with some adjustments.

Suppose max |ai| ≤ A andm ≤M . We have two requirements of F1 and F2; that F1

and F2 have a common root mod N and that this should hold for all integers 1, . . . ,N .

(The argument that follows can be adjusted for the case that the common root is

required only for some positive n ≤ N , and this corresponds to the special number

field sieve). The common root requirement means that, in particular, f1(m) ≥ N ,

which gives

O(AMd) ≥ N. (2.27)

The requirement that this hold for all integers 1, . . . ,N means that the number of

integers representable by the possible f2 at possible m must exceed N . That is,

O(Ad+1M) ≥ N. (2.28)

Let A = Nµ and M = Nν . In [14] and [5] the argument is that for fixed N and d,

some guidance can be obtained on optimal values for µ and ν by requiring (2.27) and

(2.28) to be equalities. Doing so, and solving for µ and ν, gives

µ =
d− 1

d2 + d− 1
and ν =

d

d2 + d− 1
.

Notice that these values differ from those in [14], because there the authors consider

the prospects for base-(m1,m2) polynomials, whereas we do not yet permit non-monic

f2.

For example, with N = RSA-140, we can hope to obtain at best A ≤ 1019.3 if

M ≤ 1024.1. That is, coefficients approximately five digits smaller than m. In effect,

our methods achieve this. As we see in Chapter 6, using root properties we can

effectively shave up to three digits from the coefficients of F1. Simultaneously, we save

approximately up to two digits by having regard to the size of the values taken by F1.

Now we investigate how this comes about.



Chapter 3

Properties which Influence Yield

In this chapter and the next we study polynomial yield. This chapter establishes a

framework by parameterising the effects of the relevant properties. The next chapter

uses this framework to investigate the influence of the properties more thoroughly.

As noted in Chapter 1, there are two factors which influence the yield of a given

number field sieve polynomial F1. We call the factors size and root properties. By size

we refer to the magnitude of the values taken by F1. By root properties we refer to

the distribution of the roots of F1 modulo small pk, for p prime and k ≥ 1. We are

interested in the effect of root properties on the likelihood of F1 values being smooth.

In short, if F1 has many roots modulo small pk, values taken by F1 “behave” as if they

are smaller than they actually are. That is, on average, the likelihood of F1 values

being smooth is increased.

It has always been well understood that size affects the yield of F1. The influence of

root properties however, has not previously been either well understood or adequately

exploited. Hence in this chapter we focus more on root properties than size.

In Section 3.1 however we do consider briefly an issue regarding size that is peculiar

to the number field sieve. In particular, we discuss the choice of polynomial degree d

for given N .

In Section 3.2 we lay the foundations for quantifying the effect of root properties.

Recall from Section 1.4.1 that we use the term random value ir to refer to an integer

chosen uniformly at random from {i ∈ Z : 1 ≤ i ≤ r}. Here, the effect of root properties

is quantified by comparing polynomial values v to random values ir with r = v. We give

a heuristic estimate of the expected contribution of each prime p to each value. That

is, we estimate the average exponent of p appearing in a sample of factorisations. The

expected contributions of each p are different for F -values compared to random values.

This gives a means of assessing the “behaviour” of the typical F -value compared to a

random value of the same size. From this, we quantify the effect of root properties.

This is an adaptation of an approach used in the analysis of the continued fraction

method and of MPQS, which we discuss briefly in Section 3.2. We then calculate

contributions of p in some relevant cases, check empirically the validity of the estima-

41
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tions, and so deduce our parameter α(F ) which is used to quantify the effect of root

properties. Finally, we consider root properties with respect to the degree of F . In the

quadratic case, we demonstrate the significance of attention to root properties. We

also examine the average root structure for polynomials of higher degrees.

Section 3.3 contains a summary of this chapter.

3.1 Size

The manner in which size influences yield is clear. We saw in Section 2.2.1 that the

smoothness probability of random values ir, as a function of r, is well understood.

Hence, given N and d, the exercise in choosing (F1, F2) with good size is clear: the

size of the values over which sieving is to occur should be kept small.

However, d of course is not fixed initially. We saw in Section 2.2.1 that the key to the

asymptotic performance of the number field sieve is that the degree of F1 is optimised

to minimize the run-time of sieving. These however, are asymptotic considerations.

Here we consider in more detail, what is the best choice of d for N in the current range

of interest and for the polynomials we currently use.

First we recall some details from Section 2.2.2. Assume that we are working with

base-m polynomials. So F1(x, y) is the non-linear polynomial and F2(x, y) the linear

polynomial. If U is an upper bound for the values |a| and b defining the sieve region,

then

F1(a, b) · F2(a, b) ≤ 2dm2Ud+1 (3.1)

is an upper bound on the values inspected for smoothness during sieving. Assuming

that F1 is monic, and therefore that m ≈ N1/d, this gives

F1(a, b) · F2(a, b) ≤ 2dN2/dUd+1. (3.2)

Using (3.2), it is shown in [14] that optimal choices of U and B ensure the run-time

of the number field sieve, with d and N fixed does not exceed

exp

(

(1 + o(1))

(

d log d+
√

(d log d)2 + 4 log(N1/d) log log(N1/d)

))

. (3.3)

Choosing d to minimize (3.3) gives the optimal choice of d asymptotically as

d =
(

31/3 + o(1)
)

(

logN

log logN

) 1

3

. (3.4)

As d→ ∞, which it does very slowly, (3.4) is a useful indication of the appropriate

value of d. But at small d, some of the approximations leading from (3.3) to (3.4) may

be misleading. Moreover, (3.3) carries the assumption from (3.2) that F1 is monic.

Whilst this makes no difference asymptotically, it may affect the ranges of appropriate
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d when d is small. Hence, below we re-write (3.3) for the non-monic case and consider

the new expression for small d and for N in in the range of interest.

Using non-monic F1, the upper bound deduced from (3.1) becomes

F1(a, b) · F2(a, b) ≤ 2dN2/(d+1)Ud+1. (3.5)

Using (3.5) in place of (3.2) and repeating the argument from [14] which leads to (3.3)

gives that the time taken for the number field sieve to factorise N is at worst given by

exp

(

(1 + o(1))

(

d log d+
√

(d log d)2 + 4 log(N1/(d+1)) log log(N1/(d+1))

))

, (3.6)

using a value for d which minimizes the expression.

That is, to factorise N we should use d which minimizes

E(d,N) = d log d+
√

(d log d)2 + 4 log(N1/(d+1)) log log(N1/(d+1)) .

Table 3.1 gives values of E(d,N) for d and N in the range of interest. The values Ni in

the table are the integers 10i−1, that is, integers with i digits. For each Ni the optimal

value of d is bolded. For the purposes of illustration, the table begins with integers of

length 80 digits. Beware that for integers up to, say, 110 digits long, Montgomery’s

Two-Quadratics method may be preferable to the base-m method.

Table 3.1 shows that the relevant degrees are d = 4, 5, 6. The cut-off between d = 4

and d = 5 is at approximately 120 digits. The cut-off between d = 5 and d = 6 is

at approximately 220 digits (these figures of course should be used only as a rough

guide).

Remark 3.1.1 We have considered only base-m polynomials in this section. That is,

we have pairs of polynomials (F1, F2) with degree pair (d, 1). It is entirely possible, in

fact probably true, that other combinations of degree are preferable. For example, the

degree combination (2, 4) is likely to be preferable to (5, 1). As noted in Section 2.3.1,

since we do not presently know how to generate such polynomial pairs with a common

root mod N , we do not consider such possibilities here.

3.2 Root Properties

We turn now to the main concern of this chapter, root properties. In Section 3.2.1

we explain the model we use to quantify root properties, the so-called typical F -value

model. In Section 3.2.2 we estimate in general the key quantity in this model. In

Section 3.2.3 we use this estimate to construct the parameter α(F ) which quantifies

the average effect of root properties in F -values. That completes the parameterisation

of root properties. In Section 3.2.4 we go on to consider the effect on root properties

of varying d, for the relevant cases d = 4, 5, 6.
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i E(3,Ni) E(4,Ni) E(5,Ni) E(6,Ni) E(7,Ni)

80 29.85 29.08 29.92 32.06 35.29
90 31.89 30.83 31.44 33.36 36.38
100 33.83 32.51 32.90 34.61 37.44
110 35.69 34.13 34.30 35.83 38.48
120 37.49 35.68 35.67 37.01 39.50
130 39.21 37.19 36.99 38.17 40.50
140 40.89 38.65 38.27 39.29 41.48
150 42.52 40.06 39.51 40.39 42.44
160 44.09 41.44 40.73 41.47 43.38
170 45.63 42.78 41.92 42.52 44.30
180 47.13 44.09 43.08 43.54 45.21
190 48.59 45.37 44.21 44.55 46.10
200 50.02 46.62 45.32 45.54 46.98
210 51.42 47.84 46.41 46.51 47.85
220 52.79 49.04 47.47 47.47 48.70
230 54.14 50.22 48.52 48.40 49.53
240 55.46 51.38 49.55 49.33 50.36
260 58.03 53.63 51.56 51.13 51.98
280 60.51 55.81 53.50 52.88 53.55
300 62.92 57.92 55.39 54.58 55.08

Table 3.1: E(d,N) at relevant d and N

3.2.1 The Typical F -value

Ideas similar to the “typical F -value” analysis presented here for the number field

sieve, have previously been introduced for analysis of MPQS [6] and the continued

fractions method [39]. The Knuth-Schroeppel analysis of [39] examines the use of small

multipliers k in the continued fractions method, Boender’s analysis in [6] extends this

in the context of small multipliers for MPQS.

The situation regarding small multipliers is similar for the continued fractions

method to that for MPQS, so we elaborate only on MPQS. In MPQS, kN for some

small k may be a quadratic residue for more small p than N is. The benefit is an

increased likelihood that values of the relevant quadratic polynomial will be smooth,

the cost is that now the integer to be factorised is larger. Hence, analysis is required

to choose k so that the benefit exceeds the cost, hopefully optimally.

The idea which we distil from [39] and [6] is that it is useful to examine the quantity

which we refer to as contp(v).

Definition 3.2.1 Denote by ordpv the exponent of the largest power of p dividing v.
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Then contp(v) is the expected value of ordpv as v ranges across some sample S.

So, on average, v ∈ S looks (across the primes at most B) like

log v =
∑

p≤B

contp(v) · log p . (3.7)

In the special case where S is a set of F -values v, we denote contp(v) by contp(F ) and

refer to the exponential of the value in (3.7) as the typical F -value.

In [39] contp(kN) is called f(p, kN). In [6] a comparison is made between contp(v)

for values v of quadratic MPQS polynomials and for random values v = ir (although

in [6] the terminology is different). Here we make a similar comparison; we compare

the typical F -value, for number field sieve polynomials, to the typical random value.

Notice that contp(v) for v ∈ S is easy to check empirically. For sufficiently large S

we expect

contp(v) ≈
∑

v∈S ordpv

|S| . (3.8)

In particular, for F -values, contp(F ) can be determined by factorising a small, but not

too small, set of F -values in the appropriate range. For most p however, we can do

better by giving a heuristic explicit form for contp(F ). The primes p for which we can

do this are precisely those for which we can assume that the full contribution of p in

a given F -value is associated with a single contribution from a single root mod p of

F . That is, the primes p which are unramified. Ramified primes must divide ∆, the

discriminant of f (see for example [18]). As a coarse filter on ramified primes, we refer

to p for which p|∆ as poorly-behaved primes, otherwise p is well-behaved.

In the following subsection we give heuristic estimates of contp in the relevant

cases, for well-behaved primes. Contributions of poorly-behaved primes p could be

obtained by computing the ideal decomposition of 〈p〉([18] Section 6.2). However, we

find in practice it is simpler to compute these contributions directly from a sample of

factorisations, as in (3.8).

3.2.2 Estimating contp(v)

It is useful to distinguish three cases; the random value ir, polynomial values of the

form F (x, 1) = f(x) = v and polynomial values of the more general form F (x, y) = v.

We develop estimates of contp(v) in these cases from ideas due to Peter Montgomery.

Consider a random value ir. It is possible that powers pk for integer k > 1 also

divide ir, so we expect p to appear as

p

�
1

p
+ 1

p2
+...

�
= p

1

p−1

in ir. Hence, we take the average contribution of p to ir to be

contp(ir) =
1

p− 1
. (3.9)
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Even though (3.9) is merely a heuristic estimate it works well in practice. Table 3.2

shows estimated and actual contributions of p < 50 in a total of 105 integers chosen

uniformly at random in the interval [1020, 1021].

p Actual Estimate

2 100213 100000
3 50280 50000
5 25062 25000
7 16808 16667
11 10118 10000
13 8196 8333
17 6202 6250
19 5529 5556
23 4590 4545
29 3629 3571
31 3333 3333
37 2786 2778
41 2446 2500
43 2401 2381
47 2263 2174

Table 3.2: Actual and expected contributions of p in ir for p < 50

Consider polynomial values of the form f(x) = F (x, 1) = v. These values are of

use both as an easier version of the more general case, and are of interest in their

own right when examining line sieving. Now, since each root mod p corresponds to a

unique root mod higher powers of p by Hensel lifting, the full contribution from each

root is 1/(p − 1). Think of each root mod p as a distinct opportunity for an f -value

to be divisible by p. If there are qp distinct roots of f mod p then we take the full

contribution of p to the typical f -value to be

contp(f) =
qp

p− 1
. (3.10)

Computational evidence for (3.10) being a good estimate appears after we discuss the

next case.

Consider now polynomial values of the form F (x, y) for coprime x and y. We no

longer have a unique correspondence between roots of F (x, 1) mod p and roots mod

pk for k > 1. Moreover, an extra class of roots emerges from the possibility that

p|y. Indeed, if also p|ad then p|F (x, y) since F is homogeneous. We call these roots

projective roots.

Let qp now be the number of roots mod p of F (x, y). That is, qp includes the roots

x/y of F (x, 1) mod p and projective roots. The full contribution of p to the typical
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value F (x, y) = v with x and y coprime is given by

contp(F ) = qp
p

p2 − 1
. (3.11)

To see this, we will count the contribution of pk for some fixed k ∈ Z+, then sum

these contributions over k.

Since F is homogeneous, think of the coprime pairs (x, y) as points on the projective

line. For the purposes of counting the different combinations of x and y it is useful to

consider classes of points as follows.

There are three cases, labelled “s”, “0”, “∞”:

1. Case 1: x/y = “s” for some s ∈ Zpk with s 6≡ 0 mod p (that is, neither x nor y

are divisible by p).

2. Case 2: x/y = “0”, that is, x ≡ 0 mod p.

3. Case 3: x/y = “∞”, that is, y ≡ 0 mod p.

Now count the number of classes “ ” which fall into each case.

1. Case 1: There is one class in Case 1 for each s ∈ Zpk not divisible by p, so there

are ϕ(pk) = pk−1(p− 1) classes in Case 1.

2. Case 2: There is one class in Case 2 for each value x ∈ Zpk divisible by p, so

there are pk−1 classes in Case 2.

3. Case 3: Similarly to 2, there are pk−1 classes in Case 3.

So there are a total of pk−1(p+ 1) classes from Cases 1–3.

Each class has the same number of points (x, y) contributing to it:

1. Case 1: For fixed s and given some x ∈ Zpk not divisible by p, y is uniquely

determined. So there are ϕ(pk) pairs contributing to each class (the class is

determined by s) in Case 1.

2. Case 2: For a fixed value of x ≡ 0 mod p, y may take any invertible value in

Zpk , so there are ϕ(pk) pairs contributing to each class (the class is determined

by x) in Case 2.

3. Case 3: Similarly to 2, there are ϕ(pk) pairs contributing to each class in Case

3.

Hence, a coprime pair (x, y) ∈ Zpk ×Zpk selected uniformly at random will fall into

a particular class with probability

1

pk−1(p+ 1)
.



48 Chapter 3: Properties which Influence Yield

Precisely qp of these classes correspond to roots mod p of F (x, y) so the probability

that such a pair actually contributes pk is

qp
pk−1(p+ 1)

.

Of course, one p-th of these contributions will be counted again when we count the

contribution from pk+1, so the contribution only from pk is

qp
pk−1(p+ 1)

(

1 − 1

p

)

.

Logarithmically, pk contributes k appearances of p, so we take the full contribution of

p to be given by

contp(F ) =
∞
∑

k=1

kqp
pk−1(p+ 1)

(

1 − 1

p

)

=
qp

(p+ 1)

(

1 − 1

p

) ∞
∑

k=1

k

pk−1

=

(

1 − 1

p

)(

1 − 1

p

)−2 qp
p+ 1

= qp
p

p2 − 1
.

Computational evidence for the estimates (3.10) and (3.11) is given in Table 3.3.

This table contains estimated and actual contributions of p < 100 for well-behaved

primes of a particular polynomial P11. Primes p at which F has no roots are omitted.

Polynomial P11 is a polynomial considered for the factorisation of RSA-130 (see Section

6.1.1 and Appendix B). We considered 104 values of P11. Only p = 2 is not well-behaved

for P11. We have repeated these counts on many polynomials and these results are

typical.

