
Factor: An Integer Factorization Program for the IBM PC

Richard P. Brent
Computer Sciences Laboratory
Australian National University

Canberra, ACT 0200

Report TR-CS-89-23
October 1989

Revised March 1994

Abstract

Factor is a program which accesses a large database of factors of integers of the
form an±1. As of March 1994 the database contains more than 175,000 factors of size
at least 104. The program factor implements a simple version of the Elliptic Curve
algorithm if it is unable to complete a factorization using trial division and the factor
database.

Factor is written in Turbo Pascal and runs on IBM PC or compatible computers.
This report describes factor and various related programs. The programs and the
factor database are available from the author.

1. Introduction

For many years there has been an interest in the prime factors of numbers of
the form an ± 1, where a is a moderately small integer (the base) and n is a positive
exponent. Such numbers often arise. For example, if a is prime then there is a finite
field F with an elements, and the multiplicative group of F has an−1 elements. Also,
for prime a the sum of divisors of an is σ(an) = (an+1 − 1)/(a− 1). Numbers of the
form an + 1 arise as factors of a2n − 1 and in other ways.

An extensive table of factors of an±1 for a ≤ 12 has been published by Brillhart et
al [6]. For historical reasons, the computation of [6] is referred to as the Cunningham
Project after the pioneering computations of Cunningham and Woodall [10]. For a
history, see the Introduction in [6].

In the course of proving [4, 5] that there is no odd perfect number less than
10300, we found the tables of [6] very useful, but needed to extend them to higher
bases. For example, we needed many factorizations of an − 1 for a = 13, 19, 31, 127.
Some of the required factorizations for a ≤ 30, n ≤ 60 were found in an unpublished
table of Silverman [21], but the majority were computed using Lenstra’s Elliptic
Curve Method (ECM) and in some difficult cases the Multiple Polynomial Quadratic
Sieve (MPQS). The factors were kept in a machine-readable file on a VAX 11/750
computer. Although parts of this file have been published, printed tables of factors
are less useful than machine-readable files, and much harder to update as new factors

E-mail address: rpb@cslab.anu.edu.au
Copyright c© 1989, 1994, R. P. Brent. rpb117 typeset using TEX

are found. Hence, we thought it would be useful to make our file of factors generally
available. The program factor was written with this in mind. It should be considered
primarily as a means of accessing a file of known factors, rather than as a general-
purpose factorization program. For surveys of factorization algorithms and programs,
we refer the reader to [3, 7, 8, 11, 14, 16, 17, 18, 19, 20].

2. The File of Known Factors

A file hints.dat contains a list of known factors f of numbers an ± 1. Each entry
may be thought of as a triple (h, n, f), where h = a mod 10000, and f is a prime
divisor of an ± 1. Thus f is a “hint” which may be useful when attempting to factor
an ± 1. For a < 10000 we have h = a, so the file is indexed by a and n. For the large
a occurring in [4, 5], h may be thought of as a “hash function” [13] derived from a.
The file is sorted by increasing h, then by increasing n.

Several devices are used to reduce the size of the file hints.dat –
1. Factors f less than a moderate bound B are omitted. These factors may easily

be found by trial division. Currently B = 10, 000.
2. The largest prime factor of a number of the form an±1 is omitted. These factors

may be found by division by the other prime factors.
3. Similarly, the largest prime factors of any Aurifeuillian factors (see Section 3) of

an ± 1 are omitted.
4. A factor f of am ± 1 is not listed as a factor of akm ± 1 for any k > 1. When

attempting to factorize an ± 1, we check each f occurring in an entry
(a mod 10000, m, f) with m|n.

Even with these devices, the file hints.dat is rather large (too large to fit on one
360K floppy disk). Thus, we use a compressed format which saves space (compared
to the expanded format) at the expense of some loss of comprehensibility of the file.
A program convert is provided to convert between the compressed and expanded
formats. The compressed format uses the following additional devices to save space –

5. Entries (h, n, fj) with common h and n may be given on a single line in the
format (h, n, f1, f2, . . .).

6. An entry (h, n, F) with even F may be used to abbreviate an entry (h, n, nF +1).
This takes advantage of the fact that most factors f (of an±1) in the table satisfy
f = 1 mod 2n.

7. Two decimal digits are packed into one 8-bit byte, i.e. we use a “base one hun-
dred” rather than “base ten” representation.

