
The multiplication table,
and random factored integers

Richard P. Brent
ANU

27 September 2012

joint work with
Carl Pomerance

Presented at the 56th annual meeting of the Australian Mathematical Society, Ballarat

Richard Brent Carl Pomerance



Abstract

Let M(n) be the number of distinct entries in the multiplication
table for integers < n. The order of magnitude of M(n) was
established in a series of papers, starting with Erdős (1950)
and ending with Ford (2008), but an asymptotic formula is still
unknown. After describing some of the history of M(n) I will
consider some algorithms for estimating M(n) accurately for
large n. This naturally leads to consideration of algorithms, due
to Bach (1985–88) and Kalai (2003), for generating random
factored integers.

Richard Brent Abstract



Outline

I History
I Exact computation - serial and parallel, memory problems
I Approximate computation - Bernoulli and non-Bernoulli
I Avoiding factoring - algorithms of Bach and Kalai
I Counting divisors
I Avoiding primality testing
I Numerical results

Richard Brent Outline



Quiz: which of these mathematicians knew their
multiplication tables?

Erdős, Linnik, Vinogradov, Tenenbaum, Ford
Answer: none of them!
At least, none had a good asymptotic formula for the size of the
table, though Ford at least got the right order of magnitude.

Richard Brent Multiplication is harder than you think



History

There is an easy lower bound M(n)� n2/ log n, by considering
{kp : p prime ,1 ≤ k < p < n}.
Erdős (1955) proved that M(n) = o(n2) as n→∞ and
indicated that n2/(log n)c for some positive c was likely.
After prodding by Linnik and Vinogradov, Erdős (1960) proved
that

M(n) =
n2

(log n)c+o(1)
as n→∞,

c = 1− 1 + log log 2
log 2

≈ 0.0861 .

Tenenbaum (1984) partially clarified the (log n)o(1) factor.

Richard Brent History



Recent history
Ford (2008) got the correct order-of-magnitude

M(n) � n2

(log n)c(log log n)3/2
,

where c ≈ 0.0861 is as in Erdős’s result.

Here f (n) � g(n) means that

f (n)� g(n)� f (n),

sometimes written as

f (n) = Θ(g(n)).

In other words, there exist positive constants c1, c2 such that

c1g(n) ≤ f (n) ≤ c2g(n)

for all sufficiently large n.
Richard Brent History



Asymptotic behaviour still unknown

We still do not know if there exists

K = lim
n→∞

M(n)(log n)c(log log n)3/2

n2
,

or have any good estimate of the value of K (if it exists).
Ford’s result only shows that the lim inf and lim sup are
positive and finite.

Richard Brent Asymptotics



Exact computation of M(n) – sieving

It is easy to write a program to compute M(n) for small values
of n. We need an array A of size order n2 bits, which is initially
cleared. Then, using two loops, set A[ij]← 1 for 0 ≤ i ≤ j < n.
Finally, count the number of bits in the array that are 1. The
time and space requirements are both of order n2.
The inner loop of the above program is essentially the same as
the inner loop of a program that is sieving for primes. Thus, the
same tricks can be used to speed it up. For example,
multiplications can be avoided as the inner loop sets bits
indexed by an arithmetic progression.

Richard Brent Exact computation



Exact computation – partitioning

If the memory requirement of order n2 bits is too large, the
problem can be split into pieces. For given [ak ,ak+1) ⊆ [0,n2),
we can count the products ij ∈ [ak ,ak+1). Covering [0,n2) by a
set of disjoint intervals [a0,a1), [a1,a2), . . ., we can split the
problem into as many pieces as desired.
There is a certain startup cost associated with each interval, so
the method becomes inefficient if the interval lengths are
smaller than n.
A parallel program can easily be implemented if each parallel
process handles a separate interval [ak ,ak+1).

Richard Brent Exact computation



The sequence OEIS A027417
The Online Encyclopedia of Integer Sequences (OEIS)
sequence A027417 is defined by an = M(2n). Until recently
only a0, . . . ,a12 were listed, although a1, . . . ,a17 had been
published by Brent and Kung (1981).
Using a parallel program as outlined on the previous slide, we
recently extended the computation to a25.

n an
1 2
2 7
3 26
4 90
· · · · · ·
23 13433148229639
24 53092686926155
25 209962593513292

Richard Brent Exact computation



The scaled sequence

In view of Ford’s result we define

bn := 4n/M(2n) � nc(log n)3/2,

fn :=
bn

nc(log n)3/2 � 1.

n bn bn/nc bn
nc log n fn = bn

nc log3/2n
5 3.0118 2.622 1.629 1.284

10 4.0366 3.311 1.438 0.948
15 4.6186 3.658 1.351 0.821
20 5.0331 3.889 1.298 0.750
25 5.3624 4.065 1.263 0.704

It’s not clear what limn→∞ fn is (if it exists).

