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Abstract

The problem of finding the prime factors of large composite numbers has always
been of mathematical interest. With the advent of public key cryptosystems it is also
of practical importance, because the security of some of these cryptosystems, such as
the Rivest-Shamir-Adelman (RSA) system, depends on the difficulty of factoring the
public keys.

In recent years the best known integer factorisation algorithms have improved
greatly, to the point where it is now easy to factor a 60-decimal digit number, and
possible to factor numbers larger than 120 decimal digits, given the availability of
enough computing power.

We describe several recent algorithms for primality testing and factorisation, give
examples of their use and outline some applications.

1. Introduction

It has been known since Euclid’s time (though first clearly stated and proved by
Gauss in 1801) that any natural number N has a unique prime power decomposition

N = pα1
1 pα2

2 · · · p
αk

k (1.1)

(p1 < p2 < · · · < pk rational primes, αj > 0). The prime powers p
αj

j are called
components of N , and we write p

αj

j ‖N . To compute the prime power decomposition
we need –

1. An algorithm to test if an integer N is prime.
2. An algorithm to find a nontrivial factor f of a composite integer N .

Given these there is a simple recursive algorithm to compute (1.1): if N is prime
then stop, otherwise

1. find a nontrivial factor f of N ;
2. apply the algorithm recursively to f and N/f ;
3. put the pieces (the prime power decompositions of f and N/f) together to obtain

the prime power decomposition of N .
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2. Primality Testing

We can test a number N for primality by dividing by all primes up to N1/2, but
this is too slow unless N is small. Arithmetic operations on numbers in [0, . . . , N ] take
time O((log N)2) on a serial computer, since the binary or decimal representation of
N has O(log N) digits. We would like an algorithm for testing the primality of N in
time

O((log N)c)

for some constant c. Such an algorithm is called a polynomial time algorithm because
its run time is bounded by a polynomial in the length of the input.

2.1 Use of Fermat’s Theorem

Fermat’s “little” Theorem states that if p is prime and a 6= 0 (mod p) then

ap−1 = 1 (mod p)

We can often verify that a number n is composite using Fermat’s theorem: it is
sufficient to find a positive integer a < n such that

an−1 6= 1 (mod n)

Unfortunately, we can never prove primality using Fermat’s theorem because

an−1 = 1 (mod n) (2.1)

does not imply that n is prime. There even exist composite n such that (2.1) holds for
all a relatively prime to n. Such n are called Carmichael numbers; they are squarefree
composite numbers such that p− 1|n− 1 for every prime factor p of n. Examples are

n = 3 · 11 · 17 = 561

and
n = 7 · 13 · 19 = 1729

(the latter being of some historical interest).

2.2 A rigorous primality test

To prove that n is prime it is sufficient to find a primitive root of n, i.e. an integer
a such that

an−1 = 1 (mod n) (2.2)

and
aj 6= 1 (mod n) (2.3)

for 1 ≤ j < n− 1. To verify (2.3) it is sufficient to check that

a(n−1)/p 6= 1 (mod n) (2.4)

for each prime factor p of n− 1.
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If n is prime, there is usually no difficulty in finding a primitive root of n by trial
and error. The difficulty in applying (2.4) lies in factorising n − 1. It is sometimes
possible to get by with partial factorisations of n± 1 (see Theorem 12 of [10]), but it
would be preferable to be able to test primality of n without having to factorise (even
partially) numbers close to n.

2.3 A probabilistic polynomial time primality test

If n is an odd prime then
n− 1 = 2kq

for some positive integer k and odd integer q. For any integer a, let

S(a) = (aq, a2q, a22q, . . . , a2kq) mod n.

We say that n passes Test(a) if S(a) has the form

(1, 1, . . . , 1)

or
(?, . . . , ?,−1, 1, . . . , 1),

i.e. if either
a2jq = 1 (mod n)

for all j = 0, 1, . . . , k, or there is some j in the range 0 ≤ j < k such that

a2jq = −1 (mod n).