8. Since the base one hundred representation requires only 7 bits for two decimal
digits, the eighth bit is available as a delimiter, and there is no need for blanks
or commas to separate h, n, f1, f2, . . .

With the space-saving devices just described, the file hints.dat occupies 195,745
bytes in compressed format (555,500 bytes in expanded format) for a total of 30,227
entries (h, n, f).† The factors f have an average length of about 10 decimal digits.

† These numbers have increased since this Report was written in October 1989. As of 7 March
1994 there are 175,820 entries and the size has increased in proportion to 1,158,447 bytes in compressed
format.

2

Use of the compressed format increases the amount of CPU time required to scan
the file, but may actually decrease the overall time required because of the reduced
amount of I/O.

3. The Program Factor

Factor accepts positive integers N of the form (an±c)/d and attempts to factorize
them. Of course, any integer N can be expressed in this form (with a = N , n = 1,
c = 0, d = 1). However, the file hints.dat is only useful if c = ±1 and a is not a prime
power. For example, the Fermat number F6 should be written as 264 + 1 so that the
relevant entry (2, 64, 274177) will be found in hints.dat. This would not be the case
if F6 were written as 432 + 1 or as 18446744073709551617.

Factor first performs trial division by all primes less than the bound B. This finds
factors which are too small to be included in the file hints.dat. If B were increased
then the time required for trial division would increase but the size of the file hints.dat
would be reduced.

Let N be the number to be factorized after division by those factors less than
B. If N > 1, the file hints.dat is scanned for relevant entries, that is entries (h, m, f)
with h = a mod 10000 and m|n. For each relevant entry, factor checks if f |N and,
if so, f (to the appropriate power) is added to a the list of factors found, and N is
reduced by division.

Factor next performs greatest common divisor computations with possible Au-
rifeuillian factors. For example, numbers of the form 24k−2 + 1 have Aurifeuillian
factors L = 22k−1− 2k +1 and M = 22k−1 +2k +1. Such factorizations were general-
ized to bases a > 2 by Lucas (but the generalizations are usually called Aurifeuillian
factors rather than Lucasian factors). We refer the reader to [19] for a description of
these factorizations, and a table of the coefficients required†.

Factor implements Aurifeuillian factorizations provided that the square-free part
of a is less than 51 (a limitation imposed by the size of our table of coefficients).

Let L,M be possible Aurifeuillian factors, i.e. Aurifeuillian factors of am ± 1 for
some m|n. Factor computes GCD (L,N) and GCD (M,N); a nontrivial GCD gives
a (possibly composite) factor of N . Composite factors are pushed on a stack for later
processing, and N is reduced by division by any factors found.

If the quotient N is nontrivial, factor computes GCD (A,N) for possible algebraic
factors A of N , that is A = am ± 1 for m|n. This process may give prime and/or
composite factors.

If the quotient N is still nontrivial, it is tested for primality using a probabilistic
algorithm [12]. Primality testing is often the most time-consuming part of the whole
computation, which is the reason why it is deferred as long as possible. Because
the algorithm used is probabilistic, there is a small but positive probability P that a

† See also R. P. Brent, “Computing Aurifeuillian factors”, Proceedings of a Conference on Compu-
tational Algebra and Number Theory held at University of Sydney, Nov. 1992 (edited by W. Bosma and
A. van der Poorten), to appear; and R. P. Brent, “On computing factors of cyclotomic polynomials”,
Mathematics of Computation 61 (1993), 131-149.

3

factor will be treated as prime when it is in fact composite. This probability may be
reduced as much as desired by increasing the the number T of trials performed – we
have the conservative bound P ≤ 4−T .

If the factorization is not yet complete, factor is left with a (possibly empty)
set of prime factors and one or more composite factors. A simple implementation of
Lenstra’s Elliptic Curve Method (ECM) [15] is used in an attempt to complete the
factorization. Only the first phase of ECM is used. Implementation of the second
phase [2] requires more memory than is usually available on a PC. At each iteration
(i.e. each choice of elliptic curve), one of the composites is selected at random – in
this way all small factors should be found in a reasonable time.

To simplify implementation of group operations in the groups defined by elliptic
curves, factor uses the Cauchy symmetric form

x3 + y3 + z3 = Dxyz

rather than the usual Weierstrass normal form

y2 = x3 + αx + β

or the “Montgomery-Chudnovsky” form [9, 16]

βy2 = x3 + αx2 + x.