We conclude that estimates (3.9), (3.10) and (3.11) are good estimates of contp for

well-behaved primes in each case.

3.2.3 Quantifying Root Properties

It is now possible to make a comparison between F -values v and random values ir with

v = ir.

During sieving, notionally the full contribution of each prime p ≤ B is removed

from each value being sieved. In fact we start with the log of the value and subtract

the log of each contribution. So after sieving a random value ir would appear as

log ir −
∑

p≤B

log p

p− 1
. (3.12)



3.2 Root Properties 49

p qp 104· 104 · pqp/ 104· 104 · qp/
contp(F ) (p2 − 1) contp(f) (p− 1)

3 1 3882 3750 5002 5000
13 2 1549 1548 1667 1667
19 1 530 528 556 556
23 1 435 436 455 455
29 2 687 690 715 714
37 1 259 270 277 278
47 1 215 213 218 217
53 3 568 566 576 577
61 2 328 328 334 333
73 5 687 685 695 694
79 1 126 127 129 128
89 1 115 112 115 114
97 2 206 206 208 208

Table 3.3: Actual and expected contributions of p < 100 for P11

Each polynomial value F (x, y) = v or f(x) = v after sieving appears as

log v −
∑

p≤B

contp(v) · log p . (3.13)

In each case we call the difference between (3.12) and (3.13) the paramater α, so we

have

α =
∑

p≤B

[

1

p− 1
− contp(v)

]

log p .

Over the well-behaved primes, (3.10) and (3.11) give

α(f) =
∑

p≤B

(1 − qp)
log p

p− 1
, and

α(F ) =
∑

p≤B

(

1 − qp
p

p+ 1

)

log p

p− 1
.

Hence, for example in the latter case we have

logF (x, y) = log ir + α(F )

whereby we consider F -values to behave like random integers whose logarithm has

been adjusted by α. That is, the value F (x, y) behaves like a random integer of size

F (x, y) · eα(F ). So if α(F ) < 0 we consider F -values to be more likely to be smooth

than random integers of the same size.
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By inspection it is clear that α(F ) receives its most negative contributions when

qp is large for very small p. That is, α(F ) is more negative when F has many roots

modulo small p.

3.2.4 Root Properties and d

It emerges from Sections 2.2.2 and 3.1 that asymptotically and in practice, the choice

of d = degF is crucial to controlling the size of the values inspected for smoothness

during sieving. Now, root properties are determined by the distribution of the roots of

F in Zp for small p (that is, by the polynomial factorisation of F over Zp). Therefore,

the choice of d will influence root properties as well. Quintic polynomials for example,

can have more roots in Zp for p ≥ 3 than quadratic polynomials, but (on average) do

they?

A thorough examination of this topic is not within the scope of this thesis, and in

any event becomes less relevant in light of the procedures outlined in Chapter 5. In

this subsection we intend only touching on some relevant and accessible considerations.

Eventually in this subsection we consider polynomials with d = 4, 5 and 6, as

in Section 3.1. We use a simple model to estimate the average distribution of non-

projective qp for base-m polynomials of these degrees.

First though, we focus on d = 2 (that is, the polynomials produced by Mont-

gomery’s Two-Quadratics method, Section 2.3.1). The polynomials F (x, y) are now

binary quadratic forms. The rich theory of binary quadratic forms provides results

from which we prove that, on average, the odds are stacked against F having good

root properties. This highlights the importance of having regard to root properties in

polynomial selection.

Quadratic Polynomials

A binary form is said to represent some r ∈ Z if there exist x, y ∈ Z for which

F (x, y) = r. We are interested in the case gcd(x, y) = 1.

Definition 3.2.2 A binary form F primitively represents some r ∈ Z if there exist

coprime integers x and y for which F (x, y) = r.

The following theorem is a standard result from the theory of quadratic forms

(see for example [13]). It gives necessary conditions on the primitive representation of

integers by binary quadratic forms over Z.

Theorem 3.2.3 Let F (x, y) = a2x
2 + a1xy + a0y

2 be a quadratic form over Z and ∆

its discriminant. Then F primitively represents r ∈ Z only if there exists some s ∈ Z

for which

s2 ≡ ∆ mod 4r. (3.14)
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As an immediate consequence of Theorem 3.2.3 we have

Corollary 3.2.4 Let F be a binary quadratic form over Z with discriminant ∆, and

let p be an odd prime not dividing ∆. If F primitively represents some r ∈ Z and p|r
then

(

∆

p

)

= 1.

In general the converse of Theorem 3.2.3 is not quite true, but there is a slightly

more general statement that holds. If a solution to (3.14) exists then some class of

forms of discriminant ∆ primitively represents r (again, see [13]).

Using Corollary 3.2.4 we give a result leading to an estimate of the chance that

(∆/p) = 1 for a random assignment p of the coefficients (a2, a1, a0) of F .

Lemma 3.2.5 For each odd prime p coprime to ∆, the number of non-trivial 3-tuples

(a2, a1, a0) mod p for which (∆/p) = 1 is

p

2
(p2 − 1).

Proof: Fix a1 6≡ 0 mod p. For ∆ = a2
1 − 4a2a0 and (∆/p) = 1 we have

a2a0 ≡ (−4)−1(χp − a2
1) mod p, (3.15)

where χp is any of the (p − 1)/2 quadratic residues mod p. Hence the product a2a0

may take any of (p− 1)/2 values mod p, exactly one of which will force the right hand

side of (3.15) to be zero because exactly one χp = a2
1.

For each of the (p − 3)/2 non-zero values of the right hand side of (3.15), there

are p− 1 ordered pairs (a2, a0) whose product gives the right hand side, since for each

non-zero a2, a0 is uniquely determined by a0 = a−1
2 (−4)−1(χp − a2

1) mod p.

For each single zero value of the right hand side of (3.15), there are 2p− 1 ordered

pairs (a2, a0) for which at least one of a2 ≡ 0 mod p or a0 ≡ 0 mod p holds.

Hence, for non-zero a1, there are

p− 3

2
(p− 1) + 2p− 1

ordered pairs (a2, a0) giving (∆/p) = 1. There are p − 1 non-zero residue classes for

a1, so non-zero a1 account for

(p− 1)

[

p− 3

2
(p− 1) + 2p− 1

]

= (p− 1)

[

p2

2
+

1

2

]

tuples (a2, a1, a0) mod p.

Now, if a1 ≡ 0 mod p, we require

a2a0 ≡ (−4)−1χp mod p (3.16)
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where again χp is any of the (p− 1)/2 quadratic residues mod p. Since the right hand

side of (3.16) is always non-zero, there are p − 1 pairs (a2, a0) for each χq, giving a

total of

p− 1

2
(p− 1)

tuples (a2, a1, a0) mod p for a1 ≡ 0 mod p.

So, the total number of tuples is

(p− 1)

[

p2

2
+

1

2

]

+
p− 1

2
(p− 1) =

p

2

[

p2 − 1
]

.

Thus, for odd p, the probability that a uniformly random non-trivial selection

(a2, a1, a0) mod p satisfies (∆/p) = 1 is given by

Prob [(∆/p) = 1] =
p
2(p2 − 1)

p3 − 1

=
1

2

(

1 − p

p3 − 1

)

<
1

2

(

1 − 1

p2

)

.

For odd p not dividing ∆, it is therefore more likely than not that (∆/p) = −1, and the

probability that (∆/p) = 1 is smallest for smaller p. This highlights the significance

of selecting polynomials which do have roots modulo small p.

Higher Degree Polynomials

We turn now to polynomials of higher degree. Recall from Section 3.1 that base-m

polynomials of degree 4, 5 and 6 are the most relevant for integers in the current range

of interest. Unfortunately, when passing from d = 2 to higher degree, we lose the rigour

of available results on quadratic forms. Instead, we now obtain information about the

factorisation of the single variable polynomial f(x) mod p as a function of d (assuming

p > d), from a result concerning the Galois group of a random polynomial f ∈ Z[x].

Informally, the result is that most monic polynomials f ∈ Z[x] of degree d have

Galois group isomorphic to the symmetric group on d elements, Sd. That being the

case, the typical factorisation of f can be deduced by examining the space of possible

cycle decompositions in Sd.

Formally, the result is as follows. Let f(x) ∈ Z[x] of degree d be monic. The Galois

group of f , G(f), may be considered as a subgroup of Sd. The question is this: how

many f have G(f) < Sd ?
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Theorem 3.2.6 Let Ed(A) be the number of monic polynomials f(x) ∈ Z[x] with

max(|a0|, . . . , |ad|) ≤ A for which G(f) < Sd. Then

Ed(A) ≪ Ad−1/2 log1−ǫA

where ǫ = ǫ(d) > 0.

For a proof see [34]. For more discussion on this and related results also see [19]

and [24]. We typically have d = 5 and A = 1024 with, notionally, 0 ≤ ai < A. The

total number of possible monic polynomials is A5. Theorem 3.2.6 gives

Ed(A)

A5
≪ 5.53 · 10−11.

Hence, we may safely assume that most monic polynomials we encounter have

G(f) ∼= Sd.

However, we search only amongst non-monic polynomials. The roots mod p of F

that arise from ad > 1 are precisely the projective roots. As we see in Chapters 5

and 6, projective roots are exploited to equip each F with better than average root

properties. The parameter α(F ) incorporates this effect. For now, we use Theorem

3.2.6 as a guide only to the underlying non-projective root structure for each F .

We now examine this structure, on the assumption that G(f) ∼= Sd. A permutation

σ ∈ Sd which is a product of k cycles of length l1, . . . , lk (of course
∑k

i=1 li = d)

corresponds to a factorisation of f into k irreducible factors of respective degrees li for

i = 1, . . . , k. This assumes that each cycle is represented to its maximal length - that

is, we do not for example break a 3-cycle into two transpositions. We refer to each

possible set of li with
∑k

i=1 li = d as a distinct cycle structure in Sd. The exercise now

is to count the occurrences of each cycle structure for d = 4, 5, 6.

Table 3.4 shows the number of ways each possible cycle structure appears in S4,

S5 and S6.

Each appearance of a cycle of length one (li = 1) in a given cycle structure corre-

sponds to a distinct root mod p of f . Hence, Table 3.5 collects for each d, the structures

that give 0, . . . , d roots of f . The frequency column records the frequency with which

structures giving qp roots mod p occur as a fraction of the d ! possibilities.

Notice that qp > 1 on average 29% of the time when d = 4, 26% of the time when

d = 5 and 27% of the time when d = 6. This indicates that the average set of non-

projective root properties is best for d = 4 and worst for d = 5, although the difference

between them is not great.

In any event, the procedure we present in Chapter 5 isolates polynomials with ex-

ceptionally good root properties, not polynomials with average root properties. Whilst

experimenting with different degrees, we observed that the best values of α(F ) we found

do not vary much across d = 4, 5, 6. Hence we conclude that in practice, the choice of

degree should be determined mainly by size considerations, not by root properties.
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3.3 Summary

In this chapter we have identified and described the properties which influence yield.

The influence of size on yield is, for the most part, well known. However, the

problem of choosing the degrees of (F1, F2) is unique to the number field sieve. Here we

have verified that d = 4, 5, 6 are the relevant degrees for non-monic base-m polynomials

and N in the range of interest. For most of this range, d = 5 is the best degree for F1.

To assess the influence of root properties on yield it is necessary to derive a param-

eter which quantifies their effect. We use a “typical F -value” model, the crux of which

is to estimate accurately the quantity contp(v) for certain values v. After estimating

contp(v) we have constructed a parameter α(F ) which measures root properties in the

following sense: due to root properties, F -values F (x, y) behave as if they are random

values of size F (x, y) · eα(F ). The idea now is to seek polynomials with α(F ) ≪ 0.

We have also considered the choice of d as an influence on root properties. We find

that, on average and over the non-projective roots, d = 4 is better than d = 6 and

d = 5, in that order. However, the difference is not so great that these considerations

should enter into the choice of d.

It is instructive at this point to hint at the benefit obtained from understanding

root properties. Using the procedures of Chapter 5, it is not uncommon to find non-

monic quintic F1 (with common root, say, m1) for N with α(F1) ≈ −7. Indeed, that

is the case with the polynomial used for the RSA-140 factorisation. How much benefit

does this return?

Since e7 ≈ 1000, values of such F1 behave as if they are 1/1000 their actual value.

Suppose we attempted to reap the same reward, naively, by shaving a factor of 1000

from each coefficient of F1. Then we would have a polynomial whose coefficients are

of the size expected for a random choice of polynomial with m2 ≈ m1/1000. Since

m ≈ N1/(d+1) the new polynomial has coefficients of the size expected from a random

choice for

N2 ≈ md+1
2 =

N1

1000d+1
.

That is, N2 ≈ 10−18N1. The benefit from root properties alone, once quantified, is

that the polynomials we find have yields expected from a random choice of polynomial

for an integer 19 digits smaller than the integer we are trying to factorise.

This is the influence of root properties alone. How does size interact with root

properties? Once we have a means of quantifying root properties, we are drawn to

questions of their interaction with size, and the influence of both properties on yield.

These are typical of the questions we consider in the next chapter.
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Sd {li} Occurences

1,1,1,1 1
1,1,2 6

S4 1,3 8
2,2 3
4 6

24

1,1,1,1,1 1
1,1,1,2 10
1,1,3 20

S5 1,4 15
2,2,1 30
2,3 20
5 24

120

1,1,1,1,1,1 1
1,1,1,1,2 15
1,1,1,3 40
1,1,4 90

1,1,2,2 45
S6 1,5 144

1,2,3 120
2,2,2 15
2,4 90
3,3 40
6 120

720

Table 3.4: Cycle structure counts in S4, S5 and S6
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d = 4 d = 5 d = 6

qp Freq. qp Freq. qp Freq.

0 0.38 0 0.37 0 0.37
1 0.33 1 0.38 1 0.37
2 0.25 2 0.17 2 0.19
3 0.00 3 0.08 3 0.06
4 0.04 4 0.00 4 0.02

5 0.01 5 0.00
6 0.00

Table 3.5: Relative frequencies of qp as a function of d.



Chapter 4

Modelling Yield

This chapter is a computational study on polynomial yield. The aims are to ensure

that our understanding of the properties which influence yield is correct, to extract

some information on the benefit obtained from manipulating these properties, and to

present a simple method for estimating yield.

For the most part we study only simple cases in this chapter. In particular, we

consider polynomials selected by Montgomery’s Two Quadratics method (see Section

2.3.1), which have been adjusted for line sieving across F (x, 1) = f(x). Line sieving

over quadratic polynomials is certainly of interest in its own right (see [33] and [32]),

and has the added advantages of being easier to visualise and tidier to analyse. Hence,

unless stated otherwise, we assume in this chapter that F (x, y) is of degree two and

has been chosen for sieving across f(x).

Recall from the previous chapter that the parameter α(f) is constructed to quantify

the effect on the typical f -value of root properties. Indeed, we take the value f(x) to

behave like a random integer of size f(x) · eα(f). In Section 4.1 we ask “how much

benefit can be obtained from exploiting root properties?”. That is, we examine yield

as a function of α, with α in an achievable range.

At this stage we use an established method of calculating yield. We adapt the

method used by Boender in [6] to calculate yield of MPQS polynomials. Boender

confirms in [6] that his method gives a reasonable approximation to the yield of such

polynomials. We also adapt Boender’s method to consider 1LP- and 2LP- yields as a

function of α. Finally, we conduct sieving experiments to confirm the predictions of

this section.

In Section 4.2 we use the fact that α correctly quantifies the effect of root properties

to suggest a simple method of approximating yield. We test the estimate on several

polynomials from [33]. We compute peak yields of these polynomials, and yield across

the sieve region, then compare predicted yields with actual yields found by sieving.

We then use our simpler model to examine yield due to root properties under condi-

tions that we encounter whilst considering larger N and higher degree polynomials in

subsequent chapters.

57
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Section 4.3 contains a summary of this chapter.

4.1 Yield as a Function of Root Properties

We turn now to the influence of root properties on yield. Below we adapt Boender’s

method of calculating yield to our polynomials, and then compute variations in full,

1LP- and 2LP- yields as a function of α. That is, we ask “all other things being equal,

what is the influence of root properties on yield?”.

4.1.1 In Theory: Boender’s Yield Estimation

Boender’s approach is to use analytic estimates of the number of smooth integers in

short intervals. Taking f to be a continuous curve on R, these estimates are computed

on intervals in R sufficiently small to approximate the likelihood of a given point in

that interval being an integer point on f . Estimates are then summed over many

intervals.

Smooth Integers in an Interval

We require an estimate of the number smooth integers in an interval of a given size.

For an integer n recall that P1(n) denotes the largest prime factor of n and that

ψ(x, y) =
∣

∣

{

n ∈ Z+ : n ≤ x and P1(n) ≤ y
}∣

∣ .

Then asymptotically

ψ(x, y) ≈ x

(

ρ(u) + (1 − γ)
ρ(u− 1)

log x

)

(4.1)

where u = (log x)/ log y, γ is Euler’s constant and ρ(u) is the Dickman function (see

Section 2.2.1).

