
Algorithms for the Multiplication Table
Problem

Richard P. Brent
Australian National University and
CARMA, University of Newcastle

19 May 2021

Collaborators

Carl Pomerance Jonathan Webster

Copyright c© 2021, R. P. Brent

Abstract

Let M(n) be the number of distinct entries in the multiplication
table for integers < n. More precisely1,

M(n) := #{i × j |0 ≤ i , j < n}.

The order of magnitude of M(n) was established in a series of
papers, starting with Erdős (1955) and ending with Ford (2008),
but an asymptotic formula is still unknown. After describing
some of the history of M(n) we consider some algorithms for
calculating/approximating M(n) for large n. This naturally leads
to consideration of algorithms, due to Bach (1985–88) and
Kalai (2003), for generating random factored integers.
The talk describes joint work with Carl Pomerance (Dartmouth,
New Hampshire) and Jonathan Webster (Butler, Indiana). See
arXiv:1908.04251 for details.

1Often a slightly different definition is used.

Outline

I History
I Two algorithms for exact computation -

naive and incremental
I A (theoretically) faster algorithm for exact computation
I Two approximate (Monte Carlo) algorithms -

Bernoulli and product trials
I Avoiding factoring - algorithms of Bach and Kalai
I Counting divisors
I Numerical results

The multiplication table for n = 8

0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7
0 2 4 6 8 10 12 14
0 3 6 9 12 15 18 21
0 4 8 12 16 20 24 28
0 5 10 15 20 25 30 35
0 6 12 18 24 30 36 42
0 7 14 21 28 35 42 49

We’ve included in gray borders of zeroes but not the row and
column corresponding to multiplication by n = 8 (often the
opposite convention is used). We could write rows in the
reverse order. A set of distinct entries is shown in blue.
The function M(n) is the number of distinct entries in the n × n
multiplication table: M(8) = 26 in the example shown. We say
that M(n) is the size of the table.

The cast

Paul Erdős Yuri Linnik I. M. Vinogradov Gérald Tenenbaum Kevin Ford

Quiz: which of these mathematicians fully understood M(n)?
None could give an asymptotic formula, though Ford gave the
correct order of magnitude.

Notation

f ∼ g if limx→∞ f (x)/g(x) = 1.

f = o(g) if limx→∞ f (x)/g(x) = 0.

f = O(g) if, for some constant K and all sufficiently large x ,
|f (x)| ≤ K |g(x)|.

f � g means that f = O(g), and f � g means that g � f .

f � g means that f � g and f � g (equivalently, f = Θ(g)).
ln(x) means the natural logarithm.
lg(x) := ln(x)/ ln(2), the logarithm to base 2.

M(n) := #{i × j |0 ≤ i , j < n}.
Note: often the slightly different definition

#{i × j |0 < i , j ≤ n} is used.
This doesn’t affect the asymptotics.

A multilingual history

There is an easy lower bound

M(n) ≥
∑

prime p < n

p � n2

ln n
.

Erdős (1955, in Hebrew) gave an upper bound M(n) = o(n2)
as n→∞. After some encouragement by Linnik and
Vinogradov, he proved (1960, in Russian) that

M(n) =
n2

(ln n)c+o(1) as n→∞,

where c =

∫ 1/ ln 2

1
ln t dt = 1− 1 + ln ln 2

ln 2
≈ 0.0861.

In case you can’t read Russian, there is a review in German.
Tenenbaum (1984, in French) clarified the “error term” (ln n)o(1)

but did not give its exact order of magnitude.

Erdős’s first paper on M(n)

Here is an excerpt from Erdős’s 1955 paper. The text runs
right to left, but the mathematics runs left to right!

Recent history

Ford (2008, in English) got the exact order-of-magnitude

M(n) � n2

(ln n)c(ln ln n)3/2
, (1)

where c ≈ 0.0861 is as in Erdős’s result.

In other words, there exist positive constants c1, c2 such that

c1g(n) ≤ M(n) ≤ c2g(n)

for all sufficiently large n, where g(n) is the RHS of (1).
Ford did not give explicit values for c1, c2, but they could
probably be worked out from his paper.