Use of the Cauchy form leads to symmetric formulas and avoids the need to compute
reciprocals (mod N). The cost is a slight reduction in speed, but factor is intended
to be a simple rather than a particularly efficient implementation of ECM.

4. Implementation Details

Factor and related programs are written in Turbo Pascal, a variant of Pascal
which is implemented on IBM PC and compatible machines [1]. We have used Version
4.0 of Turbo Pascal, which allows 32-bit integers (though 16-bit integers are used
where possible, since operations on them are faster).

Multiple-precision numbers are represented as decimal strings. In Turbo Pascal,
strings have a maximum length of 255 characters (since the length is stored in an
8-bit field). Thus, factor can only handle numbers less than 10255. This is not a very
serious limitation, since operations such as primality testing on numbers of 200 or
more decimal digits are very slow on a PC. We considered that the advantages of
using decimal strings outweighed their disadvantages. The main advantages are –

1. Input and output are very straightforward.
2. Debugging is simplified.
3. Functions can return strings, so programming and storage allocation are simpli-

fied.

In order to speed up the most time-consuming operations – primality testing and
implementation of ECM – factor optionally uses a base β larger than 10 in certain
critical sections. In fact, factor uses β = 180 because of the constraint β2 < 215.

4

Factor may be interrupted at any time by pressing a key. Most keys cause factor
to give a summary of factors found so far, and then to continue. The escape key stops
execution of factor after it gives a summary.

When the ECM phase of factor finds a factor, it is written on a file hints.new
(unless this is impossible because the disk is full or write-protected). The new factor(s)
can be added to the file hints.dat using a program update (see Section 5).

5. Related Programs

Several programs are distributed with factor –

Table is a variant of factor in which the ECM phase is omitted, the output is
less verbose, and a sequence of (possibly incomplete) factorizations is written to a file
table.out. Thus, table is intended for the production of tables of factors, in a format
similar to that of the “short” tables at the beginning of [6]. Table optionally writes a
separate file tablec.out of incomplete factorizations – this is useful if one wants to use
more powerful programs to find factors which are not currently in the file hints.dat.
Since table repeatedly scans the file hints.dat, it is desirable for this file to be on a
virtual disk (or on a hard disk with a disk caching program such as Smartdrive).

Convert is a program which converts a compressed file of hints to an expanded
file. This may be useful if one wants to edit the file or use it as input to another
program. Convert also converts from expanded to compressed format.

Update is a program which takes a (large) file of hints in compressed format, a
(small) file of additional hints in expanded format, and merges them to form a new file
in compressed format. Typically update is applied to the files hints.dat and hints.new.
The merge requires temporary disk space at least as great as that occupied by the
new file (but this temporary space may be on a different disk).

Check is a program which checks a file of hints in expanded format. Each entry
(h, e, f) is checked to see if f is prime, if f is a factor of he± 1, and if f2 <= he. It is
recommended that check should be run to check any new factors before adding them
to hints.dat using update. Note that check gives spurious warnings about entries with
a ≥ 10000, since it checks if f is factor of he ± 1 rather than of ae ± 1.

Although factor and table are limited to numbers of less than 256 decimal digits,
the file hints.dat contains some factors of larger numbers, e.g. factors of 2n ± 1 for
n > 847, and these may be processed by convert, update and check.

6. The Distribution Disk(s)

Factor, hints.dat and the programs mentioned in Section 5 are available on 3.5”
(1440K) and 5.25” (1200K) floppy disks. Both Pascal source files and executable
files are available. The programs have been tested on IBM PC AT and compatible
machines with at least 640K of memory.

When requesting a copy of factor, please specify whether you want 3.5” or
5.25” media, and the densities that you can read. (For 360K 5.25” floppy disks
we can only supply an abbreviated version of hints.dat.) A small charge may be

5

made to cover media and postage costs, etc. Enquiries may be made by e-mail to
rpb@cslab.anu.edu.au .

Alternatively, if you have access to the Internet, the files are available by anony-
mous ftp from dcssoft.anu.edu.au in the directory pub/Brent, file rpb117.tar.Z
(see also the README and contents files).

Acknowledgements

We gratefully acknowledge the assistance of –

Henk Boender, Harvey Dubner, Wilfrid Keller, Peter Montgomery and Mitsuo
Morimoto for contributing many factors found by various algorithms (including vari-
ants of MPQS, p− 1, and ECM).

Graeme Cohen, without whom the odd perfect number project [4, 5] would not
have been started.