Richard Brent Exact computation



Monte Carlo computation

We can estimate M(n) using a Monte Carlo method. Recall that

M(n) = #Sn, Sn = {ij : 0 ≤ i < n, 0 ≤ j < n}.

Bernoulli trials
We can generate a random integer x ∈ [0,n2), and count a
success if x ∈ Sn. Repeat several times and estimate

M(n)

n2 ≈ #successes
#trials

.

To check if x ∈ Sn we need to find the divisors of x ,
which probably requires the prime factorisation of x .

Richard Brent Monte Carlo



Monte Carlo computation - alternative method

There is another Monte Carlo algorithm, using what (for lack of
a better name) we call non-Bernoulli trials.
Generate random integers x , y ∈ [0,n). Count the number
ν = ν(xy) of ways that we can write xy = ij with i < n, j < n.
Repeat several times, and estimate

M(n)

n2 ≈
∑

1/ν
#trials

.

This works because z ∈ Sn is sampled at each trial with
probability ν(z)/n2, so the weight 1/ν(z) is necessary to
estimate M(n)/n2 correctly.
To compute ν(xy) we need to find the divisors of xy .

Richard Brent Monte Carlo



Comparison

For Bernoulli trials, p = M(n)/n2 is the probability of a success,
and the distribution after T trials has mean pT , variance
p(1− p)T ≈ pT .
For non-Bernoulli trials, we know E(1/ν) = M(n)/n2 = p, but
we do not know E(1/ν2) theoretically. We can estimate it from
the sample variance.
It turns out that, for a given number T of trials, the non-Bernoulli
method has smaller expected error (by a factor of 2 to 3 in
typical cases).
This is not the whole story, because we also need to factor x
(for Bernoulli trials) or xy (for non-Bernoulli trials), and then find
(some of) their divisors.
For large n, the most expensive step is factoring, which is
easier for non-Bernoulli trials because the numbers involved
are smaller.

Richard Brent Monte Carlo



Avoiding factoring large integers

We can avoid the factoring steps by generating random
integers together with their factorisations, using algorithms due
to Bach (1988) or Kalai (2003).
Bach’s algorithm is more efficient than Kalai’s, but also much
more complicated, so I will describe Kalai’s and refer you to
Bach’s paper for a description of his algorithm. There is also a
description in the book Algorithmic Number Theory by Bach
and Shallit.

Richard Brent Bach and Kalai



Kalai’s algorithm

Input: Positive integer n.

Output: A random integer r , uniformly distributed in [1,n],
and its prime power factorisation.

1. Generate a sequence n = s0 ≥ s1 ≥ · · · ≥ s` = 1 by
choosing si+1 uniformly in [1, si ] until reaching 1.

2. Let r be the product of all the prime si , i > 0.
3. If r ≤ n, output r with probability r/n,

otherwise restart at step 1.

Richard Brent Bach and Kalai



Why is Kalai’s algorithm correct?

Kalai shows that

Prob

r = R :=
∏
p≤n

pαp

 =
µn

R
,

where
µn =

∏
p≤n

(1− 1/p).

Step 3 accepts r ≤ n with probability r/n, so the probability of
outputting such an r at step 3 is proportional to

µn

r
r
n

=
µn

n
,

which is independent of r . Thus the output is uniformly
distributed in [1,n].

Richard Brent Correctness of Kalai



Running time

The expected number of primality tests is Hn/µn, where

Hn = 1 + 1/2 + · · ·+ 1/n ∼ log n.

By a theorem of Mertens,

1
µn
∼ eγ log n,

so the expected number of primality tests is

∼ eγ log2 n.

Richard Brent Runtime of Kalai



Bach’s algorithm

Bach’s algorithm requires prime power tests which are (slightly)
more expensive than primality tests. However, it is possible to
modify the algorithm so that only primality tests are required.
(This is the version that we implemented.)
Bach’s algorithm is more efficient than Kalai’s – the expected
number of primality tests is O(log n). The reason is that Bach’s
algorithm generates factored integers uniform in (n/2,n] rather
than [1,n], which makes the acceptance/rejection process
more efficient.
We can generate integers in [1,n] by calling Bach’s algorithm
appropriately. We first choose an interval (m/2,m] ⊆ [1,n] with
the correct probability dm/2e/n, then call Bach’s algorithm.