If n is prime and 1 < a < n, then n passes Test(a). The converse is usually true,
as shown by the following result (essentially due to Rabin: see [19, Sec. 4.5.4]).

Theorem 1. If n is an odd composite number then the number of a in the range
1 < a < n for which n passes Test(a) is less than (n− 2)/4.

A probabilistic interpretation of Theorem 1 is:

Corollary. If n is an odd composite and a is chosen randomly from {2, 3, . . . , n− 1}
then the probability that n passes Test(a) is less than 1/4.

From the Corollary, we can construct a simple, polynomial time primality test
which has a positive (but arbitrarily small) probability of giving the wrong answer.
Suppose an error probability of ε is acceptable. Choose m such that 4−m ≤ ε, and
select a1, . . . , am randomly and independently from {2, 3, . . . , n−1}. If n fails Test(ai)
for some i then n is certainly composite, but if n passes Test(ai) for i = 1, . . . , m then n
is probably prime (in the sense that the probability that a composite n will erroneously
be declared to be prime is less than ε).

We conclude that for all practical purposes we can test primality in polynomial
time. However, probabilistic algorithms are not to everyone’s taste. It would be more
satisfying to have a strictly deterministic polynomial time test for primality. Recent
developments which are beyond the scope of this paper include:
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1. Probabilistic algorithms which always give the correct answer – only the run time
depends on chance, and is expected to be polynomial [1, 15].

2. A deterministic algorithm which is “almost” polynomial time – its run time is

O((log n)c log log log n)

[13, 14, 32]. For practical purposes the exponent c log log log n is essentially a
constant, and implementations of the algorithm have proved the primality of
numbers of several hundred decimal digits.

3. Public Key Cryptography
Large primes have an interesting practical application – they can be used to

construct public key cryptosystems (also known as asymmetric cryptosystems and
open encryption key cryptosystems). In this section we outline the use of large primes
and primality testing algorithms in the construction of a Rivest-Shamir-Adleman
(RSA) cryptosystem [33]. For details and alternative systems we refer to [32, 35]

Public key cryptosystems are based on trapdoor functions (also known as one-way
functions). Let S be a finite set. A trapdoor function is an invertible function

f : S → S

such that f(x) is easy to compute but the inverse function f−1(y) is hard to compute.

3.1 Example of a trapdoor function

An example of a trapdoor function of the form used in the RSA cryptosystem is

f(x) = xk mod N,

where N = pq (a product of two large primes), S = {0, 1, . . . , N − 1}, k > 1, and
GCD (k, λ) = 1, λ = LCM (p − 1, q − 1) = (p − 1)(q − 1)/GCD (p − 1, q − 1). We
assume that k and N are publicly known but p, q and λ are not.

The inverse function is

f−1(y) = yk′
mod N,

where kk′ = 1 (mod λ). Clearly it is easy to compute f−1(y) if k′ is known. The
assumption underlying the RSA cryptosystem is that it is hard to compute f−1(y)
without knowing k′. Note that knowledge of p, q or λ makes it easy to compute k′.

3.2 Construction of a trapdoor function

The steps involved in the construction of a good trapdoor function of the form
above are:

1. Test sufficiently large random integers using a probabilistic primality test to find
distinct large primes p and q such that
a) |p− q| is large;
b) p = −1 (mod 12), q = −1 (mod 12); and
c) p′ = (p− 1)/2, p′′ = (p + 1)/12,
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q′ = (q − 1)/2, q′′ = (q + 1)/12 are prime (see below).

2. Compute N = pq and λ = 2p′q′.

3. Choose a random k relatively prime to λ such that k − 1 is not a multiple of p′

or q′. (For a simpler but less symmetric system, just fix k = 3.)

4. Apply the extended Euclidean algorithm [19] to k and λ to find k′, λ′ such that
0 < k′ < λ and

kk′ + λλ′ = 1

(If k = 3 there is no need to apply the Euclidean algorithm as k′ = (λ + 1)/3.)