Herman te Riele, who cracked many “difficult” composites with his MPQS pro-
gram [18]; and the Dutch Working Group on the Use of Supercomputers, for the
provision of computer time to run his MPQS program on a Cyber 205 and NEC
SX/2.

Hans Riesel for his assistance with the generation of Aurifeuillian factors;
Robert Silverman, for his unpublished tables [21] and various factors found by

the special NFS algorithm.
Samuel Wagstaff, for much useful information on the Cunningham project, and

the provision of updates to [6].
The staff of the ANU Microcomputer Unit, for their assistance with optical char-

acter readers.
The ANU Supercomputer Facility, for the provision of computer time to run our

ECM program MVFAC [3] on a Fujitsu VP 100 and VP 2200/10 computers.
Borland International, whose Turbo Pascal environment [1] is a pleasure to use.

References

1. Turbo Pascal Owner’s Handbook Version 4.0, Borland International, 4585 Scotts
Valley Drive, Scotts Valley, California 95066 (IBM version, 1987).

2. R. P. Brent, “Some integer factorization algorithms using elliptic curves”, Aus-
tralian Computer Science Communications 8 (1986), 149-163.

3. R. P. Brent, “Parallel algorithms for integer factorisation”, Number Theory and
Cryptography (edited by J. H. Loxton), London Mathematical Society Lecture
Note Series 154, Cambridge University Press, 1990, 26-37.

4. R. P. Brent and G. L. Cohen, “A new lower bound for odd perfect numbers”,
Mathematics of Computation 53, 187 (July 1989), 431-437. Supplement, ibid,
S7-S24.

5. R. P. Brent, G. L. Cohen and H. J. J. te Riele, Improved techniques for lower
bounds for odd perfect numbers, Report CMA-R50-89, Centre for Mathematical
Analysis, Australian National University, October 1989. To appear in Mathe-
matics of Computation.

6. J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman and S. S. Wagstaff, Jr.,
Factorizations of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers, American

6

Mathematical Society, Providence, Rhode Island, second edition, 1985. (Also
updates up to update 2.7 and # 3624.)

7. D. A. Buell, “Factoring: algorithms, computations, and computers”, J. Super-
computing 1 (1987), 191-216.

8. T. R. Caron and R. D. Silverman, “Parallel implementation of the quadratic
sieve”, J. Supercomputing 1 (1988), 273-290.

9. D. V. Chudnovsky and G. V. Chudnovsky, Sequences of numbers generated by
addition in formal groups and new primality and factorization tests, Dept. of
Mathematics, Columbia University, July 1985.

10. A. J. C. Cunningham and H. J. Woodall, Factorisation of yn∓ 1, y = 2, 3, 5, 6, 7,
10, 11, 12 Up to High Powers (n), Hodgson, London, 1925.

11. R. K. Guy, “How to factor a number”, Congressus Numerantum XVI, Proc. Fifth
Manitoba Conference on Numerical Mathematics, Winnipeg, 1976, 49-89.

12. D. E. Knuth, The Art of Computer Programming, Vol. 2, Addison Wesley, 2nd
edition, 1982.

13. D. E. Knuth, The Art of Computer Programming, Vol. 3, Addison Wesley, 1973.
14. A. K. Lenstra and M. S. Manasse, Factoring by electronic mail, preprint, to

appear in Proceedings Eurocrypt ’89.
15. H. W. Lenstra, Jr., “Factoring integers with elliptic curves”, Ann. of Math. (2)

126 (1987), 649-673.
16. P. L. Montgomery, “Speeding the Pollard and elliptic curve methods of factor-

ization”, Mathematics of Computation 48 (1987), 243-264.
17. C. Pomerance, “Analysis and comparison of some integer factoring algorithms”,

in Computational Methods in Number Theory (edited by H. W. Lenstra, Jr. and
R. Tijdeman), Math. Centrum Tract 154, Amsterdam, 1982, 89-139.

18. H. J. J. te Riele, W. Lioen and D. Winter, Factoring with the quadratic sieve on
large vector computers, Belgian J. Comp. Appl. Math. 27 (1989), 267-278.

19. H. Riesel, Prime Numbers and Computer Methods for Factorization, Birkhäuser,
Boston, 1985.

20. R. D. Silverman, “The multiple polynomial quadratic sieve”, Mathematics of
Computation 48 (1987), 329-339.

21. R. D. Silverman, Private communication, June 1987.

7