Richard Brent Bach’s algorithm



Primality testing

For large n, the main cost of both Bach’s algorithm and Kalai’s
algorithm is the primality tests.
Since we are using Monte Carlo algorithms, it seems
reasonable to use the Miller-Rabin probabilistic primality test,
which has a nonzero (but tiny) probability of error, rather than a
much slower “guaranteed” test (e.g. the deterministic test of
Agrawal, Kayal and Saxena, or the elliptic curve test of Atkin
and Morain).
The Miller-Rabin test makes it feasible to use Bach’s or Kalai’s
algorithm for n up to say 21000.

Richard Brent Primality testing



Divisors

An integer
x =

∏
pαi

i

has
d(x) =

∏
(αi + 1)

distinct divisors, each of the form
∏

pβi
i for 0 ≤ βi ≤ αi .

We do not need all the divisors of the the random integers x , y
that occur in our Monte Carlo computation. It turns out that we
only need the divisors in a certain interval. We’ll consider the
algorithms using Bernoulli and non-Bernoulli trials separately.

Richard Brent Divisors



Bernoulli and non-Bernoulli trials

Bernoulli trials
For Bernoulli trials, we merely need to know if a given x < n2

has a divisor d < n such that x/d < n, i.e. x/n < d < n. Thus,
given n and x ∈ [1,n), it is enough to compute the divisors of x
in the interval (x/n,n) until we find one, or show that there are
none.
Non-Bernoulli trials
For non-Bernoulli trials we generate random (factored) x , y < n
and need (some of) the divisors of xy . We can easily compute
the prime-power factorisation of z := xy from the factorisations
of x and y . We then need to count the divisors of z in the
interval (z/n,n).

Richard Brent Divisors



Cost of Bernoulli and non-Bernoulli trials

An integer x ∈ [1,n2) has on average

∼ log n2 = 2 log n

divisors [Dirichlet]. This is relevant for Bernoulli trials.
However, for non-Bernoulli trials, our numbers z = xy have on
average & log2 n divisors, because x and y each have ∼ log n
divisors on average.
Thus the divisor computation for non-Bernoulli trials is more
expensive than that for Bernoulli trials.

Richard Brent Divisors



Counting divisors in an interval

We can count the divisors of x in a given interval [a,b] faster
than actually computing all the divisors in this interval, by using
a “divide and conquer” approach.
Here is an outline. Write x = uv where (u, v) = 1 and u, v have
about equal numbers of divisors. Find all the divisors of v and
sort them. Then, for each divisor d of u, we can compute
bounds a ≤ d ′ ≤ b for relevant divisors d ′ of v , and search for
a and b in the sorted list, using a binary search.
The expected running time is roughly (ignoring log log factors)
proportional to the mean value of d(x)1/2 over x ≤ n. By a
result of Ramanujan [Montgomery and Vaughan, eqn. (2.27)],
this is � (log n)α, where α =

√
2− 1 ≈ 0.4142.

Thus, for Bernoulli trials the cost is O(logα n)
and for non-Bernoulli trials the cost is O(log2α n).

Richard Brent Counting divisors in an interval



Avoiding primality testing

The times for counting divisors would appear to be dominated
by the time for Miller-Rabin primality testing – but we shall see
that most of the primality tests can be avoided, without
significant loss of accuracy.
Consider implementing Kalai’s algorithm for very large inputs
N = 2n − 1. To avoid storing very large integers x ∈ [1,N] we
might store (an approximation to) log x instead.
Recall that Kalai’s algorithm generates a sequence
N = s0 ≥ s1 ≥ · · · until finding a prime p (or 1).
What is the distribution of log p?
If we assume that the density of primes near x is 1/ log x ,
then log p/ log s0 is uniformly distributed (up to a discretisation
error of order 1/x).

Richard Brent Avoiding primality testing



Is the density assumption reasonable?

We know that the density assumption is false in sufficiently
short intervals (cf Maier’s theorem). However, it seems
reasonable in our application, provided x is sufficiently large,
say x > 1/ε2 if the expected error of the Monte Carlo algorithm
is ε.
The assumption also agrees with a theorem of Vershik, which
says that if k is fixed and n→∞ then log pk/ log pk+1 is
asymptotically uniformly distributed, where the prime factors of
n are p1 ≤ p2 ≤ · · · .

Richard Brent The density assumption



Approximate Kalai algorithm

Input: Large positive integer N, represented by ` := log N.