Now, for fixed ǫ ∈ (0, 1), the number of y-smooth integers in the interval [x, x+x/z]

is given by

ψ
(

x+
x

z
, y
)

− ψ(x, y) =

log(1 + y/ log x)

z log y
ψ(x, y)

[

1 +Oǫ

(

1

z
+

log log(1 + y)

log y

)]

(4.2)

for x, y, z in the range x ≥ 2 and

(log log x)2/3+ǫ < log y ≤ (log x)2/5, 1 ≤ z ≤ R(x, y),

where R(x, y) is an expression depending on x, y and some fixed constants (see [6]).

Combining (4.1) and (4.2) and approximating some of the logarithms gives

z

x

{

ψ
(

x+
x

z
, y
)

− ψ(x, y)
}

≈
(

1 − log log x

log y

)

σ(x, y)

(

1 + c1(ǫ)
1

z
+ c2(ǫ)

log log y

log y

)

, (4.3)
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where σ(x, y) is given by

σ(x, y) = ρ(u) + (1 − γ)
ρ(u − 1)

log x

and the ci(ǫ) are constants depending on ǫ [6]. Boender notes that the range of interest

for x, y, z slightly extends that for which (4.2) is proven to hold. Empirically however,

(4.2) still provides a good approximation in the range of interest.

Estimating Yield

Suppose we are to sieve for B-smooth values of |f(x)| with x in the range [a1, a2]. We

use the approximations at (4.3) to estimate the yield of f across [a1, a2].

Care is required in the calculations below when f (considered as a continuous curve

on the real interval [a1, a2]) contains a stationary point or real roots in [a1, a2]. In our

circumstances this is always the case. Clearly each curve f can be cut into segments

which exclude roots and turning points (we require at most four segments). We call

the segment so obtained which occupies the largest portion of [a1, a2] the principal

segment. For each curve below we have repeated our calculations on every segment

of the curve, and obtained almost identical results on each segment. Hence we report

only the results on the principal segment.

Let I be the real x-interval defining the principal segment, and let Γ be the conti-

nous curve defined by f on I. Since Γ contains no turning point in I, we can assume

either f ′(x) < 0 or f ′(x) > 0 for all x ∈ I. We assume the latter, the former only

requires sign changes in the arguments below. Similarly, we assume f(x) > 0 for all

x ∈ I. The question now is ‘how many integer points on Γ are B-smooth?’.

We approximate the number of B-smooth integer values on Γ by cutting Γ into

shorter intervals and summing the yield over these intervals. Let S1 and S2 be the

minimum and maximum values respectively, taken by Γ on I. Cut [S1, S2] into K

subintervals [yi, yi+1] for i = 0, . . . ,K − 1 by taking

h =
log S2 − log S1

K
,

so yi = S1e
ih. In accordance with our notation for estimating the number of smooth

integers in an interval, we write yi+1 = yi + yi/z where 1/z = eh − 1.

Now, for each yi, let xi ∈ R be such that (xi, yi) ∈ Γ. Let

si =
yi+1 − yi

xi+1 − xi

denote the slope of Γ on [xi, xi+1], and let t(yi) denote the number of B-smooth f -

values on Γ with y ≤ yi. Clearly the yield on the whole of Γ, Xf , is given by

Xf =
K−1
∑

i=0

(t(yi+1) − t(yi)) . (4.4)
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For y ∈ [yi, yi+1] the probability that a randomly chosen (x, y) ∈ Γ has x ∈ Z is

approximately 1/si. So we have

t(yi+1) − t(yi) ≈ yi+1 − yi

si
P (fi, B) = (xi+1 − xi)P (fi, B)

where P (fi, B) is the probability that an integer f -value in [yi, yi+1] is B-smooth.

Recall that we consider f -values f(x) as likely to be B-smooth as random integers

of logarithm log(f(x)) + α(f) where

α(f) =
∑

p≤B

(

1

p− 1
− contp(f)

)

log p.

So, if gi(α) = log yi + α = log S1 + ih + α, and if vi(α) = gi(α)/ logB, approximation

(4.3) yields

t(yi+1) − t(yi) ≈

(xi+1 − xi)

(

1 − log gi(α)

logB

)(

ρ(vi(α)) + (1 − γ)
ρ(vi(α) − 1)

gi(α)

)

×
(

1 +
c1
z

+
c2 log logB

logB

)

. (4.5)

Approximation (4.5) and equation (4.4) give an approximation to Xf .

4.1.2 Full Yield as a Function of α

We now consider the full yield Xf as a function of α. For B fixed, α(f) is bounded.

In fact for B = 5 · 106 with quadratic f we have approximately |α| ≤ 14.16. However

for the quadratic polynomials investigated, typically α ∈ [−3, 1], a range of 4. So we

consider α ∈ [−4, 0] and refer to this as the practical range for α. Note that when

we consider higher degree polynomials for larger N we encounter much more extreme

values of α.

We approximate Xf , with appropriate parameter choices, as α varies in the prac-

tical range, all other things being equal. In fact we calculate

Q(α) =
Xf (α)

Xf (0)

≈
∑K−1

i=0 (xi+1 − xi)
(

1 − log gi(α)
log B

)(

ρ(vi(α)) + (1 − γ)ρ(vi(α)−1)
gi(α)

)

∑K−1
i=0 (xi+1 − xi)

(

1 − log gi(0)
log B

)(

ρ(vi(0)) + (1 − γ)ρ(vi(0)−1)
gi(0)

) .

The quantity Q(α) approximates the relative increase in full yield we might expect as

α decreases in the practical range.

Note 4.1.1 In practice Q(α) is approximately independent of K, so we use K = 100

in accordance with [6].
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We now insert typical polynomials and other parameters into the calculations. We

use polynomials selected for factorisations of five integers C87, C97, C105, C106 and

C107 in [33]. The polynomials used are the polynomials labelled f1(x) in [33] for each

integer. Other relevant parameters from [33] are shown in Table 4.1.

C87 C97 C105 C106 C107

divides 7299 + 1 12441 + 1 3367 − 1 12157 + 1 6223 + 1
B 1.0 · 106 2.2 · 106 1.6 · 106 2.7 · 106 2.9 · 106

|x| ≤ 7.5 · 1012 25 · 1012 7.5 · 1014 1.0 · 1015 1.0 · 1015

I ≈ [3.0 · 1012, [−2.5 · 1013, [−1.3 · 1013, [−1.0 · 1015, [−1.3 · 1014,
7.5 · 1012] −5.8 · 1012] 7.5 · 1014] −2.2 · 1014] 1.0 · 1015]

Table 4.1: Parameters for Table 4.2

Values of Q(α) for these parameters approximate the range of relative yields we

can expect due to root properties on typical polynomials in the above cases. Table 4.2

contains Q(α) calculated at several α.

Q(α)
−α C87 C97 C105 C106 C107

0.05 1.01 1.01 1.01 1.01 1.01
0.50 1.11 1.11 1.12 1.11 1.11
1.00 1.24 1.22 1.24 1.23 1.23
1.50 1.37 1.35 1.39 1.37 1.36
2.00 1.53 1.50 1.54 1.51 1.51
2.50 1.69 1.66 1.72 1.68 1.68
3.00 1.88 1.83 1.92 1.86 1.86
3.50 2.09 2.02 2.13 2.06 2.06
4.00 2.32 2.23 2.38 2.28 2.28

Table 4.2: Q(α) vs α

The complete results on C107 for α ∈ [−4, 0] are shown in Figure 4.1 below. The

complete results for the other parameters are similar.

We see that, heuristically, we expect the difference in yield between polynomials

with values of α at the extremes of the practical range to be as much as a factor of

two. This is a significant difference.

4.1.3 1LP-Yield as a Function of α

Suppose we now have B1 and B2, with B1 < B2, and consider the f -values that are B1

smooth but for the appearance of exactly one prime between B1 and B2. Let Yf be the
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Figure 4.1: Q(α) for C107

number of these 1LP-smooth f values on Γ. Again, we approximate Yf by examining

the 1LP-yield in intervals along Γ. Let t1(yi) be the number of 1LP-smooth f -values

on Γ with y ≤ yi. Clearly

Yf =
K−1
∑

i=0

(t1(yi+1) − t1(yi)). (4.6)

In what follows we implicitly assume that if P1(n) is the largest prime factor of

some integer n, then the prime factors of n/P1(n) are distributed like those of a random

integer of size n/P1(n). In fact this is not true - see Section 2.2.1 and Aside 4.2.2

following. However, the assumption suffices for our purposes.

For each large prime p, let gi,p(α) = gi(α) − log p = log S1 + ih + α − log p, and

vi,p(α) = gi,p(α)/ logB. Then

t1(yi+1) − t1(yi) ≈
∑

B1<p<B2

qp
p

(t(yi+1/p) − t(yi/p))

≈ (xi+1 − xi)
∑

B1<p<B2

qp
p

(

1 − log gi,p(α)

logB1

)(

ρ(vi,p(α)) + (1 − γ)
ρ(vi,p(α) − 1)

gi,p(α)

)

×
(

1 +
c1
z

+
c2 log logB1

logB1

)

, (4.7)

which, with (4.6) gives an approximation to Yf .

We are interested in the relative increase in 1LP-yield as a function of α, that is,
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the ratio

Yf (α)

Yf (0)
. (4.8)

Calculating (4.8) directly is time-consuming. Since we are interested only in checking

that practical changes in α can bring significant increases in yield, we instead obtain

upper and lower bounds on (4.8) in intervals along f . The bounds suffice to show a

significant increase in yield. For i = 1, . . . ,K − 1 let Yf,i(α) = t1(yi+1)− t1(yi) be the

partial yield of f in the i-th interval only. We bound

Ri(α) =
Yf,i(α)

Yf,i(0)

for i = 1 . . . K − 1.

Recall that ∆ denotes the discriminant of f . Let

LP = {p : p prime , B1 < p < B2, (∆/p) = 1}

be the set of large primes which may appear in the factor base and let p1, p2 be the

minimum and maximum elements (respectively) in LP . Then

gi,1(α) = log xi + ih+ α− log p2, and

gi,2(α) = log xi + ih+ α− log p1

are the minimum and maximum values (respectively) of gi,p(α) on (xi, xi+1). Also,

vi,1(α) = gi,1(α)/ logB1, and

vi,2(α) = gi,2(α)/ logB1

are the minimum and maximum values (respectively) of vi,p on (xi, xi+1). Finally, let

Li(α) =
2

p2

(

1 − log gi,2(α)

logB

)(

ρ(vi,2(α)) + (1 − γ)
ρ(vi,2(α) − 1)

gi,2(α)

)

,

Ui(α) =
2

p1

(

1 − log gi,1(α)

logB

)(

ρ(vi,1(α)) + (1 − γ)
ρ(vi,1(α) − 1)

gi,1(α)

)

.

Then

Yf,i(α) < (xi+1 − xi) · |LP | · Ui(α).

Similarly, Yf,i(α) > (xi+1 − xi) · |LP | · Li(α) . Since we are varying only α,

Li(α)

Ui(0)
< Ri(α) <

Ui(α)

Li(0)
. (4.9)

To calculate Ri(α) we use the additional parameters from [33] given in Table 4.3.
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C87 C97 C105 C106 C107

B1 1.0 · 106 10 · 106 23 · 106 27 · 106 27.2 · 106

B2 2.346 · 106 24 · 106 30 · 106 30 · 106 30 · 107

Table 4.3: Large prime bounds

Li(−4)
Ui(0)

, Ui(−4)
Li(0)

C87 C97 C105 C106 C107

i = 1 0.64, 4.42 0.61, 4.39 1.52, 1.93 1.51, 1.93 1.54, 1.92
i = 25 0.69, 4.98 0.65, 4.82 1.62, 2.05 1, 62, 2.06 1.62, 2.05
i = 50 0.72, 5.36 0.68, 5.18 1.72, 2.18 1.72, 2.20 1.72, 2.18
i = 75 0.75, 5.74 0.71, 5.53 1.81, 2.29 1.83, 2.32 1.81, 2.30
i = 99 0.78, 5.97 0.73, 5.85 1.87, 2.40 1.88, 2.42 1.90, 2.40

Table 4.4: Upper and lower bounds on Ri(−4)

We give values of the bounds on Ri(α) evaluated at α = −4, for several i, in Table

4.4.

The values for C87 and C97 are inconclusive, our bounds on the large primes

appearing here are too crude for integers of this size. But the values for C105, C106

and C107 (in particular the lower bounds) are useful. We illustrate in Figure 4.2 the

complete results for C107. The results for C105 and C106 are similar. The region

between the lines represents the expected increase in the 1LP-yield of f .

We conclude that practical changes in α can also bring significant increases in

1LP-yield.

4.1.4 2LP-Yield as a Function of α

Let Zf be the number of 2LP-smooth f values on Γ. Let t2(yi) be the number of

2LP-smooth f -values on Γ with y ≤ yi. Then

Zf =
K−1
∑

i=0

(t2(yi+1) − t2(yi)). (4.10)

For the large prime pair {p, q} let gi,pq(α) = gi(α) − log p − log q and vi,pq(α) =

gi,pq(α)/ logB1. Then, assuming again (which is not quite true) that the appearance
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Figure 4.2: Ri(−4) for C107

of p and q in the factorisations of f -values is independent,

t2(yi+1) − t2(yi) ≈
∑

{p,q}∈LP

4

pq
(t(yi+1/pq) − t(yi/pq))

≈ (xi+1 − xi)
∑

{p,q}∈LP

4

pq

(

1 − log gi,pq(α)

logB1

)(

ρ(vi,pq(α)) + (1 − γ)
ρ(vi,pq(α) − 1)

gi,pq(α)

)

×
(

1 +
c1
z

+
c2 log logB1

logB1

)

. (4.11)

Equation (4.10) and approximation (4.11) give an approximation to Zf .

Again we present bounds on the relative increase in Zf in intervals along Γ, as α

varies in the practical range. Let Zf,i = t2(yi+1) − t2(yi) be the 2LP-yield of f in the

i-th interval, and let

Ti(α) =
Zf,i(α)

Zf,i(0)
.

We calculate bounds on Ti for i = 1, . . . ,K − 1 by repeating the calculations of the

previous section. Thus, let p1, p2 and p3, p4 be the two least and two greatest elements

(respectively) of LP . Let

gi,1(α) = log xi + α− log p3 − log p4,

gi,2(α) = log xi + α− log p1 − log p2,

vi,1(α) = gi,1(α)/ logB1, and

vi,2(α) = gi,2(α)/ logB1.
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Then if

Li(α) =
4

p3p4

(

1 − log gi,2(α)

logB

)(

ρ(vi,2(α)) + (1 − γ)
ρ(vi,2(α) − 1)

gi,2(α)

)

, and

Ui(α) =
4

p1p2

(

1 − log gi,1(α)

logB

)(

ρ(vi,1(α)) + (1 − γ)
ρ(vi,1(α) − 1)

gi,1(α)

)

we have

Li(α)

Ui(0)
< Ti(α) <

Ui(α)

Li(0)
. (4.12)

Table 4.5 contains values of the bounds on Ti(−4) given by (4.12), for several i.

Li(−4)
Ui(0)

, Ui(−4)
Li(0)

C87 C97 C105 C106 C107

i = 1 0.25, 11.60 0.23, 11.53 1.26, 2.02 1.26, 2.02 1.33, 2.07
i = 25 0.25, 12.32 0.23, 12.04 1.33, 2.12 1.33, 2.13 1.40, 2.19
i = 50 0.26, 13.13 0.24, 13.00 1.40, 2.26 1.41, 2.27 1.45, 2.28
i = 75 0.26, 13.68 0.24, 13.64 1.46, 2.36 1.47, 2.38 1.51, 2.38
i = 99 0.27, 14.36 0.25, 14.24 1.51, 2.47 1.53, 2.50 1.56, 2.46

Table 4.5: Upper and lower bounds on Ti(−4)

The results for C87 and C97 are again inconclusive, whilst those for C105, C106 and

C107 are useful. We conclude again that practical changes in α can bring significant

increases in the 2LP-yield.

4.1.5 In Practice: Sieving Experiments

We now seek empirical verification that the parameter α(f) indeed captures the effect

of root properties on yield.

Differences in yield amongst polynomials f1 and f2, due only to root properties,

can be observed by examining the yield across regions where f1 ≈ f2. We chose five

candidate polynomials, Polynomials A,B, . . . , E, for the 106 digit integer C106 given

in Table 4.1. The polynomials are given in Appendix A. These particular polynomials

were chosen because they exhibit a certain range of root properties. We sieved each

polynomialB, . . . , E in intervals of size 108 centred on a point at which the polynomials

take the same value as Polynomial A. Over the entire interval the “other” polynomial

has the same size as Polynomial A to at least the fourth significant figure, and usually

more. Any difference in yield between the polynomials over these intervals should

therefore be due their different root properties.

These polynomials are typical of polynomials produced by Montgomery’s Two

Quadratics method for line sieving on C106, except that their root properties are
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fixed. In fact, Polynomials A, . . . , E have α ∈ [−2.56, 1.51] as shown Table 4.6. We

used B1 = 2700000 and B2 = 30000000 in accordance with [33].

f α(f)

A −2.56
B −1.50
C −0.50
D 0.52
E 1.51

Table 4.6: α values for candidate polynomials.