Asymptotic behaviour

We still do not know if there exists

K = lim
n→∞

M(n)(ln n)c(ln ln n)3/2

n2
,

or have any good estimate of the value of K (if it exists).
Ford’s result only shows that the lim inf and lim sup are
positive and finite.

Area-time complexity of multiplication

In 1981, RB and H. T. Kung considered how much area A and
time T are needed to perform n-bit binary multiplication in a
model of computation that was meant to be realistic for VLSI
circuits. We proved an “area-time” lower bound

AT � n3/2,

or more generally, for all α ∈ [0,1],

AT 2α � n1+α.

To prove this we needed a lower bound on M(n). The easy
bound M(n)� n2/ ln n was sufficient. On the basis of
numerical evidence (next slide), we conjectured that
M(n)� n2/ ln ln n. Erdős wrote to me pointing out that he had
disproved our conjecture (in his 1960 paper written in Russian).
It was later noticed that Erdős’s 1960 proof was incorrect, but it
can be fixed: see MR603312 (82c:10053).

RPB, HT Kung, and Geoffrey Brent
near Batemans Bay, 1975

Excerpt from Table II of Brent and Kung (1981)

n = 2w , M∗(n) =
n2

0.71 + lg lg n
, g(n) =

n2

(ln n)c(ln ln n)3/2
.

w M(n) M(n)/M∗(n) M(n)/g(n)

12 3,902,357 0.999002 0.8606
13 15,202,050 0.999089 0.8922
14 59,410,557 0.999788 0.9220
15 232,483,840 0.999637 0.9490
16 911,689,012 0.999788 0.9745
17 3,581,049,040 1.000005 0.9986
28 13,023,772,682,665,849 0.997213 1.1915
30 204,505,763,483,830,093 0.996327 1.2176

On the basis of this table (excluding more recent gray entries),
B&K conjectured that M(n) ∼ n2/ lg lg n. This contradicts the
result of Erdős.

Moral

It is hard to tell the difference between ln ln n and (ln n)c

numerically. For 26 < n < 230, we have (ln n)c ∈ (1.1,1.3)
and ln ln n ∈ (1.4,3.1).

We find numerically that

(ln n)c < ln ln n for 20 < n < 105×1018
,

even though
(ln n)c � ln ln n.

How large does n need to be in order to “see” the true
asymptotic behaviour of M(n)?

The asymptotic region

Ford’s result can be written as

M(n) � n2/Φ(n), where Φ(n) = (ln n)c(ln ln n)3/2.

The factor (ln n)c is asymptotically larger than the factor
(ln ln n)3/2. However, for small n, the second factor varies more
rapidly than the first.
Write x := ln n, A = A(x) := xc , B = B(x) := (ln x)3/2, so
Φ(n) = AB.
Taking logarithmic derivatives, we have Φ′/Φ = A′/A + B′/B.
Now |A′/A| < |B′/B| if c/x < 3/(2x ln x),
i.e. if x < e3/2c ≈ 37,036,165, or

n < ee3/2c ≈ 253,431,908.

We need Monte Carlo methods to get numerical results for the
region where the true asymptotic behaviour of M(n) becomes
evident (but first I’ll mention some exact methods).

Exact computation of M(n) – the naive algorithm

It is easy to write a program to compute M(n) for small values
of n. We need an array A of size n2 bits, indexed 0 to n2 − 1,
which is initially cleared. Then, using two nested loops, set

A[i × j]← 1 for 0 ≤ i ≤ j < n.

Finally, count the number of bits in the array that are 1 (or sum
the elements of the array). The time and space requirements
are both of order n2.
The inner loop of the above program is essentially the same as
the inner loop of a program that is sieving for primes. Thus, the
same tricks can be used to speed it up. For example,
multiplications can be avoided as the inner loop sets bits
indexed by an arithmetic progression.

Segmenting the sieve

If the memory requirement of n2 bits is too large, the problem
can be split into pieces. For given [ak ,ak+1) ⊆ [0,n2), we can
count the products ij ∈ [ak ,ak+1). Covering [0,n2) by a set of
disjoint intervals [a0,a1), [a1,a2), . . ., we can split the problem
into as many pieces as desired.
There is a certain startup cost associated with each interval, so
the method becomes inefficient if the interval lengths are
smaller than n.
A parallel program can easily be implemented if each parallel
process handles a separate interval [ak ,ak+1).