Output: A random integer r , uniformly distributed in [1,N], and
its prime power factorisation, also represented logarithmically.

1. S ← `

2. S ← S × uniform(0,1)

3. if S ≤ crossover then
S ← crossover
start usual Kalai in [1,S]

else
treat S like log(p) in usual Kalai
go to step 2.

Now we only need to do “real” primality tests for numbers that
are smaller than the crossover, taking time O(1).
There is an analogous “approximate Bach” algorithm.

Richard Brent Approximate Kalai



How far can we estimate M(n)?

Using the “exact” Kalai or Bach algorithms with Miller-Rabin
probabilistic primality tests and Bernoulli or non-Bernoulli trials,
we can estimate M(n) for n ≤ 21000 before the algorithm
becomes impractically slow.
Using the approximate Bach algorithm with Bernoulli trials, we
can extend the domain to n ≤ 25×108

and still get reasonable
accuracy (say 3 significant decimal digits).
The speed is about 1 trial per second on a 2GHz machine.

Richard Brent Limits of the computation



Numerical results

bn :=
4n

M(2n)
, fn :=

bn

nc(log n)3/2 � 1.

n bn bn/nc bn
nc log n fn = bn

nc log3/2 n
10 4.0366 3.311 1.438 0.948
102 7.6272 5.131 1.114 0.519
103 12.526 6.912 1.001 0.381
104 19.343 8.755 0.951 0.313
105 28.74 10.67 0.927 0.273
106 41.6 12.67 0.917 0.247
107 59.0 14.74 0.914 0.228
108 82.7 16.94 0.920 0.214

2× 108 90.9 17.54 0.918 0.210
5× 108 103.4 18.44 0.921 0.206

The value of limn→∞ fn is not immediately clear from this table!

Richard Brent Numerical results



Least squares quadratic fit

Fitting fn by a quadratic in x = (log n)−1 to the data for
n = 102,103, . . . ,5×108 (as in the previous table) gives
fn ≈ 0.1157 + 1.7894x + 0.2993x2.

Richard Brent Least squares quadratic fit



Conclusion
On the basis of the numerical results, a plausible conjecture is

bn = 4n/M(2n) ∼ c0nc(log n)3/2, c0 ≈ 0.1157,

which suggests
M(N) ∼ K

N2

(log N)c(log log N)3/2

with
K =

(log 2)c

c0
≈ 8.4.

This estimate of K might be inaccurate, since we have only
taken three terms in a plausible (but not proved to exist)
asymptotic series

fn ∼ c0 + c1/ log n + c2/ log2 n + · · · ,

and the first two terms are of the same order of magnitude in
the region where we can estimate M(N).

Richard Brent Conclusion



References
E. Bach, How to generate factored random numbers,
SIAM J. on Computing 17 (1988), 179–193.
E. Bach and J. Shallit, Algorithmic Number Theory, Vol. 1,
MIT Press, 1996.
R. P. Brent and H. T. Kung, The area-time complexity of binary
multiplication, J. ACM 28 (1981), 521–534 & 29 (1982), 904.
I. Damgård, P. Landrock and C. Pomerance, Average case error
estimates for the strong probable prime test, Math. Comp. 61
(1993), 177–194.
P. Erdős, Some remarks on number theory,
Riveon Lematematika 9 (1955), 45–48 (Hebrew).
P. Erdős, An asymptotic inequality in the theory of numbers,
Vestnik Leningrad Univ. 15 (1960), 41–49 (Russian).
K. Ford, The distribution of integers with a divisor in a given
interval, Annals of Math. 168 (2008), 367–433.

Richard Brent Time for lunch



References continued
A. Kalai, Generating random factored numbers, easily,
J. Cryptology 16 (2003), 287–289.
H. Maier, Primes in short intervals, Michigan Math. J. 32
(1985), 221–225.
H. L. Montgomery and R. C. Vaughan, Multiplicative Number
Theory I. Classical Theory, Cambridge Univ. Press, 2007.
See eqn. (2.27).
S. Ramanujan, Some formulæ in the analytic theory of
numbers, Messenger of Math. 45 (1916), 81–84.
G. Tenenbaum, Sur la probabilité qu’un entier possède un
diviseur dans un intervalle donné, Compositio Math. 51(1984),
243–263 (French).
A. M. Vershik, The asymptotic distribution of factorizations of
natural numbers into prime divisors, Dokl. Akad. Nauk SSSR
289 (1986), 269–272 (Russian).

Richard Brent Time for lunch