We summarize the results in Table 4.7 below. The relative yields shown are the

yield of Polynomial A relative to the “other” polynomial, so for example the full yield

of Polynomial A is 2.32 times that of Polynomial E.

Polyn- α(f)− rel. total rel. full rel. 1LP rel. 2LP
omial f α(A) yield yield yield yield

B 1.06 1.46 1.55 1.54 1.39
C 2.06 1.92 2.09 1.99 1.83
D 3.08 1.94 2.20 1.99 1.84
E 4.07 2.03 2.32 2.08 1.95

Table 4.7: Relative yields due to root properties

According to the calculations of Section 4.1.2 the increases in full yield of A should

be approximately 1.24, 1.51, 1.86, 2.30 relative to polynomials B, . . . , E respectively.

Moreover, the increases in 1LP and 2LP yields of Polynomial A relative to Polynomial

E fall close to the middle of the bounds of Sections 4.1.3 and 4.1.4.

The values taken by Polynomials C and D behave more like random integers than

we expect on the basis of Section 4.1.2. Probably this is because in Section 4.1.2 we

consider only changes in α, not the value itself. The values α(C) and α(D) are close

to zero (−0.50 and 0.50 respectively). Hence we must expect their values to behave

more like random integers than if their α values were −2 and −1 for example.

We conclude that in the quadratic cases examined, differences in yield from root

properties alone can indeed be as much as a factor of two. Root properties are therefore

a factor which should be considered whilst modelling yield.
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4.2 Modelling Yield

Having established that α(f) seems to quantify well the effect of root properties, we

now seek a simple model of yield. The model given here is used in subsequent chapters

dealing with the problem of finding good polynomials.

In Section 4.2.1 below we visualise the relevant features of yield. From sieving

experiments we see increased yields at real roots of f , and the relative variation in

yield away from real roots. We refer to the former as peak yield and the latter as

yield across the region. Notice that whilst the peak yields we see in this section all

correspond to real roots, in general the peak yield of a polynomial occurs where it takes

minimal absolute value. We propose a simple method of estimating yield in Section

4.2.2, and use it in Section 4.2.3 to predict both peak yield and yield across the region.

To this point we have considered only quadratic polynomials with line sieving, but in

Section 4.2.4 we extend our simple model to repeat some calculations of Section 4.1

under conditions experienced in factorisations of large RSA keys.

4.2.1 Actual Yield

On each of the polynomials A, . . . , E we performed line sieving in short intervals along

|x| ≤ 1015, again with smoothness bounds B1 = 27000000 and B2 = 30000000. We

sieved in intervals of length 108 centred at steps of 1014 along the sieve interval, and

in intervals of 108 centred at each real root of each polynomial.

For all polynomials the obvious feature of yield across the sieve region is the relative

increase at real roots. This of course is due to the polynomials taking much smaller

values close to roots. Common to all polynomials under the conditions we investigated

is an increase in total yield by a factor of at least fifteen across roots. Polynomial A is

typical, Figure 4.3 shows the relative increase at real roots of Polynomial A.

During an entire sieve run, values of x close to real roots of f(x) are a richer supply

of smooth f -values than those not. Of course this does not necessarily mean that we

should blindly search for polynomials with as many real roots as possible. We see

particularly in subsequent chapters that, leaving aside the question of root properties,

the pervading requirement is that f -values be kept small over the sieve region. Real

roots will help of course, but are not the sole determing factor.

Most values of x in the sieve region are not close to real roots of f . The total yield

away from real roots is not quite as flat as Figure 4.3 indicates. Figure 4.4 shows total

yield across |x| ≤ 1015 just in steps of 1014 (that is, without explicitly showing the

yield at real roots).

Remark 4.2.1 Figure 4.4 suggests that, in relative terms, the yield of f varies greatly

across the region. This has consequences for the collection of relations. Recall that

a relation for the number field sieve in its full generality is a coprime integer pair
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Figure 4.3: Total yield (with roots) of Polynomial A with |x| ≤ 1015

(a, b) at which both F1(a, b) and F2(a, b) are smooth (or almost smooth). In this

case, since we use line sieving, y = 1. So far we have considered only the yield of

f1 and f2 individually. It is reasonable to assume that these yields are independent.

That being the case, the likelihood of a given x = a causing both f1(a) and f2(a) to

be simultaneously smooth will increase if the regions of maximal yield of f1 and f2

coincide. The same argument holds for sieving F1(x, y) and F2(x, y). Particularly if

one is using more than two non-linear polynomials (Remark 2.3.1 and [32]) current

performance might be exceeded by considering the proximity of the real roots of F1

and F2 when selecting polynomials.

Recall that in dealing with large prime yields we are assuming that the appearance

of each prime in the factorisation of a given integer is independent. This of course

is not true, and next we observe the effect of the dependence. Since this is of little

practical consequence we leave it as an aside.

Aside 4.2.2 As before, let T be the total yield, and Q,R,S be the full, 1LP and 2LP

yields respectively. For all five polynomials the proportions Q/T and R/T increase

close to real roots at the expense of S/T . For example, for Polynomial A the proportion

Q/T increases from 10% to 18%, R/T increases from 38% to 44% and S/T decreases

from 52% to 38%. For the other polynomials the proportions take similar values.

Recall from Section 2.2.1 the generalisations ρ2(u) and ρ3(u) of ρ(u). These func-

tions describe the joint distributions for the two and three (respectively) largest prime

factors of r as r → ∞. We are interested in the special cases in which r has exactly

one or exactly two prime factors at most B2, but is otherwise B1-smooth. Let ρ2(u, v)
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Figure 4.4: Total yield (without roots) of Polynomial A with |x| ≤ 1015

be the former function and ρ3(u, v) be the latter function, with u = log r/ logB1 and

v = log r/ logB2.

Using the methods of [3] and [45] to calculate these functions, we observe that in

the range of interest

∂ρ2

∂v
>
∂ρ2

∂u
and

∂ρ3

∂v
≫ ∂ρ3

∂u
. (4.13)

Note that the inequality for ρ2(u, v) is not true for arbitrary u and v. Intuitively (4.13)

means that as r increases, the smoothness probabilities for 2LP-smoothness (and to

a lesser extent 1LP-smoothness), depend more on r being B2-smooth than on the

cofactor (with the large primes removed) being B1-smooth. That is, B2-smoothness is

the “difficult” property. The difference in (4.13) between ρ2 and ρ3 comes from

∂ρ2

∂u
>
∂ρ3

∂u
.

Intuitively, ρ2 ought to be more sensitive than ρ3 to changes in u because a B2-smooth

integer with only one known prime factor between B1 and B2 is less likely to be

otherwise B1-smooth than one of the same size with two known prime factors between

B1 and B2.

Now, since B1 < B2

du

dr
>
dv

dr
. (4.14)

Ignoring for the moment the question of root properties, (4.13) and (4.14) imply that

as |f(x)| decreases S/T ought to decrease relative to both Q/T and R/T , and that

R/T ought to decrease slightly relative to Q/T .
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4.2.2 Estimating Yield

Recall that with f(x) > 0 and

uf (x) =
log f(x) + α(f)

logB

we assume that

P (f(x), B) ≈ ρ(uf (x)) + (1 − γ)
ρ(uf (x) − 1)

log f(x)
.

Suppose I ⊂ Z is some sieve interval. Then

∑

x∈I

P (f(x), B) ≈
∑

x∈I

[

ρ(uf (x)) + (1 − γ)
ρ(uf (x) − 1)

log f(x)

]

. (4.15)

We use the right hand side of (4.15) to approximate the full yield of f across I.

In practice |I| is large, so (4.15) is too time consuming to compute completely.

Instead we approximate the summation by breaking I into K sub-intervals over which

the right hand side of (4.15) does not change significantly. Let IK be the interval I so

divided, so IK contains every |I|/K-th element of I. Hence, if Xf again denotes the

full yield of f across I, then

Xf ≈ |I|
K

·
∑

x∈IK

[

ρ(uf (x)) + (1 − γ)
ρ(uf (x) − 1)

log f(x)

]

. (4.16)

4.2.3 Examples

We now examine estimate (4.16) in the context of both peak yield and yield across the

region. In the calculations below we use K = 105.

Peak Yields

We tested estimate (4.16) for Xf on seven polynomials with α-values sufficiently low

to be acceptable number field sieve polynomials. In particular, we used Polynomial A,

and six other polynomials F,G, . . . ,K. Polynomials F, . . . ,K are polynomials used

to factorise 105, 106 and 107 digit integers in [33]. Details of each are in Appendix A.

We calculated estimate (4.16) in an interval of size 108 across one real root of

each polynomial, and sieved the polynomial across the same root. Yields across the

two roots of each polynomial are almost identical so the choice of root is arbitrary.

We used B = 1600000 for polynomials F and G in accordance with [33], otherwise

B = 2700000. Table 4.8 contains the results for full relations.

The estimate places only one polynomial, J , in the incorrect position, and has an

average relative error of 5.9% (most of which is contributed by polynomials J and F ).
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Poly- Est. full Full Relative
nomial yield yield error (%)

K 30462 30732 −0.9
J 30461 26100 16.7
A 30193 29005 4.1
H 27621 28248 −2.1
I 25583 24646 3.2
F 25209 22186 13.6
G 17096 15989 6.9

Table 4.8: Estimated vs actual full yield

Yield Across the Sieving Region

Table 4.8 tests only the peak yields of the polynomials. We saw at Remark 4.2.1 that

it is also of interest to note how estimate (4.16) changes across an entire sieve interval.

In Figure 4.5 below we show estimate (4.16) across the entire |x| ≤ 1015 interval, at

uniformly spaced sub-intervals, for Polynomial A. We also show estimate (4.16) at

α = 0, that is, the expected yield if values taken by Polynomial A are as likely to be

smooth as random integers of the same size. This is much lower than the actual yield.
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Figure 4.5: Estimated and actual yield of Polynomial A with |x| ≤ 1015

We conclude that the approach described in Section 4.2.2 to estimating yield is

useful.
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4.2.4 Polynomials for Larger N

We now extend the approach in (4.16) to consider yield due to root properties in the

context of larger N . It is not clear in advance that we should expect differences in

yield similar to those exhibited on quadratic polynomials. Not only are the integers

which are required to be smooth larger, but B also is larger, and the practical range

of α values is different.

The non-linear polynomial considered is now the homogeneous polynomial F (x, y),

so its sieve region lies properly in the x, y-plane. In fact as we see in the next chapter,

the region is usually a rectangle much longer (x direction) than it is wide (y direction).

We denote the length to width ratio s, and in this section will consider a fixed sub-

rectangle S of the entire sieve region which also has length to width ratio s.

Again we let XF denote the full yield of F over S. This yield depends on α(F ),

and in this section the aim is to compute

Q(α) =
XF (α)

XF (0)
.

To compute Q(α) we divide S into K equally sized sub-rectangles labelled Si for

i = 1, . . . ,K. Let Fi be the mean value of F (x, y) across Si. Putting

ui(α) =
logFi + α(F )

logB

we obtain for the probability, depending on α, that Fi is B-smooth

Pα(Fi, B) ≈ ρ(ui(α)) + (1 − γ)
ρ(ui(α) − 1)

logFi
.

Assume the distribution of coprime integer pairs (x, y) is uniform throughout S. That,

and the fact that all Si have the same area imply that

Q(α) ≈
∑K

i=1 Pα(Fi, B)
∑K

i=1 P0(Fi, B)
. (4.17)

Here we calculate (4.17) using parameters from the factorization of RSA-140. The

non-linear polynomial used in the factorisation is

F1(x, y) = 439682082840x5

+390315678538960x4y
−7387325293892994572x3y2

−19027153243742988714824x2y3

−63441025694464617913930613xy4

+318553917071474350392223507494 y5 .

We examine this polynomial in more detail in the next two chapters. For now all that

is relevant is that the sieve region that best fits F1 has s ≈ 4000. For the calculations

shown below we used a rectangle S of area 108 with s = 4000, centred on the y-axis
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at y = 5000. This places S in a typical portion of the entire sieve region. We used

K = 105 and B = 224 − 1 (see Section 6.2).

The practical range for α we take to be [−7, 0]. This is much more extreme than

in the case of the quadratic polynomials of the previous sections. With the degree d as

high as d = 5 we find polynomials with much better root properties than when d = 2.

This is due partly to higher degree polynomials having the capacity to have more roots

for each prime p > d, but mainly to extra tricks we have which rely on d being at least

four. We explain these tricks in the next chapter.

For now we use F1 only as a source F -values typical of those required to be smooth

for factorisations of large N . Figure 4.6 below shows Q(α) computed using (4.17) on

F1 with α in the practical range.
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Figure 4.6: Full yield due to root properties at N = RSA-140

4.3 Summary

In this chapter we have investigated the yield of number field sieve polynomials. We

take yield to be influenced by two factors, size and root properties. The effect of root

properties on yield has not previously been well understood. Here we demonstrate that,

for example, under the conditions of large RSA moduli factorisations root properties

can influence yield by up to a factor of 4.

Since it is therefore clear that root properties ought to be taken into account when

modelling yield, we give a simple estimator of yield which combines both root properties

and size. We then compare estimated yields to actual yields. Our estimate quantifies

yield within an accuracy sufficient for our purposes, both absolutely and relatively.

We are hence led to an understanding of yield: what should be sought is a good
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combination of size and root properties. We turn now to the problem of finding poly-

nomials with such combinations.
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Chapter 5

Finding Good Polynomials

In this chapter and the next we employ our understanding of polynomial yield in

selecting polynomials for factorisations of large general integers. This chapter contains

descriptions of the relevant computations, and the next chapter contains the examples

RSA-130, RSA-140 and RSA-155.

We consider the selection problem in two stages. In the first stage, we generate a

large sample of good polynomials. This process is described in Section 5.1. Thousands

of polynomials survive this stage, so sieving experiments are still impracticable. How-

ever there remains significant variation in yield across this sample. Thus in the second

stage we identify, without sieving, the best polynomials in the sample. This process is

described in Section 5.2. Section 5.3 contains a summary.

Throughout this chapter we distinguish two types of polynomial, namely non-

skewed and skewed. The traditional approach to polynomial selection for RSA factori-

sations is to search for polynomials all of whose coefficients are small, without regard

to root properties. All coefficients being small endears polynomials to sieving regions

−U ≤ x ≤ U and 1 ≤ y ≤ U , for some integer U . We refer to these polynomials

as non-skewed. In this chapter we extend this approach by giving simple methods of

finding non-skewed polynomials with good combinations of size and root properties.

Section 5.1.1 describes generation of many good non-skewed polynomials, and Section

5.2.1 describes identification of the best ones. We demonstrate the strength of even

these simple methods in the next chapter by repeating the polynomial selection for the

RSA-130 factorisation.

The non-skewed case is also a useful introduction to more complicated methods

of finding good skewed polynomials. In the case of skewed polynomials, we require

only some of the coefficients to be small. The coefficients ad, ad−1 and ad−2 will be

particularly small, and usually the coefficients will increase in absolute value from ad

through a0. The natural sieving region for skewed polynomials is a rectangle S whose

length (x-direction) to width ratio is s, with s > 1. We fit a different S to each

polynomial. In practice we encounter s values up to approximately 106. Indeed, we

go to some effort to construct highly skewed polynomials. There are implementation

77
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specific reasons for seeking such polynomials. More importantly though we are able to

introduce additional techniques to find highly skewed polynomials with excellent root

properties.

We describe the generation of such polynomials in Section 5.1.2. Isolating the best

skewed polynomials requires only simple adjustments to the procedure for non-skewed

polynomials, and we discuss this in Section 5.2.2. We demonstrate methods for finding

skewed polynomials in the next Chapter by describing the polynomial selection for the

factorisations of RSA-140 and RSA-155.

5.1 Generating Good Polynomials

Recall from Chapter 2 that for integers of the size under consideration, the base-m

method is the best method we have of choosing polynomials. So d is fixed and we seek

m ≈ N1/(d+1) with a polynomial f of degree d for which

f(m) ≡ 0 mod N. (5.1)

Sieving occurs over the polynomials F1(x, y) = ydf(x/y) and F2(x, y) = x−my.

As we have seen before, the polynomial f descends from the base-m representation

of N . Let the coefficients of this expansion be a
(m)
i . That is,

N =
d
∑

i=0

a
(m)
i mi

with 0 ≤ a
(m)
i < m. Heuristically it is sensible to adjust the a

(m)
i to lie between −m/2

and m/2. In fact, if a
(m)
i > ⌊m/2⌋ then we replace a

(m)
i with a

(m)
i −m and a

(m)
i+1 with

a
(m)
i+1 + 1. Let

fm(x) =
N
∑

i=0

aix
i

be the polynomial whose coefficients are the a
(m)
i reduced in this way, working from

i = 0, . . . , d through the coefficients.

The exercise now is to choose m and fm (or some variant thereof which preserves

(5.1)) with good combinations of size and root properties. In the case of non-skewed

polynomials, we consider only fm. In the case of skewed polynomials, we have the

freedom to explore many variants of fm.

5.1.1 Non-skewed Polynomials

Here we give simple methods for choosing good non-skewed fm. Even these simple

methods suffice to give significant improvements over previous factorisation efforts.