5. Destroy all evidence of p, q, λ, λ′.

6. Make (k,N) public but keep k′ secret.

Primality of p′, p′′, q′, and q′′ is not essential. All that is necessary is that p± 1
and q ± 1 each have at least one large prime factor. Otherwise it would be easy to
factorise N using Pollard’s “p± 1” algorithm (see Section 4.4).

The probability that a randomly chosen integer in [1, M ] is prime is ∼ 1/ ln M .
Thus, the expected number of random trials required to find p is conjectured to
be O((log N)3) (the result would be true if p, p′ and p′′ were independent). On
this assumption, the expected time required to construct the trapdoor function is
O((log N)6).

3.3 The RSA cryptosystem

Suppose a sender A wants to send a message M to a receiver B. B will already
have chosen a trapdoor function f as described above, and published his public key
(k,N), so we can assume that both A and any potential adversary knows k and N .

A splits the message M into blocks of blog2 Nc bits (padded on the right with
zeros for the last block), and treats each block as an integer x ∈ {0, 1, . . . , N − 1}.
A computes y = xk mod N and transmits y to B. B, who knows the secret key
k′, computes x = yk′

mod N . An adversary who intercepts the encrypted message
should be unable to decrypt it without knowledge of k′.

3.4 Security of the RSA system

A possible cause for concern is that certain x are fixed points, i.e. f(x) = x, and
for such x the message is not concealed at all by encryption. However, it may be
shown that with our choice of f there are only 9 fixed points, so the probability of
encountering one is O(1/N).

There is no known way of cracking the RSA system without essentially factorising
N . This is provable for a slight modification of the system (with k = 2). Unfortu-
nately, it has not been proved that the factorisation problem is difficult. All we can
say is that many mathematicians and computer scientists have studied the problem,
and no polynomial time algorithm has been published. (If one were found now, would
it be published or kept secret ?)
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4. Integer Factorisation Algorithms

There are many algorithms for finding a nontrivial factor f of a composite inte-
ger N . The most useful algorithms fall into one of two classes –

A. The run time depends mainly on the size of N, and is not strongly dependent on
the size of f . Examples are –

Lehman’s algorithm [21] which has a rigorous worst-case run time bound
O(N1/3).

Shanks’s SQUFOF algorithm [39], which has expected run time O(N1/4).

Shanks’s Class Group algorithm [34, 36] which has run time O(N1/5+ε) on
the assumption of the Generalised Riemann Hypothesis.

The Continued Fraction algorithm [26] and the Multiple Polynomial Quad-
ratic Sieve algorithm [29], which under plausible assumptions have expected
run time O(exp(c(log N log log N)1/2)), where c is a constant (depending on
details of the algorithm).

The Number Field Sieve algorithm [22] which under plausible assumptions
has expected run time O(exp(c(log N)1/3(log log N)2/3)), where c is a con-
stant, provided N has a suitable form (see Section 4.7).

B. The run time depends mainly on the size of f, the factor found. (We can assume
that f ≤ N1/2.) Examples are –

The trial division algorithm, which has run time O(f · (log N)2).

The Pollard “rho” algorithm [2, 28] which under plausible assumptions has
expected run time O(f1/2 · (log N)2).

Lenstra’s “Elliptic Curve Method” (ECM) [4, 24] which under plausible
assumptions has expected run time O(exp(c(log f log log f)1/2) · (log N)2),
where c is a constant.

In these examples, the term (log N)2 is a generous allowance for the cost of
performing arithmetic operations on numbers which are O(N) or O(N2).

Our survey of integer factorisation algorithms is necessarily cursory. For more
information the reader is referred to [6, 11, 16, 25, 29, 30].

4.1 Pollard’s “rho” algorithm

Pollard’s “rho” algorithm [28] uses an iteration of the form

xi+1 = f(xi) mod N, i ≥ 0,

where N is the number to be factored, x0 is a random starting value, and f is a
polynomial with integer coefficients. In practice a quadratic polynomial

f(x) = x2 + a

is used (a 6= 0 (mod N)).

