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In many applications of real-number computation we need to evaluate elementary functions such
as exp(z), In(x), arctan(x) to high precision (see for example [1]). We shall survey some of the
well-known (and not so well-known) techniques as well as mentioning some new ideas.

Let d be the number of binary digits required, so the computation should be accurate with
relative (or, if appropriate, absolute) error O(2~%). By “high-precision” we mean higher than can
be obtained directly using IEEE 754 standard floating-point hardware, typically d several hundred
up to millions.

We are interested both in “asymptotically fast” algorithms (the case d — +00) and in algo-
rithms that are competitive in some range of d. Let M(d) denote the time (measured in word-
or bit-operations) required to multiply d-bit numbers with d-bit accuracy (we are generally only
interested in the upper half of the 2d-bit product). Classically M (d) = O(d?) and the Schénhage-
Strassen algorithm [12] shows that M(d) = O(dlogdloglogd). However, Schonhage-Strassen is
only useful for large d, and there is a significant region d; < d < da where A. Karatsuba’s O(d'8?)
algorithm [8] is best (g3 = log, 3 ~ 1.58). In the region where Karatsuba’s algorithm is best for
multiplication, the best algorithms for elementary functions need not be those that are asymptot-
ically the fastest.

Sometimes the best algorithm depends on the ground rules: are certain constants such as m
allowed to be precomputed, or does the cost of their computation have to be counted every time
in the cost of the elementary function evaluation?

Techniques for high-precision elementary function evaluation include the following. Often
several are used in combination, e.g. argument reduction is used before power series evaluation.

1. Argument reduction using identities such as
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2. Use of power series such as
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perhaps evaluated using the technique of Smith [13], which applies more generally (for ex-
ample to the evaluation of hypergeometric functions). Smith seems to be the first to apply
his technique for real computation, but the idea was suggested by Paterson and Stock-
meyer [10] and used in a different context by Brent and Kung [6] (but not in the author’s
multiple-precision package [5], because of the storage requirements).

By combining argument reduction and power series evaluation we get an O(M (d)d'/?)
algorithm for exp(z), and using Smith’s technique this can be improved to O(M (d)d/3) +
O(d®/?loglog dlogloglog d) (the second term is essentially O(d®/3) in practice).



3. Use of the arithmetic-geometric mean (AGM) to compute In z in time O(M (d) log d) (asymp-
totically the fastest known), see [2, 3, 4]. In particular we mention the algorithm of Sasaki
and Kanada [11], based on the elegant formula
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Because the theta functions have rapidly-converging series and this formula is exact, we can
use it for smaller z than is possible with the usual “approximate” AGM-based formulae such
as Inz = 7/((2 + O(1/2?))AGM(1,4/z)).
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4. Use of Newton’s method to compute inverse functions, for example we can compute exp(z)
from In(z) and vice versa. The overhead introduced by Newton’s method can be reduced to
a factor 1+ o(1) as d — +o00 by using higher-order methods [3, §6-§9].

5. Use of complex arithmetic to compute a real result, for example
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where the complex log can be computed by the AGM; this gives the asymptotically fastest

known algorithm for arctan (although the complex arithmetic is a significant overhead).

6. Use of binary splitting [2, p. 329] (or similarly E. Karatsuba’s FEE method [9]) to sum
series with rational arguments [7]. For real arguments, we may be able to use a good
rational approximation and then apply a small correction. To illustrate this we shall describe
some new ideas for arctan evaluation which, although not asymptotically the fastest, are
competitive for a wide range of precisions d (this is joint work with Jim White).
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