
Fast Algorithms for High-Precision Computation of

Elementary Functions (extended abstract)

Richard P. Brent
Australian National University
http://www.rpbrent.com

In many applications of real-number computation we need to evaluate elementary functions such
as exp(x), ln(x), arctan(x) to high precision (see for example [1]). We shall survey some of the
well-known (and not so well-known) techniques as well as mentioning some new ideas.

Let d be the number of binary digits required, so the computation should be accurate with
relative (or, if appropriate, absolute) error O(2−d). By “high-precision” we mean higher than can
be obtained directly using IEEE 754 standard floating-point hardware, typically d several hundred
up to millions.

We are interested both in “asymptotically fast” algorithms (the case d → +∞) and in algo-
rithms that are competitive in some range of d. Let M(d) denote the time (measured in word-
or bit-operations) required to multiply d-bit numbers with d-bit accuracy (we are generally only
interested in the upper half of the 2d-bit product). Classically M(d) = O(d2) and the Schönhage-
Strassen algorithm [12] shows that M(d) = O(d log d log log d). However, Schönhage-Strassen is
only useful for large d, and there is a significant region d1 < d < d2 where A. Karatsuba’s O(dlg 3)
algorithm [8] is best (lg 3 = log2 3 ≈ 1.58). In the region where Karatsuba’s algorithm is best for
multiplication, the best algorithms for elementary functions need not be those that are asymptot-
ically the fastest.

Sometimes the best algorithm depends on the ground rules: are certain constants such as π
allowed to be precomputed, or does the cost of their computation have to be counted every time
in the cost of the elementary function evaluation?

Techniques for high-precision elementary function evaluation include the following. Often
several are used in combination, e.g. argument reduction is used before power series evaluation.

1. Argument reduction using identities such as

expx = (exp(x/2))2 , arctanx = 2arctan
(

x

1 +
√

1 + x2

)
, etc.

2. Use of power series such as

expx =
∑
k≥0

xk

k!
, ln(1 + x) =

∑
k≥0

(−1)kxk+1

k + 1
, arctanx =

∑
k≥0

(−1)kx2k+1

2k + 1
,

perhaps evaluated using the technique of Smith [13], which applies more generally (for ex-
ample to the evaluation of hypergeometric functions). Smith seems to be the first to apply
his technique for real computation, but the idea was suggested by Paterson and Stock-
meyer [10] and used in a different context by Brent and Kung [6] (but not in the author’s
multiple-precision package [5], because of the storage requirements).

By combining argument reduction and power series evaluation we get an O(M(d)d1/2)
algorithm for exp(x), and using Smith’s technique this can be improved to O(M(d)d1/3) +
O(d5/3 log log d log log log d) (the second term is essentially O(d5/3) in practice).



3. Use of the arithmetic-geometric mean (AGM) to compute lnx in time O(M(d) log d) (asymp-
totically the fastest known), see [2, 3, 4]. In particular we mention the algorithm of Sasaki
and Kanada [11], based on the elegant formula

lnx =
π

AGM(θ2
2(1/x), θ2

3(1/x))
.

Because the theta functions have rapidly-converging series and this formula is exact, we can
use it for smaller x than is possible with the usual “approximate” AGM-based formulae such
as lnx = π/((2 + O(1/x2))AGM(1, 4/x)).

4. Use of Newton’s method to compute inverse functions, for example we can compute exp(x)
from ln(x) and vice versa. The overhead introduced by Newton’s method can be reduced to
a factor 1 + o(1) as d→ +∞ by using higher-order methods [3, §6-§9].

5. Use of complex arithmetic to compute a real result, for example

arctanx =
1
2i

ln
(

1 + ix

1− ix

)
= = ln(1 + ix) ,

where the complex log can be computed by the AGM; this gives the asymptotically fastest
known algorithm for arctan (although the complex arithmetic is a significant overhead).

6. Use of binary splitting [2, p. 329] (or similarly E. Karatsuba’s FEE method [9]) to sum
series with rational arguments [7]. For real arguments, we may be able to use a good
rational approximation and then apply a small correction. To illustrate this we shall describe
some new ideas for arctan evaluation which, although not asymptotically the fastest, are
competitive for a wide range of precisions d (this is joint work with Jim White).

References

[1] D. H. Bailey, High-precision floating-point arithmetic in scientific computation, Computing in Sci-
ence and Engineering, May–June 2005, 54–61; also report LBNL–57487. Available from http://

crd.lbl.gov/~dhbailey/dhbpapers/ .

[2] J. M. Borwein and P. B. Borwein, Pi and the AGM, Monographies et Études de la Société
Mathématique du Canada, John Wiley & Sons, Toronto, 1987.

[3] R. P. Brent, Multiple-precision zero-finding methods and the complexity of elementary function eval-
uation, in Analytic Computational Complexity (edited by J. F. Traub), Academic Press, New York,
1975, 151–176. Available from http://wwwmaths.anu.edu.au/~brent/pub/pub028.html .

[4] R. P. Brent, Fast multiple-precision evaluation of elementary functions, J. ACM 23 (1976), 242–251.

[5] R. P. Brent, Algorithm 524: MP, a Fortran multiple-precision arithmetic package, ACM Trans. Math.
Software 4 (1978), 71–81.

[6] R. P. Brent and H. T. Kung, Fast algorithms for manipulating formal power series, J. ACM 25
(1978), 581–595.

[7] X. Gourdon and P. Sebah, Numbers, constants and computation: binary splitting method, http://
numbers.computation.free.fr/Constants/Algorithms/splitting.html .

[8] A. Karatsuba and Y. Ofman, Multiplication of multidigit numbers on automata (in Russian), Doklady
Akad. Nauk SSSR 145 (1962), 293–294. English translation in Sov. Phys. Dokl. 7 (1963), 595–596.

[9] E. A. Karatsuba, Fast evaluation of transcendental functions (in Russian), Probl. Peredachi Inf. 27,
4 (1991), 87–110. English translation in Problems of Information Transmission 27 (1991), 339–360.
See also http://www.ccas.ru/personal/karatsuba/faqen.htm .

[10] M. S. Paterson and L. J. Stockmeyer, On the number of nonscalar multiplications necessary to
evaluate polynomials, SIAM J. Computing 2 (1973), 60–66.

[11] T. Sasaki and Y. Kanada, Practically fast multiple-precision evaluation of log(x), J. Inf. Process. 5
(1982), 247–250. See also [2, §7.2].

[12] A. Schönhage and V. Strassen, Schnelle Multiplikation Grosser Zahlen, Computing 7 (1971), 281–292.

[13] D. M. Smith, Efficient multiple-precision evaluation of elementary functions, Math. Comp. 52 (1989),
131–134.