Exact computation - the incremental algorithm

The naive algorithm takes time � n2 to compute one value
M(n). If we want to tabulate M(k) for 1 ≤ k ≤ n, the time
required is � n3. A more efficient approach might be to
compute the differences D(n) := M(n + 1)−M(n).
Assuming we know M(n), we need to consider the products
m × n, for 1 ≤ m ≤ n. Let δ(n) denote the number of these
products that have already occurred in the table. The number of
elements that have not already appeared is D(n) = n − δ(n).
Thus, it is sufficient to compute δ(n) in order to compute D(n)
and then M(n + 1).

Computing δ(n)

Assume we know the divisors of n (these can be computed by
trial division). Suppose that g|n, and let h = n/g. By symmetry
we can assume that g ≤

√
n ≤ h.

Can we express m× n as a product that already occurred in the
table? If m = i × j and n = g × h, then m× n = ij × gh = ih× jg.
If ih < n and jg < n, then the product ih × jg has already
occurred. Observe that ih < n iff i < g and jg < n iff j < h.
Thus, to compute δ(n), we need to count the unique products ij
with 0 < i < g and 0 < j < n/g, for each divisor g ≤

√
n of n.

This can be done by sieving in an array of size n (the naive
algorithm required size n2).
If this is implemented so that work is not duplicated where
rectangles of size g1 × n/g1 and g2 × n/g2 overlap, then the
work is bounded by the number of lattice points under the
hyperbola xy = n. Thus, we can compute δ(n) in (worst case)
time O(n ln n) and space O(n).

Example: n = 24

If n = 24, the relevant divisors are g ∈ {2,3,4}.
If g = 2, we sieve over (i , j) ∈ {1} × {1,2, . . . ,11}.
If g = 3, we sieve over (i , j) ∈ {1∗,2} × {1∗,2,3,4,5,6,7}.
If g = 4, we sieve over (i , j) ∈ {1∗,2∗,3} × {1∗,2∗,3,4,5}.
Starred entries give duplicates so may be omitted.
Conclude that m × n is already in the table iff
m ∈ {1,2, . . . ,11,12,14,15}, so δ(n) = 14.
e.g. 12× n = 16× 18, 14× n = 16× 21, 15× n = 20× 18.

Tabulating M(1), . . . ,M(n)

Using the algorithm that we just described to compute the
differences D(n) = M(n + 1)−M(n) we can compute all of
M(1), . . . ,M(n) in time O(n2 ln n) and space O(n) (not counting
space for the output).
This is much better than time O(n3) and space O(n2) using the
naive algorithm!
Space requirements
In practice, reducing space often reduces time, because of the
memory hierarchy built into modern computers.
The space requirement for the incremental algorithm can be
reduced to O(

√
n) without changing the time bound, by splitting

the sieve into O(
√

n) segments. It could be reduced to
O(n1/3(ln n)2/3), using ideas due to Harald Helfgott. What we
have implemented is O(

√
n), which is fine for n ≤ 109.

The distribution of divisors

Let τ(n) be the number of positive divisors of n. (τ stands for
the German Teiler. Another notation d(n).)
The mean value of τ(k) for 1 ≤ k ≤ n is ∼ ln n [Dirichlet], but
usually τ(n) is about (ln n)ln 2.
More precisely, the normal order of ln τ(n) is ln(2) ln ln n, which
is a way of saying that, for all positive ε, τ(n) is almost always in
[(ln n)ln(2)−ε, (ln n)ln(2)+ε].
Heuristically, this is because the number ω(n) of distinct prime
divisors of n is asymptotically normal with mean and variance
ln ln n [Erdős-Kac theorem], but the number of (not necessarily
prime) divisors is 2ω(n), assuming that n is square-free. Thus,
the distribution of divisors has a long tail.
The situation is slightly more complicated if n is not
square-free, but the conclusion remains the same.