5.1 Generating Good Polynomials 79

We consider first the problem of generating fm which are “small”, then of generating

fm with better than average root properties.

What does it mean for fm to be small?

Definition 5.1.1 A base-m representation fm is χ-small when χ is the largest value

of |ai|/m for i = 1, . . . , d− 1.

We refer to these simply as small base-m representations if the value of χ is not

material.

A necessary condition on a particular representation being small is that the coeffi-

cients ad and ad−1 are small. By the choice of m it is easy to ensure that ad is small.

Our search simply employs the fact that for small ad, small a
(m)
d−1 occur only when m

is close to a value at which ad changes.

Example 5.1.2 Let N = 9999399973 = NextPrime(105) × PreviousPrime(105). The

following is the sequence of (unreduced) base-m representations of N around the value

of m which forces a3 to decrease from 9 to 8. The coefficients are listed as [a0, . . . , a3].

Notice the (almost) linear change in a2.

m ai

1030 [ 323, 405, 155, 9 ]
1031 [ 64, 122, 128, 9 ]
1032 [ 61, 925, 100, 9 ]
1033 [ 260, 751, 73, 9 ]
1034 [ 607, 631, 46, 9 ]
1035 [ 13, 566, 19, 9 ]
1036 [ 493, 554, 1028, 8 ]
1037 [ 959, 596, 1002, 8 ]
1038 [ 319, 693, 976, 8 ]
1039 [ 594, 843, 950, 8 ]
1040 [ 693, 7, 925, 8 ]
1041 [ 562, 264, 899, 8 ]
1042 [ 147, 575, 873, 8 ]

Table 5.1: A sequence of base-m representations

For fixed m, we now consider the coefficients a
(m+k)
i of the base-(m+ k) expansion

of N , as functions of a
(m)
i and k. The coefficients are related by the fact that

d
∑

i=0

a
(m)
i mi =

d
∑

i=0

a
(m+k)
i (m+ k)i = N.
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Matching the coefficients of the polynomials
∑d

i=0 a
(m)
i xi and

∑d
i=0 a

(m+k)
i xi reveals

that

a
(m+k)
i ≡

d
∑

j=i

a
(m)
j

(

j

j − i

)

(−k)j−i mod (m+ k) (5.2)

for i = 1, . . . , d− 1. For ad−1 this means that

a
(m+k)
d−1 ≡

(

a
(m)
d−1 − dka

(m)
d

)

mod (m+ k). (5.3)

The value of m which causes the leading coefficient to decrease from ad to ad − 1

is given by

m1 =

⌊

(

N

ad

)
1

d

⌋

.

From (5.3) the values of m surrounding m1 for which

|a(m)
d−1| ≤ χm (5.4)

are easily determined. Moreover, the proportion of m-values satisfying (5.4) is approx-

imately 2χ . Hence, compared to choosing m at random, conditioning the search on

m guaranteed to give |ad−1| ≤ χm increases its efficiency by a factor of approximately

1/2χ . Typically we use χ = 0.02, so the search efficiency increases by a factor of 25.

This method does not give much information on the location of m for which small

values of lower order coefficients must lie. For example, the third coefficient of a quintic

representation is

a
(m+k)
3 ≡

(

10a
(m)
5 k2 − 4a

(m)
4 k + a

(m)
3

)

mod (m+ k),

which in practice means that the change in a
(m+k)
3 as a function of k is no longer

sufficiently small to be useful.

Consider now the problem of generating non-skewed polynomials with better than

average root properties. Recall that we regard F1(x, y) as having two types of roots

modulo p, projective and non-projective. Here we equip F1 with better than average

root properties by forcing it to have good projective roots modulo small pk. The

appearance of good non-projective roots at this stage we leave to chance.

The following example illustrates the effect of this observation on the distribution

of root properties amongst polynomials examined.

Example 5.1.3 Let N = RSA-140. A reasonable range of leading coefficients of non-

skewed fm for N is [1020.3, 1021.3]. We choose ad in this range to contain a cofactor c

in each of the following five cases:

1. the worst case, ad is prime,
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2. the average case, ad is chosen uniformly at random,

3. a good case, c|ad with c = 2 · 3 · 5 · 7,

4. a better case, c = 2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 = 109.8, and

5. an even better case, c = 25 · 34 · 53 · 73 · 112 · 13 · 17 · 19 · 23 · 29 = 1016.6 .

Randomly chosen samples of 100 polynomials in each of the five cases above gave

the following α values.

Case Min α(F ) Mean α(F ) Max α(F )

1 −0.67 1.16 2.63
2 −1.62 0.44 2.33
3 −3.02 −0.77 0.77
4 −3.25 −1.40 0.15
5 −3.54 −1.88 −0.47

Table 5.2: Polynomials with many small projective roots

Despite c being large in case 5, it is still sufficiently small to allow examination of

many polynomials.

Note that computing the ideal decomposition for ideals corresponding to projective

roots requires more effort than those corresponding to non-projective roots. Hence

polynomials found by this method will require marginally more effort in the square

root stage, but the benefit far outweighs this extra cost.

Our procedure for finding non-skewed polynomials is the following.

Procedure 5.1.4 (Non-skewed Base-m Polynomials) 1. Fix an interval ad in

which each ad is significantly smaller than its corresponding m. In fact, select

χ1, χ2 for which ad will satisfy χ1 ≤ |ad|/m ≤ χ2. The interval for ad is then

bounded below and above by

log ad =
(d log χj + logN)

d+ 1

at j = 1, 2 respectively. This corresponds to a range of m values bounded below

and above by

logm =
(logN − log χj)

d+ 1

at j = 2, 1 respectively.

2. Fix a cofactor c of ad, with c a product of many small pk. Of course several c will

be used. For each ad divisible by c in the interval described in Step 1, determine

from (5.3) the values of m for which |ad−1/m| ≤ χm (with χ ≥ χ2).
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3. For each m identified in Step 2, check the remaining coefficients of fm. If fm

is χ-small, compute an approximation to α(F1), and if that is also sufficiently

small, output fm.

5.1.2 Skewed Polynomials

We turn to our more involved procedure for finding good skewed polynomials. It is

not just skewed, but highly skewed polynomials that are the real target of this section,

because we have a procedure for finding descendants of highly skewed F1 with excellent

root properties. The following example illustrates a highly skewed target.

Example 5.1.5 Let N = RSA-140. We give two pairs of polynomials for N . The

pair (F1, F2) is the pair of skewed polynomials used for the factorisation of RSA-140.

The pair (G1, G2) is the best non-skewed pair identified during the search for RSA-140

polynomials.

F1(x, y) = 439682082840x5

+390315678538960x4y
−7387325293892994572x3y2

−19027153243742988714824x2y3

−63441025694464617913930613xy4

+318553917071474350392223507494 y5

F2(x, y) = x− 34435657809242536951779007 y

G1(x, y) = 237866611103421300000x5

−514856715582822510304x4y
−4722668925346720843884x3y2

+6545365626333869758617x2y3

−3356924353646091366162xy4

−5142225622472630020004 y5

G2(x, y) = x− 617119742304446938751913 y.

The recommended sieve rectangle for F1 has s = 4096. Both F1 and G1 are

unusually small over their respective regions (χ(G1) = 0.011). Both also have good

root properties, but the main difference between the polynomials is in just how good

their root properties are. We have α(F1) = −7.0 and α(G1) = −4.2.

How does this difference in root properties come about? Notice that |a1| and |a0|
of F1 are larger than m. Clearly on construction of fm they cannot start that way.

In fact we adjust fm to cause it to appear highly skewed, compensating for large low

order (in x) coefficients by skewing the sieve region. Once the low order coefficients
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are large we try many further adustments hoping for some which lead to polynomials

with excellent root properties.

During the skewing process f may move “off-centre” along the x-axis. We also

make an adjustment that fixes this. Hence, we adjust f in two ways:

• Translation by t : ft(x) = f(x − t) for some t ∈ Z. This leaves root properties

unaltered but can improve size. With mt = m+ t we preserve (5.1).

• “Rotation” by P : fP (x) = f(x) + P (x) · (x −m) for some polynomial P whose

degree is small compared to d. This preserves (5.1). Rotation by P can alter

both size and root properties. Presently we use only linear P , but for higher

degree f , polynomials, higher degree P could be used without impinging on the

high order coefficients of f .

Translation by t need not be peculiar to skewed polynomials, but we make more

use of it here than with non-skewed polynomials. Most of the benefit comes from

rotations by well chosen P . Indeed we use two rotation steps. The first is aimed at

producing highly skewed f which are unusually small over some skewed rectangle. The

second is aimed at taking these f and rotating them to form new ones which, whilst

retaining desirable size properties of the old ones, also have excellent root properties.

Our implementation of this procedure is due mainly to Peter Montgomery.

We describe this procedure in four steps. In Steps 1 and 2 we isolate skewed

polynomials which are unusually small over some rectangle. Polynomials surviving

Step 2 enter Step 3. In Step 3 we seek rotations giving polynomials with excellent root

properties without destroying the good size properties inherited from Step 2. Step 4

produces the output.

Procedure 5.1.6 (Skewed Base-m Polynomials) 1. Find leading coefficients ad

divisible by many small pk for which there exists a base m expansion with skewed

coefficients. For each such ad we examine

m ≈
⌊

(

N

ad

)
1

d

⌋

.

Check the magnitude of ad−1, and of ad−2 compared to m, by computing the

integral and non-integral parts of

N − adm

md−1
= ad−1 +

ad−2

m
+O(m−2).

If these are sufficiently small, accept ad and m.

2. Compute some initial adjustments to fm aimed at skewing it further and reducing

its size over a new skewed rectangle. In particular, we consider variables c1, c0, t

and s, the adjustments
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• translation by t,

• rotation by P (x) = c1x− c0,

and the rectangle with |x| < √
s and |y| < 1/

√
s. Call this rectangle S, and

denote by the subscript t variables which have been translated by t. Now let

f(x) = fm(xt) + (c1xt + c0)(xt −mt), and

F (x, y) = ydf(x/y).

At this stage we treat c1, c0 and t as real variables. We now apply a multi-variable

minimization procedure to minimize
∫ ∫

S
F 2(x, y) dxdy

with respect to c1, c0, t and s. The optimal values of c1, c0 and t are rounded to

integers, and s is recomputed. The average log size I(F,S) over the new S is

estimated, with

I(F,S) = log

(
√

∫ ∫

S
F 2(x, y) dxdy

)

,

and if that is sufficiently small, we proceed to Step 3.

3. Search for polynomials with excellent root properties amongst polynomials with

similar size properties to f . Let j1, j0 be integers with |j1| < J1 and |j0| < J0.

Typically we have J1 ≪ J0. We investigate the polynomials

fj1,j0(x) = f(x) + (j1x− j0)(x−m)

using a sieve-like procedure to identify j1, j0 pairs which ensure fj1,j0 has good

root properties.

We describe the sieve-like procedure. For each small prime p we consider contri-

butions of pk for k ≥ 1. Take pk and j1 to be fixed, j0 and l to be variable. The

values fj1,j0(l) mod pk can be computed quickly for successive l = 0 . . . pk − 1 by

finite differences. For each such l we find, simply by solving a linear congruence,

j0 ∈ Zpk for which

fj1,j0(l) ≡ 0 mod pk. (5.5)

For each solution j0 of (5.5) we estimate contpk(Fj1,j0), and in an array of length

pk record contpk(Fj1,j0) in the position corresponding to j0. We also record

contpk(Fj1,j0) at any projective roots. On completion mod pk, this array is repli-

cated throughout the entire J0-space.

Once this is completed for all small p and all j1, the values in the j1, j0 array

approximate α(Fj1,j0) over the small primes considered.
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4. Since I(Fj1,j0, S) ≈ I(F,S) we already have an approximation to the average size

of Fj1,j0. So we take the initial rating of each Fj1,j0 to be

I(Fj1,j0, S) + α(Fj1,j0).

For those Fj1,j0 whose initial rating is sufficiently low, we compute the coefficients

of

f(x) + (j1x− j0)(x−m),

and if it helps we compute translation of m and a new optimal value s for the

translated F .

5.2 Isolating the Best Polynomials

From the procedures of the previous section we inherit a collection of many good

polynomials. This collection may contain thousands of polynomials. Despite the fact

that these are all good polynomials, there is still significant variation between best

and worst yields in the collection. Indeed, the variation may exceed a factor of 50%.

Since there are still too many polynomials to conduct sieving experiments, we require

a fast and reliable procedure for rating the polynomials according to their yield, and

therefore identifying the best ones.

Below we outline this procedure. For simplicity of explanation we consider the

non-skewed case first. The skewed case is then a simple generalisation.

5.2.1 Non-skewed Polynomials

Consider first only the non-linear polynomial F1(x, y). Often with non-skewed poly-

nomials, all considered values of m are similar, so the rating is determined mainly by

F1. Later we make trivial adjustments to consider F2 also.

To ensure reliability of the rating it is crucial to have an accurate estimate of α(F1).

Hence, at this point we compute contp(F1) for small p directly. That is, from a sample

of F1-values we count appearances of pk for k ≥ 1 and take contp(F1) to be the mean

number of appearances per value. This slows the procedure somewhat, but since small

pk make a large difference to yield and since usually some small p are not well behaved,

the extra computation is important. In fact we compute contp(F1) directly for p < 100,

and estimate contp(F1) for 100 < p < 2000.

Now, since F1 is homogeneous, in polar coordinates

F1(x, y) = rdF1(cos θ, sin θ).

At fixed θ = θi any two polynomials of degree d grow as the d-th power of r along

θi. So the values F1(cos θi, sin θi) are the most relevant for rating the yields of these

polynomials.
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Hence we fix r = 1 and put

uF1
(θi) =

log |F1(cos θi, sin θi)| + α(F1)

logB
.

We divide the interval [0, π] uniformly into K sub-intervals and put

θi =
π

K

(

i− 1

2

)

for i = 1, . . . ,K. That is, θi is the mean value of θ on the i-th sub-interval. Now we

compute

E(F1) =
K
∑

i=1

ρ(uF1
(θi)) (5.6)

and take E(F1) to be an estimated rating of F1. That is, polynomials are ranked in

descending order of E(F1) values. The value of K is not crucial to the comparison

between polynomials, but we use K = 1000.

Now consider also the linear polynomial F2(x, y). Smoothness bounds for F1 and

F2 may be different, so we denote by BFj
the smoothness bound for Fj . With

uFj
(θi) =

log |Fj(cos θi, sin θi)| + α(Fj)

logBFj

for j = 1, 2 we take E(F1, F2) defined by

E(F1, F2) =
K
∑

i=1

ρ(uF1
(θi))ρ(uF2

(θi)) (5.7)

to be the estimated rating of a given pair of polynomials. That is, pairs of polynomials

are ranked in descending order of E(F1, F2) values.

Note 5.2.1 The values E(F1) for single polynomials should be compared only between

polynomials F1 of the same degree, and E(F1, F2) values for pairs of polynomials should

be compared only between pairs of polynomials which are pairwise of the same degree.

Note 5.2.2 We observe the ranking induced by E to be independent of variations

in B. Amongst all polynomials this is not necessarily true, but amongst a set of

candidate polynomials in practice we expect this to be the case. Hence for example,

using sub-optimal smoothness bounds should not change the fact that a polynomial is

“good”.
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5.2.2 Skewed Polynomials

Here we generalise the previous computation to give a fair profile of F1 and F2 across

a skewed region whose length to width ratio is s. Note that since values of m amongst

polynomials may now differ substantially, both F1 and F2 should be considered at all

times.

Consider F1 and F2 around an ellipse of fixed area, whose major and minor axes

are in the ratio s. In particular let s1 =
√
s and s2 = 1/

√
s and consider the ellipse

x = s1 cos θ

y = s2 sin θ

for θ ∈ [0, π]. We again divide the θ interval uniformly into K equal sub-intervals and

take θi for i = 1, . . . ,K to be the mean value of θ in each sub-interval.

With

uFj
(θi) =

log |Fj(s1 cos θi, s2 sin θi)| + α(Fj)

logBFj

for j = 1, 2 we take E(F1, F2) defined by

E(F1, F2) =
K
∑

i=1

ρ(uF1
(θi))ρ(uF2

(θi)) (5.8)

to be the rating of a given pair of polynomials. That is, pairs of polynomials are ranked

in descending order of E(F1, F2) values.

For any given N , at most approximately twenty polynomial pairs with highest E

ratings will then be subjected to short sieving experiments.

5.3 Summary

In this chapter we have described methods for finding good base-m polynomials. We

consider both skewed and non-skewed cases. In each case we consider two problems.

The first is the problem of generating large samples of polynomials which are small

and have good root properties. In the case of non-skewed polynomials, we look only

amongst polynomials whose first two coefficients are known to be small, and which

have many projective roots modulo small pk. We leave the appearance of many non-

projective roots modulo small pk to chance. In the case of skewed polynomials, we look

only amongst polynomials with skewed coefficients and unusually small average size

over some skewed rectangle, and with many projective roots mod small pk. Moreover,

we make use of the fact that the last few coefficients of highly skewed polynomials

are large, with an efficient method of isolating polynomials which also have good non-

projective roots modulo small pk.
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Having generated a large sample of good polynomials the second problem becomes

isolating, without sieving, the best polynomials in the sample. In both skewed and

non-skewed cases we do this by profiling the smoothness probability of each pair F1, F2

(adjusted for root properties), across the appropriate sieve region.



