2
0((n log nvu\ ) ALGORITHMS FOR COMPOSITION
AND REVERSION OF POWER SERIES

Richard P. Brent
Computer Centre
Australian National University

H. T. Kung
Department of Computer Science
Carnegie-Mellon University

ABSTRACT

Let P(s) = Pys + wmmm + ... and Q(t) = 9 + n_n + ... be

formal power series,.
The composition of Q and P is the power series
R(s) = T, + s + ... such that R(s) = Q(P(s)). The composi-

tion problem is to compute ThaeessT given PysesesPy and

ﬂ.-,u
Qps---29y

The functional inverse of P is the power series

V(e) = vyt <an+ ... such that P(V(t)) = t or V(P(s)) = s.

The reversion problem is to compute ViseresVos given

given vqu....ﬁb.
The classical algorithms for both the composition and
. 3 .
reversion problems require O(n”) operations (see, e.g.,
Knuth, Vol, 2). 1In this paper we describe algorithms which

can solve both problems in 0((n log nuu\mu operations. The
techniques used to obtain our results are applicable to sev-

eral other problems.

217



RICHARD P. BRENT AND H. T. KUNG
1. INTRODUCTION

Let k be a field, which contains an nth root of unity
for every positive integer n. (For example, k could be the
field of complex numbers,) Let P> q i=20,1,..., be in-
determinates over k, A the extension field whvcupo.vﬂunA‘..bu
and s, t indeterminates over A, Suppose that E and F are
finite subsets of A and that we perform computatioms in the
field A, Let L(E mod F) denote the number of operations
necessary to compute E starting from k U F.

Let P(s) = pqs + vmmm + ﬁumu + ... and

2
Q(t) = 4 + n;n + @mn + ... be formal power series over A.
The composition of Q and P is the power series

2
R(s) = T, + r;s + T,8

+ ... such that R(s) = Q(P(s)) is a
formal identity. The composition problem is to compute

Tgse-eoT s Blven mvd....,mn,nc“...“n:w U k. Define

n

COMP(n) = hnﬂo_...uﬂs mod vAu...uﬁﬁ.no.....nﬁu

Let P(s) = pys + nmmm + vumm + .., be a formal power

series over A. The functional inverse of P is the power
2 3
series V(t) = Vit vyt vt + ... over A such that

P(V(t)) = t or V(P(s)) = s is a formal identity. The rever-

sion problem is to compute VisesesVos given mvd.....vsw U k.

Define

REV(n) = rnadu...u<u mod ud....u@nv.

The classical algorithms for both the composition and re-
version problems require oﬁsuu operations (see, e.g., Knuth
(711, or oﬁﬂm log n) operations if the fast Fourier trans-
form is used for polynomial multiplication as pointed out in

Kung and Traub [74, Section 4]. 1In this paper we describe
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u\mv

algorithms which can solve both problems in O((n log n)
operations.

In another paper, Brent and Kung [75], we shall give a
complete treatment of the subject, which will include the

following:

(i) The proof that the composition and reversion prob-
lems are equivalent (up to constant factors) if
MULT(n) = O(REV(n)), where MULT(n) is the number
of operations needed to multiply two nth degree

polynomials,

(ii) Other algorithms requiring, e.g., onumv and
1.9037
0(n ) operations which do not use the fast

Fourier transform and are faster for small n.

(iii) An algorithm which can evaluate the truncated
functional inverse, i.e.,
2 n
A = . i
aﬁnv vyt + <mn + .. +‘<5n , at one point in
O(n log n) operations, and its application to the

root-finding problem,

2, PRELIMINARY LEMMAS

Let P(s) = Py + Pys + ...y Q(8) = 4, + q,8 + ...,

U(s) = ug + u,s + ..., etc. be formal power series over A,

Lemma 2.1

If U(s) = P(s)Q(s), then

ﬁmnou....cm mod wcu....wsunou....auu = 0(n log n)
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Proof

Use the fast Fourier transform (see, e.g. Knuth [71,
p. 4410). [ |

Lemma 2,2
If U(s)

P(s)/Q(s), then

ﬁACOu...unﬁ mod vo,....vn.Ac.....nnv = 0(n log n)

Proof

Use Lemma 2.1 and Newton's method as in Kung [74]. @

Lemma 2.3

If B(s) = pys + bys’ + ...y R(s) = Q(B(s)) and

D(s) = Q' (2(s)), then

ﬁﬁmo...._au mod uo....uﬂnuvdu....wuu = 0(n log n).

(Here the prime denotes formal differentiation with respect

to s.)