OEIS A027417

The OEIS sequence A027417 is defined by an = M(2n).
Until recently only a0, . . . ,a25 were listed.
Using parallel implementations of the naive and incremental
algorithms, we (RB and JW) have gone to a30.

n an 4n/an
1 2 2.0000
2 7 2.2857
3 26 2.4615
4 90 2.8444
· · · · · · · · ·
26 830751566970327 5.4211
27 3288580294256953 5.4779
28 13023772682665849 5.5328
29 51598848881797344 5.5860
30 204505763483830093 5.6376

The scaled sequence

Since M(n) � n2

(ln n)c(ln ln n)3/2
, replace n by N = 2n and

define

bn :=
N2

M(N)
� nc(ln n)3/2 and fn :=

bn

nc(ln n)3/2 � 1.

n bn fn
10 4.0366 0.948
15 4.6186 0.821
20 5.0331 0.750
25 5.3624 0.704
30 5.6376 0.671

fn appears to be monotonic decreasing. It is not clear from the
table what limn→∞ fn is, or even if the limit exists. An estimate,
using much larger values of n, is limn→∞ fn ≈ 0.116.

A subquadratic algorithm

Using the ideas of the incremental algorithm, and some
optimisations that depend on whether or not n is B-smooth with
B = L(n)1/

√
2, where L(n) := exp(

√
ln n ln ln n), we can compute

M(n) in time O(n2/L(n)1/
√

2+o(1)).
For details, see our preprint arXiv:1908.04251.
We have implemented the subquadratic algorithm for evaluation
of M(n). In practice, it is not competitive with the best quadratic
algorithm for n ≤ 230.
Although the time is theoretically subquadratic, the result is a
little disappointing — we were hoping for something like
Karatsuba’s O(n1.585), but we don’t see how to obtain this. It is
not clear whether we can evaluate M(n) in time O(nλ) for any
fixed λ < 2.

Monte Carlo computation

We can estimate M(n) using two different Monte Carlo
methods. Recall that

M(n) = #Sn, Sn = {ij : 0 ≤ i < n, 0 ≤ j < n}.

Bernoulli trials
We can generate a random integer x ∈ [0,n2), and count a
success if x ∈ Sn. Repeat several times and estimate

M(n)

n2 ≈ #successes
#trials

.

To check if x ∈ Sn we need to find some of the divisors of x ,
which probably requires the prime factorisation of x . There is
no obvious algorithm that is much more efficient than finding
the prime factors of x (but more on this later).

Monte Carlo computation - alternative method

There is another Monte Carlo algorithm, using what we call
product trials.
Generate random integers x , y ∈ [0,n). Count the number
ν = ν(xy) of ways that we can write xy = ij with i < n, j < n.
Repeat several times, and estimate

M(n)

n2 ≈
∑

1/ν
#trials

.

This works because z ∈ Sn is sampled at each trial with
probability ν(z)/n2, so the weight 1/ν(z) is necessary to give
an unbiased estimate of M(n)/n2.
To compute ν(xy) we need to find the divisors of xy .
Note that x , y < n, whereas for Bernoulli trials x < n2, so the
integers considered in product trials are generally smaller than
those considered in Bernoulli trials.

Comparison

For Bernoulli trials, p = M(n)/n2 is the probability of a success,
and the distribution after T trials has mean pT , variance
p(1− p)T ≈ pT .
For product trials, we know E(1/ν) = M(n)/n2 = p, but we do
not know E(1/ν2) theoretically. We can estimate it from the
sample variance.
It turns out that, for a given number T of trials, the product
method has smaller expected error (by a factor of 2 to 3 in
typical cases).
This is not the whole story, because we also need to factor x
(for Bernoulli trials) or xy (for product trials), and then find
(some of) their divisors.
For large n, the most expensive step is factoring, which is
easier for product trials because the numbers involved are
smaller.

Avoiding factoring large integers

We can avoid the factoring steps by generating random
integers together with their factorisations, using algorithms due
to Bach (1988) or Kalai (2003).
Bach’s algorithm is more efficient than Kalai’s, but also much
more complicated, so I will describe Kalai’s algorithm and refer
you to Bach’s paper, or the book Algorithmic Number Theory by
Bach and Shallit, for a description of Bach’s algorithm.

Kalai’s algorithm

Input: Positive integer n.

Output: A random integer r , uniformly distributed in [1,n],
and its prime power factorisation.