Let p be the smallest prime factor of N , and j the smallest positive index such
that x2j = xj (mod p). Making some plausible assumptions, it is easy to show that
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the expected value of j is E(j) = O(p1/2). The argument is related to the well-
known “birthday” paradox – the probability that x0, x1, . . . , xk are all distinct mod
p is approximately

(1− 1/p) · (1− 2/p) · · · (1− k/p) ∼ exp(−k2/(2p)),

and if x0, x1, . . . , xk are not all distinct mod p then j ≤ k.

In practice we do not know p in advance, but we can detect xj by taking greatest
common divisors. We simply compute GCD (x2i − xi, N) for i = 1, 2, . . . and stop
when a GCD greater than 1 is found.

Occasionally two or more prime factors may be found simultaneously,
i.e. f = GCD (x2i − xi, N) is composite (f = N is possible). In this (unlikely) event
we have to try again with a different x0 or a different polynomial f .

The “rho” algorithm is an improvement over trial division in that it has (conjec-
tured) expected run time O(p1/2(log N)2) to find a prime factor p of N . A disadvan-
tage is that the run time is now only a (conjectured) expected value, not a rigorous
bound.

An example of the success of a variation on the Pollard “rho” algorithm is the
complete factorisation of the Fermat number F8 = 228

+ 1 by Brent and Pollard [9].
In fact

F8 = 1238926361552897 · p62,

where p62 is a 62-digit prime [3].

4.2 The advantages of a group operation

The Pollard rho algorithm takes

xi+1 = f(xi) mod N

where f is a pseudorandom polynomial. Suppose instead that

xi+1 = x1 ∗ xi

where “∗” is an associative operator, i.e.

x ∗ (y ∗ z) = (x ∗ y) ∗ z .

Then we can compute xn in O(log n) steps by the binary powering method [19].

4.3 Computation of the identity mod p

Let m be some bound assigned in advance, and let E be the product of all
maximal prime powers qe, qe ≤ m. If the cyclic group <x1> has order g whose prime
power components are bounded by m, then g|E and

xE
1 = I,

where I is the group identity.
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We may consider a group defined mod p but work mod N , where p is an un-
known divisor of N . This amounts to using a redundant representation for the group
elements. When we compute the identity I, its representation mod N may allow us
to compute p via a GCD computation (compare the Pollard rho algorithm). We give
two examples below: Pollard’s p− 1 algorithm and Lenstra’s elliptic curve method.

4.4 Pollard’s p− 1 algorithm

Pollard’s “p− 1” algorithm [27] may be regarded as an attempt to generate the
identity in the multiplicative group of Fp = GF (p). Here “∗” is just multiplication
mod p, so (by Fermat’s theorem) g|p− 1 and

xE
1 = I ⇐⇒ xE

1 = 1 (mod p),

so
xE

1 = I ⇒ p|GCD (xE
1 − 1, N)

The “p − 1” algorithm is very effective in the fortunate case that p − 1 has no
large prime factors. For example, Baillie found the factor

p25 = 1155685395246619182673033

of the Mersenne number M257 = 2257 − 1 (claimed to be prime by Mersenne) using
the “p− 1” algorithm. In this case

p25 − 1 = 23 · 32 · 192 · 47 · 67 · 257 · 439 · 119173 · 1050151,

and m ≥ 1050151 is sufficient.

In the worst case, when (p−1)/2 is prime, the “p−1” algorithm is no better than
trial division. Since the group has fixed order p−1 there is nothing to be done except
try a different algorithm. For example, we might try Pollard’s “p+1” algorithm [25],
which uses a group of order p + 1 (essentially a subgroup of the multiplicative group
of GF (p2)). We refer to a combination of Pollard’s “p− 1” and “p + 1” algorithms as
the “p± 1” algorithm.