Chapter 6

Polynomials for RSA

Factorisations

This chapter is a report on polynomial selection for several large RSA factorisations.

We use the factorisations to exemplify and investigate the techniques described in

previous chapters.

The two new factorisations discussed here are RSA-140 and RSA-155. Recall from

Section 1.2.4 the details of the RSA Factorisation Challenge. The factorisation of

RSA-140, completed in February 1999 set a new general factorisation record. At the

time of writing this thesis, sieving for the factorisation of RSA-155 is complete. We

expect the new record to be announced by September 1999. In this chapter we also

re-consider the previous record set in 1996, RSA-130, as a means of testing some of

the procedures of previous chapters.

Throughout this chapter we examine polynomials from two perspectives, namely

local and global. The local perspective involves comparing individual polynomials and

their properties. The global perspective involves placing polynomials in the context

of the space of available polynomials - for example by asking questions like “how do

the yields of the polynomials we now find compare to the yields of randomly chosen

polynomials?”. We take both local and global perspectives on polynomials examined

for all three integers RSA-130, RSA-140 and RSA-155, however we emphasize the local

perspective for the first two and the global perspective for the last one.

In Section 6.1 we examine polynomial selection for RSA-130. We seek polynomials

which, under the conditions used for that factorisation and reported in [23], would

improve the sieving time. Working under the conditions used in the factorisation

means that we should consider only non-skewed polynomials. Hence we test Procedure

5.1.4 and the E rating procedure of Section 5.2. Even using only these techniques, the

improvement obtained in a comparatively tiny period of time is surprising. Ultimately

we find that in a fraction of the time used for the actual RSA-130 polynomial search

we identify several polynomials whose full yields are 1.5–2 times that of the polynomial

used in the factorisation. We will consider briefly a global comparison, by comparing

89
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the yield of the best polynomial so obtained to that of a polynomial of average yield

for RSA-130.

In Section 6.2 we turn to RSA-140. When actually conducting this search, we first

considered using non-skewed polynomials found by Procedure 5.1.4. Once it was clear

we could obtain polynomials with better root properties and good size by Procedure

5.1.6, we decided to use the skewed polynomials. We use the RSA-140 factorisation to

examine locally the properties of the best skewed polynomials, and to compare locally

the best skewed and non-skewed polynomials. Since the procedure to find the skewed

polynomials was under development during the search, we do not have a sufficiently

large sample of skewed polynomials for detailed global considerations, so we consider

only the comparison of best skewed polynomials to average skewed polynomials.

Given the results achieved with RSA-140, we searched only amongst highly skewed

polynomials for RSA-155. The results are discussed in Section 6.3. We conducted a

more comprehensive search, indeed several users ran the search program. It is timely

to mention that we are particularly grateful to Arjen Lenstra for porting the search

code to use his multiple precision arithmetic package LIP. That allowed other users

to run it. Bruce Dodson ran several search jobs for RSA-155 polynomials, and the

polynomial chosen for the factorisation appeared from one of his searches.

Since we therefore have a large and “stable” sample of good polynomials for RSA-

155, we are able to make a more detailed global examination of the polynomials we

find using Procedure 5.1.6. We do this in Section 6.3, as well as examining the top few

polynomials locally. The global comparsions we make are aimed at

• placing the sample of polynomials generated during the search in the context of

randomly generated polynomials, and

• examining the trade-off between polynomial search time and the corresponding

saving in sieving time.

Section 6.4 contains a summary of this chapter.

All polynomials which are not given explicitly in the text of this Chapter are given

in Appendix B.

6.1 RSA-130

By re-examining the polynomial selection task for the factorisation of RSA-130 we

aim to test Procedure 5.1.4 for finding good non-skewed polynomials, and the ratings

E(F1, F2) and E(F1) of Section 5.2. We discuss three sets of polynomials, Pi, Qi, and

Ri. The Pi polynomials are the actual candidates discussed in [23], the Qi are a better

set of candidates we generated, and the Ri are the best candidates we generated.
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6.1.1 The Fifteen Candidate Polynomials

The paper [23] describes a set of fifteen candidate polynomials considered for the

factorisation of RSA-130. These fifteen polynomials were generated over some time,

and identified as being good candidates on the basis of a rating measuring the size of

the values taken by the polynomials [37]. The polynomials are labelled 1–15 according

to this initial ranking, Polynomial 1 being the best ranked polynomial and Polynomial

15 the worst. According to [23] all fifteen candidates were then subjected to extensive

sieving experiments and ranked according to their “true” yield as revealed by those

experiments. The sieving experiments measured the yield of each pair of polynomials

F1, F2. The two left-most columns (reproduced from [23]) of Table 6.1 show the rank

and relative yields according to these experiments (we will refer later to the two right-

most columns of this table).

[23] yield (%) F1 yield (%)

14 100.0 14 100.0
4 99.1 4 98.6
1 93.7 1 90.2
12 87.5 12 87.3
8 82.2 8 77.7
3 80.0 2 74.7
10 77.8 9 73.4
2 76.8 11 73.0
11 76.6 10 72.7
15 75.9 3 72.3
9 75.4 15 71.6
5 70.1 5 67.9
7 64.9 13 61.4
13 64.2 7 60.0
6 57.8 6 52.9

Table 6.1: Sieving the RSA-130 polynomials

We refer to Polynomials 1, . . . , 15 as P1, . . . , P15. Polynomial P14 was selected

for use in the factorisation of RSA-130, and it becomes the polynomial we use as a

benchmark for the polynomials we find.

Since they were selected on the basis of their size, the fifteen candidate polynomials

all have unusually small coefficients. The largest value of χ for any of these polynomials

is χ = 0.004. However, they have a generally poor set of root properties. Table 6.2

gives the values α(F1) for P1, . . . , P15.

Most of the candidate polynomials have α(F1) > 0, so for these polynomials sieving
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F1(x, y) 1 2 3 4 5 6 7 . . .

α(F1) 1.09 1.15 1.96 0.58 1.50 2.15 2.60 . . .

. . . 8 9 10 11 12 13 14 15

. . . 0.62 0.20 0.78 1.04 −0.01 1.88 −0.40 0.44

Table 6.2: Root properties of the RSA-130 polynomials

is being conducted over integers less likely to be smooth than random integers of the

same size. The reason P14 performs much better in sieving experiments than expected

on the basis of its size alone, is that α(P14) is signficantly smaller than for the other

polynomials. Actually α(P14) < 0 not because P14 has many non-projective roots

modulo small primes, but because the leading coefficient of P14 has many small prime

factors. Indeed

a5 = 5748302248738405200 = 24 · 34 · 52 · 192 · 331 · 114213131.

That is, P14 has many projective roots for small p.

6.1.2 On the Reliability of E

We now use the fifteen polynomials from [23] and more of our own to test the reliability

of E as a pre-sieving yield rating procedure.

Remark 6.1.1 Clearly the initial ranking of [23] based on size alone is inaccurate.

Another method is mentioned without detail in [23] as being devised after the factori-

sation and giving reasonable correlation with the true rank for that set of polynomials.

That method is due to Peter Montgomery and involves estimating the root mean square

of each polynomial in some region and subtracting an estimate of the contribution of

the small primes to that value. Indeed, we use an estimate similar to this as a first

filter in Procedure 5.1.6, and we will see that again in Section 6.2. Our E method can

be viewed as an extension of this method. The key differences are that we make a

more accurate assessment of the effect of root properties, and we use the ρ function to

emphasize regions of high smoothness probability where the polynomial takes smaller

values.



6.1 RSA-130 93

Table 6.3 gives the rankings on the fifteen candidate polynomials of [23] under our

E(F1, F2) ranking and under application of Montgomery’s method of Remark 6.1.1.

Actual Yield [23] rank E rank

Polys Rank Polys Rank Polys Rank

14 1 4 2 14 1
4 2 14 1 12 4
1 3 8 5 4 2
12 4 10 7 1 3
8 5 15 10 9 11
3 6 1 3 3 6
10 7 12 4 2 8
2 8 3 6 8 5
11 9 9 11 15 10
15 10 2 8 10 7
9 11 11 9 11 9
5 12 7 13 5 12
7 13 13 14 13 14
13 14 5 12 7 13
6 15 6 15 6 15

r = 0.86 r = 0.91

Table 6.3: Rankings of the 15 candidate RSA-130 polynomials, E(F1, F2)

The first column gives the true ranking revealed by the sieving experiments in [23].

Its left sub-column contains the polynomial labels, and its right sub-column contains

the rank. So P14 is ranked first, and P6 is ranked fifteenth. The second column gives

the ranking induced by the method mentioned in [23]. Its left sub-column lists the

polynomial labels in the order in which they are ranked, and its right sub-column gives

the true rank of each polynomial. So this method ranks P4 in first position (but P4’s

true yield ranks second), P14 in second position (but P14’s true yield ranks first), and

so on. The third column gives the ranking induced by E, listed in the same fashion as

the second column.

One measure of the reliability of a ranking is its correlation coefficient with the true

ranking, as defined in [23]. The correlation with the true rank for the method of [23] is

r = 0.86, and for the E method r = 0.91. That is not a dramatic improvement, but the

E ranking does seem to be more successful as a predictor, in the sense that it identifies

better the very best polynomials. The trade-off of course is that our method is slightly

more time consuming to compute. Indeed as indicated in Section 5.2 a method similar

to that described in [23] is used before E to screen out the very worst polynomials.
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6.1.3 Eighteen Different Candidates

We now introduce a new set of candidate polynomials labelled Q1, . . . , Q18. These

polynomials were generated using only the observation of Section 5.1.1 which isolates

polynomials with small ad and ad−1, then screening by E. We did not force these

polynomials to have highly smooth ad; root properties were left entirely to chance.

The purpose of exhibiting these polynomials is two-fold:

• to show that even leaving root properties to chance, significant improvements can

be made provided we know what to look for (that is, having a reliable pre-sieving

rating procedure)

• to give another set of test polynomials on which the E rating ought to work

reliably.

The relative yields of the polynomials Qi were determined by the sieving experi-

ments described in the following remark.

Remark 6.1.2 We sieved across the entirety of the rectangle −104 ≤ x ≤ 104 and

1 ≤ y ≤ 104, using only the quintic polynomial F1. Omitting the linear polynomial

makes the experiments much quicker, and does not significantly affect the outcome

since all values of m used are similar. Furthermore, in the first instance we sieved

only for full relations (B = 11380951). To verify the reliability of these smaller and

restricted sieving experiments, we also sieved each of the quintic candidate polynomials

P1, . . . , P15 in this way. The results form the right hand columns of Table 6.1. The

correlation coefficient of the ranking according to our experiments and the ranking

according to experiments of [23] is 0.92. The differences appear only where the relative

yields are very close. The full yield of P14 we obtained is 15990 relations - from this

the relative yields below can be placed in perspective.

The left column of Table 6.4 lists the polynomials labelled 1, . . . , 18 in the order

in which their yields appear from our sieving experiments. Its right sub-column gives

the full yield relative to the benchmark P14. So the best polynomial found by these

primitive means has a full yield 47% better than that used to factorise RSA-130. The

middle and right hand columns give the rankings of these polynomials by the method of

[23] (adjusted to consider only the quintic polynomial) and the ranking E(F1) (although

as we would expect, adjusting the rankings to take into account only the non-linear

polynomial makes little difference). The former method has correlation r = 0.53 and

the latter r = 0.91 with the ranking revealed by the sieving experiments. Notice that

E again isolates the very best polynomials reliably. Since the range of relative yields

of Q1, . . . , Q18 is smaller than that in P1, . . . , P15, we consider them a more difficult

set of polynomials to rank well.
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Actual Yield [23] E

Rank cf Poly P14 Rank Rank

1 1.47 5 1
2 1.37 6 3
3 1.34 2 6
4 1.33 4 7
5 1.31 8 2
6 1.30 12 8
7 1.28 17 4
8 1.27 13 10
9 1.26 11 5
10 1.23 1 9
11 1.23 18 15
12 1.23 9 11
13 1.22 14 18
14 1.16 10 13
15 1.16 3 12
16 1.16 15 14
17 1.15 7 17
18 1.14 16 16

r = 0.53 r = 0.91

Table 6.4: Rankings of 18 better RSA-130 polynomials, E(F1)

Amongst the polynomials generated during this search, we found several with coeffi-

cients as small as those in P1, . . . , P15 . However, none of these polynomials have yields

significantly better than P14. Instead, the better polynomials here all have coefficients

significantly larger than those of P1, . . . , P14 but better root properties. Polynomial

Q1 for example as χ = 0.016. Table 6.5 shows the root properties of Q1, . . . , Q18.

Of course the polynomials Qi are of no practical use, because their yields are poor

compared to the polynomials we exhibit next.

6.1.4 Good Polynomials for RSA-130

We conducted a brief search for RSA-130 polynomials using the entirety of Procedure

5.1.4, combined with the E ranking procedure.

Table 6.6 shows the full yields of the best polynomials identified in this search,

relative to the yield of P14 and according to experiments conducted as in Remark

6.1.2. We exhibit also values of α and χ for each polynomial.

So the best polynomial identified by this method has a full yield twice that of the

polynomial used to factorise RSA-130.
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F1(x, y) 1 2 3 4 5 6 7 8 9

α(F1) −3.62 −2.45 −2.15 −2.70 −2.15 −2.01 −2.19 −2.68 −1.93

. . . 10 11 12 13 14 15 16 17 18

. . . −2.03 −2.43 −2.24 −2.08 −1.82 −1.71 −0.95 −2.10 −1.87

Table 6.5: Root properties of Q1, . . . , Q18

Poly. Yield cf P14 α χ

1 2.00 −3.88 0.011
2 1.98 −3.92 0.015
3 1.89 −3.94 0.017
4 1.66 −4.00 0.018
5 1.63 −4.30 0.016
6 1.48 −3.20 0.014

Table 6.6: Good RSA-130 polynomials

We performed more experiments to confirm the yield of polynomial R1. Sieving for

full and large prime relations using B1 = 11380951 and B2 = 120000000 in accordance

with [23] revealed a total yield (the sum of full yield, 1LP- yield and 2LP- yield)

1.83 times that of polynomial P14. Hence the true benefit obtained from R1 could

be anything from a factor of approximately 1.8 to 2, depending on the particulars of

the sieving technique. We also repeated this experiment using both the linear and

algebraic polynomials in each case, using B1 = 3497867 and B2 = 120000000 for the

linear polynomial in accordance with [23]. We again found that the total yield of R1

is 1.83 times that of P14.

Compare the α values of the polynomials Ri to those of the polynomials Qi. The

difference is of course due to the forced projective roots in the Ri polynomials. Another

illustration of this effect is Example 5.1.3.

Figure 6.1 shows values of the homogeneous polynomial R1(x, y) over a portion of

the sieve region. The portion is −106 ≤ x ≤ 106 and 1 ≤ y ≤ 106. The diagonal lines

eminating from the origin are the three real roots x/y of R1. Most of the relations of
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course will come from the darker “valleys” carved by the real roots.
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Figure 6.1: Polynomial R1

Finally in this section we make a brief global observation by comparing the yield of

R1 to that of a polynomial of average yield. To find a polynomial of average yield we

chose 100 base-m representations by choosing m uniformly at random in the relevant

range. We then took a polynomial of average yield to be the polynomial in this sample

whose E rating was closest to the mean rating of the sample. This suffices as an

approximation to a polynomial of average yield, and saves sieving a large sample of

polynomials. We found

mavg = 12109254733486649468460.

Sieving as in Remark 6.1.2 shows that Polynomial R1 has a full yield 5.9 times that of

the polynomial obtained from mavg .

6.1.5 Some Timing Considerations

It is instructive to examine the comparitive timings of the three searches described

here. The actual search for RSA-130 polynomials (that is, the generation of the Pi

polynomials) occupied approximately three months on each of four processors [37].

Generation of the polynomials Qi - using primitive means but with knowledge of what

to look for - occupied approximately one month on one processor. Generation of the
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polynomials Ri - using Procedure 5.1.4, including forcing polynomials to have many

projective roots modulo small p - occupied approximately 36 hours on one processor.

Hence, even leaving non-projective roots modulo small pk to chance we obtain an

improvement of approximately a factor of two in a trivial amount of time.

6.2 RSA-140

Full details of the RSA-140 factorisation are to be found in [16]. Here of course we

comment only on the polynomial selection. Since we used both skewed and non-skewed

searches, this is a good chance to compare the results obtained and demonstrate the

benefit gained using Procedure 5.1.6 over Procedure 5.1.4.

We need to be mindful now that each “polynomial” is in fact a pair of polynomials.

In the case of non-skewed polynomials, this is not confusing because all values of

m are similar. However, in this section and the next we compare amongst skewed

polynomials, and compare skewed polynomials to non-skewed polynomials. We shall

now refer explicitly to polynomial pairs when necessary to avoid ambiguity.