1. Generate a sequence n = s0 ≥ s1 ≥ · · · ≥ s` = 1 by
choosing si+1 uniformly in [1, si] until reaching 1.

2. Let r be the product of all the prime si , i > 0.

3. If r ≤ n, output r and its prime factorisation with probability
r/n, otherwise restart at step 1.

Kalai’s algorithm clearly outputs an integer r ∈ [1,n] and its
prime factorisation, but why is r uniformly distributed in [1,n]?
The answer is the acceptance-rejection step 3.

Correctness of Kalai’s algorithm

Kalai shows that, if 1 ≤ R ≤ n, then (after step 2)

Prob[r = R] =
µn

R
,

where
µn =

∏
p prime, p≤n

(1− 1/p).

If 1 ≤ r ≤ n, then step 3 accepts r with probability r/n, so the
probability of outputting r at step 3 is proportional to

µn

r
r
n

=
µn

n
,

which is independent of r . Thus, the output is uniformly
distributed in [1,n].

The expected running time

The running time is dominated by the time for primality tests.
The expected number of primality tests is Hn/µn, where

Hn =
n∑

k=1

1
k

= ln n + γ + O
(

1
n

)
.

By a theorem of Mertens (1874),

1
µn
∼ eγ ln n,

so the expected number of primality tests is

∼ eγ(ln n)2.

Bach’s algorithm

Bach’s algorithm requires prime power tests which are (slightly)
more expensive than primality tests. However, it is possible to
modify the algorithm so that only primality tests are required.
This is what we implemented. The idea of avoiding prime
power tests was suggested independently by Herman Rubin.
Bach’s algorithm is more efficient than Kalai’s – the expected
number of primality tests is of order ln n. The reason is that
Bach’s algorithm generates factored integers uniform in (n/2,n]
rather than [1,n], which makes the acceptance/rejection
process more efficient as well as more complicated.
We can generate integers in [1,n] by calling Bach’s algorithm
appropriately, see arXiv:1908.04251.

Primality testing

For large n, the main cost of both Bach’s algorithm and Kalai’s
algorithm is the primality tests.
Since we are using Monte Carlo algorithms, it is reasonable to
use the Miller-Rabin probabilistic primality test, which has a
nonzero (but tiny) probability of error, rather than a much slower
“guaranteed” test such as the polynomial-time deterministic test
of Agrawal, Kayal and Saxena (AKS), or the randomised but
error-free (“Las Vegas”) elliptic curve test (ECPP) of Atkin and
Morain.
The Miller-Rabin test makes it feasible to use Bach’s or Kalai’s
algorithm for n up to say 21000.

Divisors (again)

An integer
x =

∏
pαi

i

has
τ(x) =

∏
(αi + 1)

distinct divisors, each of the form
∏

pβi
i for 0 ≤ βi ≤ αi .

We do not need all the divisors of the the random integers x , y
that occur in our Monte Carlo computation. We only need the
divisors in a certain interval.

Divisors in Bernoulli and product trials

Bernoulli trials
For Bernoulli trials, we merely need to know if a given x < n2

has a divisor d < n such that x/d < n, i.e. x/n < d < n. Thus,
given n and x ∈ [1,n), it is enough to compute the divisors of x
in the interval (x/n,n) until we find one, or show that there are
none.
Product trials
For product trials we generate random (factored) x , y < n and
need (some of) the divisors of xy . We can easily compute the
prime-power factorisation of z := xy from the factorisations of
x and y . We then need to count the divisors of z in the interval
(z/n,n).

Cost of Bernoulli and product trials

An integer x ∈ [1,n2) has on average

∼ ln n2 = 2 ln n

divisors [Dirichlet]. This is relevant for Bernoulli trials.
However, for product trials, our numbers z = xy have on
average� (ln n)2 divisors, because x and y have on average
∼ ln n divisors.
Thus, the divisor computation for product trials is more
expensive than that for Bernoulli trials.

Counting divisors in an interval

We can count the divisors of x in a given interval [a,b] faster
than actually computing all the divisors in this interval, by using
a “divide and conquer” approach.
Here is an outline. Write x = uv where (u, v) = 1 and u, v have
about equal numbers of divisors. Find all the divisors of v and
sort them. Then, for each divisor d of u, compute bounds
a ≤ d ′ ≤ b for relevant divisors d ′ of v , and search for
a and b in the sorted list, using a binary search.
The expected running time is roughly (ignoring ln ln n factors)
proportional to the mean value of τ(x)1/2 over x ≤ n. By a
result of Ramanujan [Montgomery and Vaughan, (2.27)],
this is � (ln n)α, where α =

√
2− 1 ≈ 0.4142.

