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Abstract

We consider methods for finding high-precision approximations to simple zeros of smooth
functions. As an application, we give fast methods for evaluating the elementary functions
log(x), exp(x), sin(x) etc. to high precision. For example, if x is a positive floating-point number
with an n-bit fraction, then (under rather weak assumptions) an n-bit approximation to log(x) or
exp(x) may be computed in time asymptotically equal to 13M(n) log2 n as n→∞, where M(n)
is the time required to multiply floating-point numbers with n-bit fractions. Similar results are
given for the other elementary functions, and some analogies with operations on formal power
series are mentioned.

Comments

Only the Abstract is given here. The full paper appeared as [3]. This paper gives the
quadratically convergent “Gauss-Legendre” algorithm [2] for the computation of π (discovered
independently by Salamin [6]), and gives algorithms for computing elementary functions which
are simpler and faster than those of [5]. It also gives a fast algorithm for computing the first
n terms in an arbitrary power F (x)q of a formal power series F (x) in one variable. A related
paper (written earlier) is [4].

Errata

Page 152, line −10: replace “performe” by “perform”.
Page 172, line 7: replace “βi” by “β”.
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