6.2.1 Non-skewed Polynomials

For the sake of comparison we include the best non-skewed polynomial pair found in

the initial search for RSA-140 polynomials using Procedure 5.1.4. We met this pair

earlier in Example 5.1.5. We have

G1(x, y) = 237866611103421300000x5

−514856715582822510304x4y
−4722668925346720843884x3y2

+6545365626333869758617x2y3

−3356924353646091366162xy4

−5142225622472630020004 y5

G2(x, y) = x− 617119742304446938751913 y.

with α(G1) = −4.2 and χ(G1) = 0.011. When considering skewed polynomials of

course χ becomes an inappropriate quantity to consider, but we deal with this problem

in the next subsection.

As was the case with RSA-130, we compare the yield of the best non-skewed poly-

nomial to that of an average non-skewed polynomial. We chose an average non-skewed

polynomial for RSA-140 using the same procedure as described at the end of Section

6.1.4 for RSA-130 polynomials. That gave

mavg = 440395459923337101533211.

Polynomial G1 has a full yield 5.9 times that of the polynomial given by mavg. Notice

that this is (perhaps coincidentally) the same improvement over the average case that

is noted in Section 6.1.4 for RSA-130.
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6.2.2 Skewed Polynomials - Local Considerations

The sieving for RSA-140 was conducted using a combination of sieving techniques. We

performed line sieving using the CWI siever, and lattice sieving using the AKL siever

(see Section 2.1.3). The final stage of the polynomial selection process is of course to

conduct sieving experiments on the chosen few, with the best performing polynomial

pair in those experiments becoming the chosen one.

Remark 6.2.1 The sieving experiments for RSA-140 were conducted at CWI using

only the CWI siever. The rational factor base bound was 8000000, the algebraic

factor base bound 16777215, and the large prime bounds 500000000 and 1000000000

respectively. To obtain a reasonable profile of a polynomial pair over the entire sieve

region in a short period of time, we used a sample of b-values across the region rather

than every b-value in a short interval. Each pair was sieved over the same number of

(a, b) pairs in a region skewed appropriately for that polynomial. It is possible that

using only a sample of b-values may cause some projective behaviour modulo small p

to be over or under emphasized during the experiment. However we do not consider

this a major problem.

Although the E ranking procedure works well, the value E(F ) for any given F has no

real physical significance - it’s merely the ordering on E over a set of polynomials that

is relevant. In this section and the next we would like to interpret physical differences,

inasmuch as they influence yield, between the polynomials under investigation. Hence,

we also use data obtained as a first filter on polynomials from Procedure 5.1.6. In

particular, we have

I(F,S) = log

(
√

∫ ∫

S
F 2(x, y) dxdy

)

,

which we use to compute the average size of F over its rectangle S. Recall that S has

length to width ratio s. To compare relative sizes of different polynomials we compute

I(F,S), with the area of S invariant across the polynomials. We use

S = {(x, y) ∈ R : −
√
s ≤ x ≤

√
s and − 1/

√
s ≤ y ≤ 1/

√
s}

and take I(F,S)/4 to be the average log size of F over S. We then use

E(F ) = I(F,S)/4 + α(F )

as an initial and approximate rating of F .

Notice also that construction of the E rating is similar to the ideas underpinning the

procedure of [23] mentioned at Remark 6.1.1. We should be wary that, as a ranking

mechanism, E is not as reliable as E. Indeed, we do not even bother to consider
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F2(x, y) = x−my in computing E(F ). We do find however that, apart from being a

useful and quick first filter, E adds to our understanding of the results.

Table 6.7 gives relevant statistics on the top five candidates for RSA-140, according

to experiments conducted pursuant to Remark 6.2.1. The sixth polynomial pair in the

table, F 140, we describe later.

Poly. Rel. Yield Av. Size α E E rank

A140 1.00 47.91 −7.01 40.82 2
B140 0.965 47.71 −6.57 41.14 1
C140 0.957 48.13 −6.85 41.28 4
D140 0.931 47.95 −6.91 41.04 3
E140 0.930 45.95 −5.00 40.95 5

F 140 0.128 48.97 −0.17 48.80 ∞

Table 6.7: Relative yields of the top RSA-140 polynomials

Although the E rank given in the table refers to the rank revealed by E over all

polynomials generated, the same cannot be said of the E values in the table. Several

other polynomials (with similar values of m) had E values similar to those in the table,

but were shown by E and sieving experiments to have inadequate yields.

Polynomial pair A140, which we have seen before, is the one used for the factorisa-

tion. Indeed, A140 = (F1, F2) with

F1(x, y) = 439682082840x5

+390315678538960x4y
−7387325293892994572x3y2

−19027153243742988714824x2y3

−63441025694464617913930613xy4

+318553917071474350392223507494 y5

F2(x, y) = x− 34435657809242536951779007 y

and s ≈ 4000. Notice that a5 factors as 23 ·32 ·5·7·11·13·41·29759. Since also 4|a4 and

2|a3, F1(x, y) is divisible by 8 whenever y is even. F1(x, y) has at least three roots x/y

modulo each prime from 3 to 17 (some of which are projective), and an additional 35

such roots modulo the 18 primes from 19 to 97.

By way of comparison to Figure 6.1 we include a similar figure, Figure 6.2 for

this F1. We use −44000 ≤ x ≤ 44000 and 1 ≤ y ≤ 22 to give the region displayed

approximately the same area as that in Figure 6.1.

As with R1 for RSA-130, the most fertile sources of relations are the valleys cut by

the real roots eminating from the origin.
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Figure 6.2: F1(x, y) for RSA-140

We are now in a position to compare the polynomial pair A140 to the best non-

skewed pair (G1, G2) above. We performed sieving experiments of the type described

in Remark 6.2.1 on (F1, F2) and (G1, G2), using s = 1 for G1. We found the yield of

the best skewed pair A140 is 1.61 times that of (G1, G2). From this we also estimate

that A140 has a yield approximately 9.5 times that of the average non-skewed selection.

We note that the average size of G1 is 52.27. This is significantly larger than

that of the top five polynomials in Table 6.7, and is due to the fact that m is chosen

significantly larger in the skewed case to force the leading coefficients of the skewed

polynomials to be so small. Hence, particularly when looking close to the origin,

considering only the non-linear polynomial in E favours the skewed case.

6.2.3 Skewed Polynomials - Global Considerations

We now compare A140 to a skewed selection of average yield. We generated a large

random sample of skewed polynomials using Procedure 5.1.6 with randomised ad in

the appropriate range and without rotations which would normally secure good non-

projective root properties. We talk more about the distribution of random skewed

polynomials when discussing RSA-155. For now we compare A140 to a particular

average selection. We took the average selection to be the polynomial in the sample

whose E rating was closest to the mean value. This gives the pair F 140 in Table 6.7.
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As shown in Table 6.7, we find the yield of A140 is 7.8 times that of the average skewed

selection.

Over the entire random sample we found the mean average size of the quintic

polynomials F1 to be 49.15 and the mean α(F1) to be −0.35. Comparing to the values

of the top five candidates in Table 6.7 suggests that most of the benefit we are obtaining

comes from root properties rather than size.

6.2.4 Some Timing Considerations

It is estimated that the time spent searching for RSA-140 polynomials, including an

initial search for non-skewed polynomials and the developmental phase of the skewed

polynomial search, is approximately equivalent to 2000 CPU hours on one 250 MHz

Origin 2000 processor. This is very approximately equivalent to 60 MIPS-years. Given

that the sieving time was approximately 2000 MIPS-years, we arrive at the question of

whether it would have been worthwhile to continue searching for polynomials rather

than start sieving.

In the case of RSA-140 there were pragmatic considerations which made it ap-

propriate to stop the polynomial search when we did. We wanted to use increased

idle time on workstations over the Christmas period for sieving, so we stopped the

polynomial search just before Christmas 1998.

However the question remains. To consider this question we use the larger sample

of polynomials examined during the RSA-155 polynomial search.

6.3 RSA-155

First we give the necessary local considerations by examining the top few candidates

and their properties, and the performance of the E ranking. We then move to global

considerations. We consider a large sample of randomly generated skewed polynomials

and compare the yield of the pair being used for the factorisation to that of a pair from

the random sample with average yield. We then turn to the random sample as a whole,

and compare its distribution to that of the sample of polynomials generated during the

search. Finally, we use the sample of generated polynomials and some approximations

to consider the trade-off between polynomial search time and sieving time.

6.3.1 Local Considerations

As in the RSA-140 factorisation, sieving for RSA-155 was conducted using both the

AKL and CWI sievers. A large portion of the RSA-140 relations (55%) were generated

using the AKL siever. Final statistics are not yet available, but we expect that portion

to be larger for RSA-155 (new contributors of sieving machines are using the AKL

siever). Hence, sieving experiments on the top few RSA-155 candidate polynomials

were conducted on both sievers.
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Remark 6.3.1 RSA-155 sieving experiments using the CWI siever were again con-

ducted at CWI in the manner decribed in Remark 6.2.1. Experiments on the AKL

siever were run by Arjen Lenstra as follows. For each polynomial pair sieving was con-

ducted over each special q in the ranges i · 107 ≤ q ≤ i · 107 + 500 for i = 2, 3, . . . , 12.

Since the precise number of special q per polynomial is variable, we use the number

of relations obtained per special q as the yield measure in these experiments. For

implementation specific reasons, the smoothness bounds used on the AKL siever were

slightly different to those used on the CWI siever. On the AKL siever, the rational

factor base bound was 3497867, the algebraic factor base bound 12174433. The large

prime bounds were the same as in Remark 6.2.1.

We note that in addition to actual yield, time per relation is a relevant quantity

to compare between polynomials. For polynomials whose yields are very close, the

average time per relation may well determine which polynomial is used. This situation

has not yet arisen in practice. Moreover, empirically determined time per relation

figures can be unreliable since they depend heavily on the load, memory and cache

properties of individual machines. Hence we report here only the yield figures.

Table 6.8 gives statistics on the top eight candidates for RSA-155. They are listed

in the order revealed by sieving experiments with the AKL siever. Polynomial pair

F 155 is referred to later.

Poly. Rel. Yield Rel. Yield E rank Av. Size α E
(AKL) (CWI)

A155 1.00 1.00 1 50.51 −6.25 44.26
B155 0.99 0.96 2 52.43 −6.44 45.99
C155 0.95 0.99 3 51.97 −6.59 45.37
D155 0.89 0.93 4 51.11 −5.74 45.37
E155 0.86 0.85 5 52.08 −6.83 45.22
F155 0.86 0.90 6 52.24 −6.07 46.17
G155 0.85 0.89 8 52.04 −5.43 46.11
H155 0.76 0.83 7 52.95 −6.63 46.32

F 155 0.07 ∞ 55.69 −0.29 55.40

Table 6.8: Relative yields of the top RSA-155 polynomials

Tests with the CWI siever place C155 higher and E155 lower than with the AKL

siever. There is a strong correlation between the ranking revealed by E and that of

the sieving experiments, particularly with the AKL siever.

As was the case with RSA-140, we comment that the ranking of E values, though

informative, may be misleading. Several other polynomials had E ratings as good as
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the polynomials in the table (with similar m values), but were shown by E and sieving

experiments to have lesser yields.

The pair A155, being used for the factorisation, is

F1(x, y) = 119377138320x5

−80168937284997582x4y
−66269852234118574445x3y2

+11816848430079521880356852x2y3

+7459661580071786443919743056xy4

−40679843542362159361913708405064 y5

F2(x, y) = x− 39123079721168000771313449081 y

with s ≈ 10800. We have a5 = 24 · 32 · 5 · 112 · 19 · 41 · 1759. Also, F1(x, y) has 21

roots x/y modulo the six primes from 3 to 17 (some of which are projective), and

an additional 34 roots modulo the 18 primes from 19 to 97. Notice that F1 has root

properties just as good as the other polynomials in the table. Compared to the other

polynomials in the table however, F1 has unusually small average size. This is a nice

example of root properties and size combining to produce our best polynomials.

6.3.2 Global Considerations

A sample of 10000 random skewed polynomials was generated for RSA-155 using the

same procedure as for RSA-140. We refer to this sample as the random sample. We

again chose an average skewed polynomial to be one whose E rating is closest to the

mean of the random sample. This gives the pair F 155 of Table 6.8. We find the yield

of A155 is 13.5 times that of F 155. Comparing this to the figure of 7.8 for the RSA-

140 selection we find that the RSA-155 selection is about 1.7 times better, relatively

speaking, than the RSA-140 selection.

Over the entire random sample we found the mean average size to be 55.4 and the

mean α to be −0.1. Comparing to the values of the top eight candidates in Table 6.8

again suggests that most of the benefit is coming from root properties, although we do

have more benefit from size here than was the case for RSA-140.

We generated a large sample of candidate polynomials during the RSA-155 search.

As a first filter, we accepted polynomials for which E(F1) ≤ 47.0. We found 8200 such

polynomials, and these form the generated sample. Relative yield is the best measure

of the value of the generated sample, but another useful measure is the frequency with

which good polynomials occur compared to the random sample.

We examine this by comparing the distribution of the generated polynomials to

that of the random sample. Actually we examine the distribution of E values of these

polynomials, because the E measure is sufficiently quick to compute for large samples,

and it has some physical significance. Hence the term distribution of good polynomials

refers to the frequency distribution of E(F1) over the relevant sample.
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Figure 6.3 shows distributions of the random and generated samples.
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Figure 6.3: Distribution of random and generated polynomials for RSA-155, see Re-
mark 6.3.2

The horizontal axis gives E ratings; better polynomials have lower E ratings and

occur towards the right hand side. The vertical axis gives the frequency at which each

rating occurs, relative to the modal rating. The leftmost peak is the random sample.

We are interested in the right hand tail of this curve. The smallest rating found in the

random sample of 10000 polynomials is E = 49.2. The largest rating considered in the

generated sample is 47.0, so the generated sample lies entirely within the unobservable

tail of the random sample.

The rightmost peak is the generated sample.

Remark 6.3.2 The frequencies of the generated sample have been renormalised to

the value at E = 47.0, so that we may see them.

As we saw in Table 6.8, the best polynomials have approximately E < 46.0. These

polynomials lie in the unobservable tail of the generated sample, and hence in the

unobservable tail of the unobservable tail of the random sample.

For the sake of completeness we include the analogous figure for RSA-140 polyno-

mials (Figure 6.4). The random sample here contains 5700 polynomials. The generated

sample contains far fewer polynomials (400), and is not neatly distributed. Again this

is because the search procedure was under development during the RSA-140 search.

However, it is useful to note that the random sample is distributed similarly to that

of RSA-155, and the generated sample lies well into the tail of the random sample.
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Figure 6.4: Distribution of random and generated polynomials for RSA-140

Let us return to the RSA-155 figure and quantify the extent of the unobservability.

We denote by µr(E) the relative frequency in the random sample of polynomials of

rating E.

Remark 6.3.3 The distribution shown in Figure 6.3 actually counts E values in in-

tervals of length 0.1. So, formally we regard µ(E) as being the relative frequency of

polynomials F1 with rating E − 0.05 ≤ E(F1) ≤ E + 0.05.

The next step is to fit a curve to the µr(E) distribution. Using least squares regression

to fit a polynomial to log µr(E) we found the best fit using

µr(E) = exp(a+ bE + cE2)

with

a = −1258, b = 45.8, c = −0.417.

Figure 6.5 shows the fit of this curve with the random sample.

The quantity

νr(E1, E2) =
µr(E1)

µr(E2)
= exp {(E1 −E2)(b+ c(E1 +E2))}

gives the frequency at which polynomials of rating E1 appear compared to those with

rating E2. Table 6.9 shows this quantity at some interesting points on the curves in

Figure 6.3 (the modal rating in the random sample is 54.6).
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Figure 6.5: Actual and fitted distributions for random sample

Remark 6.3.4 It might be considered useful to examine the cumulative frequency of

E ratings. That is, asking “what is the relative frequency of polynomials with ratings

at least as good as E?”. However since the frequency decreases so quickly as a function

of E, the relative frequency itself becomes the determining factor. We content ourselves

with examining just the relative frequency in the context of Remark 6.3.3.

Hence, our best few polynomials occur approximately 1018 times more rarely than

average polynomials. Moreover our best few polynomials occur more than one million

times less often than the cut-off polynomials. If we had been searching at random

then finding our cut-off polynomials, let alone our best few, would have been out of

the question.

6.3.3 Some Timing Considerations

Fortunately, we do not search at random. Our search procedure is of course biased

towards finding good polynomials. We now focus on the distribution of the generated

sample rather than the random sample, to deal with the question “for how long should

we search?”.

Similarly to µr(E) above, denote by µg(E) the relative frequency in the generated

sample of polynomials with rating E. Using least squares regression to fit a polynomial

to logµg(E) we found the best fit using

µg(E) = exp(a+ bE)
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E1 E2 ν(E1, E2)

54.6 47.0 1011.5

54.6 45.0 1018.0

47.0 46.0 103.1

47.0 45.0 106.5

47.0 44.0 1010.3

Table 6.9: Relative frequencies of good polynomials

with

a = −278.5, b = 5.92.