Thus, for Bernoulli trials the cost is O(lnα n)
and for product trials the cost is O(ln2α n).

Avoiding some primality testing

When n is very large, say greater than 21000, even Miller-Rabin
probabilistic primality testing becomes very expensive. We can
avoid primality tests on large numbers by making a plausible
assumption about the density of primes in short intervals (but
not so short that Maier’s theorem applies). There is no time to
discuss this in detail today. If you are interested, see the slides
from my Hong Kong talk (6 February 2015), which are on my
website.
Using the density assumption, we have estimated M(n) with
an accuracy of three or more significant digits for n up to
2500,000,000. This is in the region where the asymptotic
behaviour of M(n) might become evident (recall the argument
we gave earlier).

Numerical results

N = 2n, bn :=
N2

M(N)
, fn :=

bn

nc(ln n)3/2 � 1.

n bn fn
10 4.0366 0.948
102 7.6272 0.519
103 12.526 0.381
104 19.343 0.313
105 28.74 0.273
106 41.6 0.247
107 59.0 0.228
108 82.7 0.214

2×108 90.9 0.210
5×108 103.4 0.206

The value of limn→∞ fn is not obvious from this table!

Least squares quadratic fit

From the numerical evidence, it is plausible that fn has an
asymptotic expansion in negative powers of ln n.
Fitting fn by a quadratic in x = (ln n)−1 to the data for
n = 102,103, . . . ,5×108 (as in the previous table) gives
fn ≈ 0.1157 + 1.7894x + 0.2993x2.

Conclusion

On the basis of the numerical results, a plausible conjecture is

bn = N2/M(N) ∼ c0nc(ln n)3/2, c0 ≈ 0.1157,

which suggests
M(N) ∼ K

N2

(ln N)c(ln ln N)3/2

with
K =

(ln 2)c

c0
≈ 8.4.

This estimate of K might be inaccurate, since we have only
taken three terms in a plausible (but not proved) asymptotic
series

fn ∼ c0 + c1/ ln n + c2/(ln n)2 + · · · ,

and the first two terms are of the same order of magnitude in
the region where we can estimate M(N) = M(2n).

References

E. Bach, How to generate factored random numbers,
SIAM J. on Computing 17 (1988), 179–193.
E. Bach and J. Shallit, Algorithmic Number Theory, Vol. 1,
MIT Press, 1996.
R. P. Brent and H. T. Kung, The area-time complexity of binary
multiplication, J. ACM 28 (1981), 521–534 & 29 (1982), 904.
R. P. Brent, C. Pomerance, D. Purdum, J. Webster, Algorithms
for the multiplication table, arXiv:1908.04251, 5 May 2021.
P. Erdős, Some remarks on number theory,
Riveon Lematematika 9 (1955), 45–48 (Hebrew).
P. Erdős, An asymptotic inequality in the theory of numbers,
Vestnik Leningrad Univ. 15, 13 (1960), 41–49 (Russian).
For a correction, see MR603312 (82c:10053).

K. Ford, The distribution of integers with a divisor in a given
interval, Annals of Math. 168 (2008), 367–433.
H. A. Helfgott, An improved sieve of Eratosthenes,
Math. Comp. 89 (2020), 333–350.
A. Kalai, Generating random factored numbers, easily,
J. Cryptology 16 (2003), 287–289.
H. Maier, Primes in short intervals, Michigan Math. J. 32
(1985), 221–225.
H. L. Montgomery and R. C. Vaughan, Multiplicative Number
Theory I. Classical Theory, Cambridge Univ. Press, 2007.
S. Ramanujan, Some formulæ in the analytic theory of
numbers, Messenger of Math. 45 (1916), 81–84.
G. Tenenbaum, Sur la probabilité qu’un entier possède un
diviseur dans un intervalle donné, Compositio Math. 51(1984),
243–263 (French).