Proof
By chain rule, R'(s) = Q'(P(s))-P'(s). Hence
D(s) = w_?v\m_ﬁmuﬁ and the result follows from Lemma 2.2. W

Lemma 2.4
If P(s) = pys + ... + vama.
Q(t) = qQ + A_n + ...+ munu. where m < n and j < n and
R(s) = Q(B(s)) = Ty * Tys + ..., then
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_ﬁnnov...uﬂ mod Pyse++sP

0 ac....uauv

n

= 0(jm(log ﬂvmv.

Proof

We may assume that j is a power of 2. Write
R = oaﬁwu + wu\w . QNAWUu where oA and om are polynomials of
degree j/2. During the computation we always truncate terms
of degree higher than n.

The proof is by induction, so we can assume that p
known. Thus, wu\m can be computed with
0(jm log jm) = O(jm log n) additional operations, and multi-
plication by DMAMV also requires O(jm log n) operatioms., If
T(j) operations are required to compute R and wu\mu then od
and om may each be computed in Hmu\mv operations. Thus,

T(3) = 2T(i/2) + 0(jm log n),
S50
T(j) = 0(jm(log n)(log §)) = 0(im(log n)>). -

Lemma 2.4 can also be proved by using the fast evalua-
tion and interpolation algorithms of Moenck and Borodin [72],
but this method involves larger asymptotic constants and may

have numerical stability problems,

3. THE COMPOSITION PROBLEM

EHwnmmﬂmun mrﬁmU + wﬂmmu. Ermﬂm
2 m
msmmv = pys + Pys t+ ...+ Py and

_ m+1 m+2 _ n . Then
wnAmv = Ppy1S + P2 + ..., form-= <_bmﬂu
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Q) = oAm: + wuu
1 ._ \L N
oﬁw + Q Q:uﬂ, + 50 stm% N

Let £ = —MA. Since the degree of any term in AMﬁvm+p is

z nt+l for any 1 >0,

QR(s)) = Q) + Q' (RIR_+ ... + wqohmunmsvnmuvp + o™

).
This equality gives us the following algorithm for computing
the first n coefficients of R(s) = Q(P(s)):

Step 1. Compute the first n coefficients of W(s) = oﬁmrﬁmw.
By Lemma 2,4 with j = n and m as above, this can be done in

0{(n log nvu\wu operations.

Step 2. Compute the first n cocefficients of

Q' (B (), Q"B (), .ory P (B (s)). By Lemma 2.3, it
wmwmm 0(n log pu operations for each oﬁuvﬁm (s)). Hence the
whole step can be done in 0(£ n log n) = OAAn log uuu\w

operations.

Step 3. Compute the first n coefficients of
2 3 2
muﬁmv.mnnmv.....wuamv.

Step 4. Compute nwﬁ first n coefficients cm
Q' (B, (0 _(s),0ne, 37 €D @ (00 (2 (1) %

Step 5. Sum the results obtained from step 4.

It is clear that steps 3, 4 and 5 can be done in
3/2
0((n log n) \ ) operations. Therefore, we have shown the

following
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Theorem 3.1
COMP(a) = 0((n log m2).

4, THE REVERSION PROBLEM

Define function f£: A(t) = A(t) by f(x) = P(x)
Suppose that V(t) is the functional inverse of P. Then
P(V(t)) = t. Hence V(t) is the zerc of f, and the reversion
problem can be viewed as a zero-finding problem. We shall
use Newton's method to find the zero of f; other iterations
can also be used successfully. (See Kung [74] for a similar
technique for computing the reciprocals of power series and
also Brent [75, Section 13].) The iteration function given

by Newton's method is

n
"
i

G. 1) o)

s0 we have

(4.2) olx) - V(t)

(P(V(L)) + P'(V(E)) (x-V(E)) + ...) - t
PY(V(L)) + P"(V(t))(x-V(E)) + ...

P(V(t)) 2 3
quﬁﬂﬁﬁuv AK = Cﬁ.ﬂuv + Omx - <nnvv

= x - V(t) -

Suppose that the first n coefficients, cduﬂm....ucnuom v(t)
have already been computed. Let x be taken to be
2

b
ﬂunnV = vt tv,tt + ...+ v .t Then by (4.2)

o(V_(£)) = V() + o(7™P),

Hence by computing the first 2n+1 coefficients of 6ﬁ<nﬁﬂuu we
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obtain the first 2n+1 coefficents of V(t). Hence by (4.1) Moenck and

and Lemmas 2.2, 2.3, we have
(4#.3) REV(2nt1) = REV(n) + COMP(2n+1) + O(n log n).

Therefore, by (4.3) and Theorem 3.1 we have shown the follow-

ing

Theorem 4.1
REV(n) = 0((n log n) u\mV.
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