Notice that we obtain a linear exponential for the generated sample as opposed to a

quadratic exponential for the random sample. Figure 6.6 shows the fit.
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Figure 6.6: Actual and fitted distributions for generated sample

Let

νg(E1, E2) =
µg(E1)

µg(E2)
= exp{b(E1 −E2)}

be the relative frequency at which polynomials with rating E1 appear compared to

those with rating E2, in the generated sample. We use νg(E1, E2) below to estimate
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the E ratings of polynomials we might expect to obtain from a given amount of search

effort.

We will combine such an estimate with an approximation of the expected change

in yield. To quantify the expected change in yield as a function of E we extrapolate

crudely from pairs A155 to H155 in Table 6.8. Assume that, at least locally, yield

changes approximately linearly with E. Clearly this is not true, yield does not even

change monotonically with E, but this should suffice to give a rule-of-thumb approx-

imation. Using the yield figures from the AKL siever, we find that every decrease of

0.1 in E corresponds crudely to an increase of 1.2% in yield. Notice that this is the

same approximation obtained from averaging between A155 and F 155.

Final statistics on the actual sieving time for RSA-155 are not yet available. We

suggest a reasonable advance estimate is 8000 MIPS-years. This is derived using

the L-function to extrapolate from the RSA-140 sieving time (see Section 2.1.4), and

factoring in the better polynomial selection for RSA-155 relative to RSA-140. So the

estimate is 2000 · 7 · 7.8/13.5 ≈ 8000 MIPS-years.

That is, every 1% improvement in polynomial yield saves 80 MIPS-years in sieving

time. Table 6.10 shows the expected benefit obtained from κ times the search effort we

actually invested, for some useful κ. The second column uses νg(E1, E2) to estimate

the expected change in E as a result of the κ-altered search effort, the third column

uses the above rule-of-thumb to estimate the corresponding change in yield, compared

to A155. The final two columns give the expected change in polynomial search time

and the expected change in sieving time, respectively, in MIPS-years.

κ E Yield Search Sieve
(%) Time (MY) Time (MY)

0.1 −0.39 −4.7 −90 +380
0.2 −0.27 −3.2 −80 +260
0.5 −0.12 −1.4 −50 +110
1 - - - -
2 +0.12 +1.4 +100 −110
5 +0.27 +3.2 +400 −260
10 +0.39 +4.7 +900 −380
15 +0.46 +5.4 +1400 −430

Table 6.10: Costs and benefits of polynomial search time

The point to stop searching for polynomials is the point at which the marginal cost

exceeds the marginal benefit. That is, at approximately twice the effort we invested

for the RSA-155 search. We used approximately twelve machines for the RSA-155
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search. Given that we have well over 200 machines available for sieving, it would be

no practical difficulty to use, say, 25 machines for the polynomial search over the same

period of time as we used for the actual search.

We caution against over-reliance on the actual figures in Table 6.10. We suspect

µg is overly pessimistic, and of course the rule-of-thumb for yield as a function of E is

only approximate. Still, it does seem reasonable to conclude that, despite the benefit

not being great in absolute terms, it could have been worthwhile using up to twice the

effort invested in the RSA-155 polynomial search.

6.4 Summary

In this chapter we have examined two new factorisation records, RSA-140 and RSA-

155, and one old one, RSA-130.

6.4.1 RSA-130

We re-examined the polynomial selection task for RSA-130 as a means of testing Pro-

cedure 5.1.4 and the E rating. After testing on several sets of polynomials we conclude

that E gives a reliable pre-sieving ranking of yield.

Using the E rating and Procedure 5.1.4 we found, in a tiny fraction of the time spent

on the actual RSA-130 polynomial search, several significantly better polynomials. Our

best RSA-130 polynomial has a full yield twice that of the polynomial used for the

factorisation, and approximately 5.9 times that of a non-skewed polynomial of average

yield.

In essence, the RSA-130 results begin to demonstrate the benefit of knowing “what

to look for”.

6.4.2 RSA-140

The RSA-140 and RSA-155 results demonstrate the benefit of also knowing “how to

look for it”.

The RSA-140 factorisation is the first major test of Procedure 5.1.6. Our best

polynomial pair, used for the factorisation, has a full yield close to eight times that

of a skewed pair of average yield. Approximately a factor of four in that eight comes

from root properties, approximately a factor of two from size. Better polynomials

could have been obtained, but the search was truncated for practical reasons.

For comparison, we also searched initially for non-skewed polynomials using Pro-

cedure 5.1.4. The best non-skewed polynomial found has a full yield approximately

5.9 times that of an average non-skewed polynomial.
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6.4.3 RSA-155

Locally, the RSA-155 results exemplify the benefit obtain by finding polynomials with

good combinations of size and root properties. The best polynomial pair so found has

a full yield approximately 13.5 times better than an average skewed selection.

Globally, we find that such polynomials occur approximately 1018 times less often

in a random skewed sample, than average polynomials. The sample of polynomials

generated during the search however, is much more favourably distributed. Using this

distribution and some further approximations, we estimate it may have been beneficial

to invest up to twice the effort that went into polynomial selection for RSA-155. The

expected gain in yield over the polynomial pair used is not great, but it does exceed

the cost of obtaining it.

In any event, it is reasonable to conclude that for large RSA factorisations our

methods are able to find polynomial pairs whose yields are 10–15 times greater than

the average selection. This makes the sieving task for factorisation of 512 bit RSA

moduli entirely do-able with a small collection of machines. Indeed, it has been done.
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Chapter 7

Conclusions and Further Work

In this chapter we summarise the conclusions of this thesis, and suggest some areas for

further research.

7.1 Conclusions

Detailed conclusions are given at the end of Chapters 3–6. In this section we merely

summarise what is said there.

• Good number field sieve polynomials are polynomials which have good yield.

Yield can be adequately accounted for by combining measures of size and root

properties.

• Once yield is correctly accounted for, polynomials with good yield must be found.

We improve on previous efforts by introducing new techniques for finding base-m

polynomials with good combinations of size and root properties. These tech-

niques work best, particularly with regard to non-projective root properties,

when the non-linear polynomial is highly skewed. Under conditions experienced

in large RSA factorisations, we are able to exploit root properties alone to in-

crease yield by up to a factor of four.

• Using our techniques for N in the current range of interest it is cost effective

to find polynomials with yields 10–15 times better than a random selection.

We factorised RSA-140 using a polynomial which is almost that good. We are

factorising RSA-155 using a polynomial which is that good.

• 512 bit RSA moduli are demonstrably insecure.

7.2 Further Work

We suggest the following areas of further research.
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• There may be implementation specific reasons for users to prefer non-skewed

polynomials. It should be possible to introduce a sieve-like procedure to identify

non-skewed F1 with good non-projective root properties. This may not be as

succesful as for highly skewed F1, since we do not have the freedom of inspecting

many rotations for each possible F1. Even if we can find them, we wouldn’t

expect non-skewed polynomials with excellent non-projective root properties to

have significantly better yields than the skewed polynomials we already find.

• As we move to higher degree F1, higher degree rotations could be considered.

Quadratic rotations would be appropriate for sextic F1.

• We might consider applying our improvements to the selection of base-m1,m2

polynomials (Remark 2.3.2). We might also consider extensions of Montgomery’s

Two Quadratics method (Section 2.3.1) and novel methods for new degree pairs

(Remark 3.1.1).

• Since we now have a better understanding of the generation of good polynomials

it may be time to reconsider multiple polynomial versions of the number field

sieve. When using several non-linear polynomials, the proximity of regions of

maximal yield (usually, real roots) should be considered (see Remarks 2.3.1 and

4.2.1).

One consequence of using rotations in polynomial selection is that several base-

m polynomials F1 can be found with the same common root m. It could be

worthwhile to consider using several such polynomials F1,j and seeking relations

between each F1,j and F2. Perhaps with sufficiently many good F1,j , only the

regions of maximal yield need be considered. The obvious disadvantage of such a

scheme is that the matrix size increases linearly with the number of polynomials.

• We should apply our techniques to discrete logarithm number field sieve compu-

tations.

• Having at least partially addressed the polynomial selection problem, it now

becomes even more crucial that we improve the matrix reduction step. This

is also relevant to discrete logarithm computations. The promising avenues for

improvement are better filtering strategies and parallelisation of the reduction

code.

• Factorisation of smaller RSA moduli, like RSA-150, would be useful to give

a more complete picture of the growth of actual factorisation effort with N .

Factorisation of larger RSA moduli, as well as being useful, would be exciting.

Hence, we should factorise more RSA moduli.
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Appendix to Chapter 4

Polynomials A, . . . ,K are listed below. The values of m given are m ∈ Z for which

f(m) ≡ 0 mod N . The values ofN are C106 for polynomials A, . . . , E and polynomials

H and I, C105 for polynomials F and G, and C107 for polynomials J and K.

Polynomial A:

10642297120196616201018579748198464994687+
157168918105124331525011637x − 323379595900x2

m = 311811767144256795964392770799295468577727849287441\
417195888224875673003757757525998997704760967662422630

Polynomial B:

−58535465962950604788770735849031669686845+
578123152107916050639034324x + 660940091871x2

m = 111266350151832591590373321222840072472133768682060\
5812518391957850167078163045569883641392384840611818322

Polynomial C:

−80444723076532128931843884067440931877697+
671898769354767184209613115x + 876541800001x2

m = 644385945238412299450097726772298730429521837407426\
656132710287589175267555416671359532826085727240133210
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Polynomial D:

−45601329349014245961324468559468003125143+
405863886956809889611012220x + 875883403741x2

m = 57022157889652460507276414622928637851608638531004\
7513013419381527088912105584724979693796690373689178237

Polynomial E:

−43070512279968963999727149653384015128406
−140644997594088206014438353x + 274174364727x2

m = 21431385359461632490985189041791385017574508889045\
6629204834574379795020566498337694386071915713661516800

Polynomial F :

540759062604782971357139536186424874771+
86817069333519465483641612x + 342910527737x2

m = 22914359055586946906211501353855768192316423575426\
6217765793563500275674926893987223245481401160544005942

Polynomial G:

129128767300065233631168229536267982420800
−913049273181768816962553218x + 1242060255079x2

m = 22914359055586946906211501353855768192316423575426\
6217765793563500275674926893987223245481401160544005942

Polynomial H:

−32430287560495976143910317159823376255144
−101643163734436736066960294x + 190030476113x2

m = 17900441287572625768481534121337659378990978888143\
77815816769105476827696665209945565825606429787588581699

Polynomial I:

164086080001456034179238766543256687713827
−401968646051742270344280172x − 785083260639x2

m = 17900441287572625768481534121337659378990978888143\
77815816769105476827696665209945565825606429787588581699
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Polynomial J :

−311653994359418670319775330136434513506986+
763119703166287854853198889x − 241799514805x2

m = 12637530599467776761853128412624277137347729851839\
924048392287605249253270797264409813230653725405155484892

Polynomial K:

−46786964108579179806101863478910720071558+
−425704283028714253779269315x − 540161776283x2

m = 12637530599467776761853128412624277137347729851839\
924048392287605249253270797264409813230653725405155484892
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Appendix to Chapter 6

Below are polynomials referred to in Chapter 6. Non-skewed polynomials are defined

uniquely by m (see Section 2.3), so we give only m for these polynomials. For skewed

polynomials, we give F1, F2 and the skewness s.

B.1 RSA-130 Polynomials

Table B.1 gives values of m for polynomials Ri, i = 1, . . . , 5.

Poly m

1 12429620102099690356862
2 12429620102099690356861
3 12429620102099690356863
4 13451029676646753000757
5 12400786914908592973618
6 12664454168907537623814

Table B.1: Values of m for Ri

Table B.2 contains the values of m for polynomials P1, . . . , P15 (provided by Arjen

Lenstra) and Q1, . . . , Q18.
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P1, . . . , P15 Q1, . . . , Q18

Pi m Qi m

1 10519776768693341771145 1 13892376347633905755115
2 12112464325781598662255 2 12453346471414472759941
3 12175183789358781924382 3 12189668945503746069685
4 12922982589397980905651 4 11837358189073863960965
5 10056778742160802578928 5 14227836633450858685725
6 12893568754859383127665 6 12846317334855496412374
7 13239320351370744041131 7 12485318267855789022719
8 12506435569527239916746 8 13664023713239125138661
9 12666132133378233425814 9 14262547698921937056113
10 10844346817052874470999 10 13755004021960592085464
11 13139341559800540682218 11 14214149085376118983291
12 12857394860965184611325 12 15151852662623823374781
13 11856745579968929283390 13 14185394352093247029946
14 12574411168418005980468 14 12351139031991610954191
15 11507478393662235457656 15 14601881988167170300659

16 13603479675779569518553
17 13809622636367237837331
18 12464197256082744853511

Table B.2: Values of m for Pi and Qi

B.2 RSA-140 Polynomials

A140:

F1(x, y) = 439682082840x5

+390315678538960x4y
−7387325293892994572x3y2

−19027153243742988714824x2y3

−63441025694464617913930613xy4

+318553917071474350392223507494 y5

F2(x, y) = x− 34435657809242536951779007 y

s = 4096
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B140:

F1(x, y) = 475678803600x5

+12310512454193580x4y
−47195522868281245622x3y2

−18875374477888317230356x2y3

+708592905109171282725988833xy4

−762378574872525817932463490775 y5

F2(x, y) = x− 33897945514869272070938702 y

s = 3680

C140:

F1(x, y) = 473378805900x5

+6786847212725992x4y
−107779980090539302193x3y2

−326018199250839587813647x2y3

+2303400508103580132807667310xy4

−1306686150190334964106092161208 y5

F2(x, y) = x− 55773850015391247110492107 y

s = 6200

D140:

F1(x, y) = 569366998200x5

+27579278413218810x4y
−57999837293490323001x3y2

−494560012317526613653093x2y3

+1118023044742014236005014576xy4

−98133850888651599883245735012 y5

F2(x, y) = x− 37563294757862265713468083 y

s = 4119

E140:

F1(x, y) = 54960260355x5

+97578919634740x4y
−3693662646946497286x3y2

−19027153243742988714824x2y3

−126882051388929235827861226xy4

+1274215668285897401568894029976 y5

F2(x, y) = x− 68871315618485073903558014 y

s = 7360
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F 140:

F1(x, y) = 9187603793796x5

+12386461804765297x4y
+469987288306604686609x3y2

−889049056208116896399x2y3

+13987441268371968500500939xy4

−296157023846942188952843 y5

F2(x, y) = x− 18749758811416934921816359 y

s = 300

B.3 RSA-155 Polynomials

A155:

F1(x, y) = 119377138320x5

−80168937284997582x4y
−66269852234118574445x3y2

+11816848430079521880356852x2y3

+7459661580071786443919743056xy4

−40679843542362159361913708405064 y5

F2(x, y) = x− 39123079721168000771313449081 y

s = 10770

B155:

F1(x, y) = 9734331382020x5

+186548816004600576x4y
−2621958757709806297705x3y2

−11937100897656690036171818x2y3

+68614407568250792529987183215xy4

+72327510316160055608800665174636 y5

F2(x, y) = x− 18636400766678583399319133866 y

s = 6354
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C155:

F1(x, y) = 1290313469760x5

+265878007916683818x4y
−798398403873787965715x3y2

−69139199782500140838174030x2y3

+38151865882690611373838275800xy4

+3010771538176510065263473897069897 y5

F2(x, y) = x− 24304026003277429995755551440 y

s = 13103

D155:

F1(x, y) = 13773893580720x5

+293273156850908000x4y
−1262097631040259345842x3y2

−7076664823854260804438715x2y3

+15958633172059160822941381252xy4

−60529194441853543661902699832835 y5

F2(x, y) = x− 15135818898777675588099420298 y

s = 5430

E155:

F1(x, y) = 2697367246860x5

+105115408896978962x4y
+3195116446280929272587x3y2

−24471071308994536760102448x2y3

−410312201224383538645857505823xy4

+29876530689458684852162460785950 y5

F2(x, y) = x− 27672044645620813150112356926 y

s = 11687

F155:

F1(x, y) = 13773893580720x5

−23870742845170000x4y
−3743293864033106325842x3y2

+34223438393917535042668495x2y3

+219972273530847363657409036632xy4

−2120792922120149563797447040262880 y5

F2(x, y) = x− 15135818898777675588099424903 y

s = 10860
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G155:

F1(x, y) = 10087787167920x5

−245018020007667129x4y
−3601309509661665837217x3y2

+11986906038045125769762173x2y3

+252533169139973859211877889668xy4

+696041419085277901469636365164252 y5

F2(x, y) = x− 16108610671279075074032260691 y

s = 9741

H155:

F1(x, y) = 8648697934800x5

+800666437942682720x4y
−3757414786445679414797x3y2

−114830979471303981563343633x2y3

+96691565654522380316377089613xy4

−208106710060120910136340598900223 y5

F2(x, y) = x− 16612198869532345422993004840 y

s = 10941

F 155:

F1(x, y) = 453631755x5

+7707423309885x4y
+574980043913676918502317x3y2

+143867958120855464712054x2y3

−553727331155303326804091804756xy4

+40416462652580845860972043137 y5

F2(x, y) = x− 119254994773154196771315073786 y

s = 1080
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