4.5 Lenstra’s elliptic curve algorithm

If we can choose a “random” group G with order g close to p, we may be able
to perform a computation similar to that involved in Pollard’s “p − 1” algorithm,
working in G rather than in Fp. If all prime factors of g are less than the bound m
then we find a factor of N . Otherwise, repeat with a different G (and hence, usually, a
different g) until a factor is found. This is the motivation for H. W. Lenstra’s elliptic
curve algorithm (usually denoted “ECM”).

A curve of the form
y2 = x3 + ax + b (4.1)

over some field F is known as an elliptic curve. A more general cubic in x and y
can be reduced to the form (4.1), which is known as the Weierstrass normal form, by
rational transformations.
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There is a well-known way of defining an Abelian group (G, ∗) on an elliptic curve
over a field. Formally, if P1 = (x1, y1) and P2 = (x2, y2) are points on the curve, then
the point P3 = (x3, y3) = P1 ∗ P2 is defined by –

(x3, y3) = (λ2 − x1 − x2, λ(x1 − x3)− y1), (4.2)

where

λ =
{

(3x2
1 + a)/(2y1) if P1 = P2

(y1 − y2)/(x1 − x2) otherwise.

The identity element I in G is the “point at infinity”.

The geometric interpretation is straightforward: the straight line P1P2 intersects
the elliptic curve at a third point P ′

3 = (x3,−y3), and P3 is the reflection of P ′
3 in

the x-axis. We refer the reader to [17, 20] for an introduction to the theory of elliptic
curves.

In Lenstra’s algorithm [24] the field F is the finite field Fp of p elements, where
p is a prime factor of N . The multiplicative group of Fp, used in Pollard’s “p − 1”
algorithm, is replaced by the group G defined by (4.1) and (4.2). Since p is not known
in advance, computation is performed in the ring Z/NZ of integers modulo N rather
than in Fp. We can regard this as using a redundant representation for elements of
Fp.

A trial is the computation involving one random group G. The steps involved
are –

1. Choose x0, y0 and a randomly in [0, N). This defines b = y2
0− (x3

0 +ax0) mod N .
Set P ← P0 = (x0, y0).

2. For prime q ≤ m set P ← P qe

in the group G defined by a and b, where e is an
exponent chosen as in Section 4.3. If P = I then the trial succeeds as a factor
of N will have been found during an attempt to compute an inverse mod N .
Otherwise the trial fails.

The work involved in a trial is O(m) group operations. There is a tradeoff
involved in the choice of m, as a trial with large m is expensive, but a trial with small
m is unlikely to succeed.

Given x ∈ Fp, there are at most two values of y ∈ Fp satisfying (4.1). Thus,
allowing for the identity element, we have g = |G| ≤ 2p + 1. A much stronger result,
the Riemann hypothesis for finite fields [18], is known –

|g − p− 1| < 2p1/2. (4.3)

Making the (incorrect, but close enough) assumption that g behaves like a random
integer distributed uniformly in (p− 2p1/2, p + 2p1/2), we may show that the optimal
choice of m is m = p1/α, where

α ∼ (2 ln p/ ln ln p)1/2 (4.4)

It follows that the expected run time is

T = p2/α+o(1/α). (4.5)
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For details, see [4, 24]. From (4.5), we see that the exponent 2/α should be compared
with 1 (for trial division) or 1/2 (for Pollard’s “rho” method). For 1010 < p < 1030, we
have α ∈ (3.2, 5.0). Because of the overheads involved with ECM, a simpler algorithm
such as Pollard’s “rho” is preferable for finding factors of size up to about 1010 (see
Figure 1 in [4]), but for larger factors the asymptotic advantage of ECM becomes
apparent. The following two examples illustrate the power of ECM.

1. In the application described in Section 5, we needed many factorisations of num-
bers of the form pn− 1, where p and n are prime. For example, the factorisation

4089568263561830388113662969166474269 · p65

of the 101-digit number (46741 − 1)/(466 · 1022869) was found by ECM.

2. We recently [5] completed the factorisation of the 617-decimal digit Fermat num-
ber F11 = 2211

+ 1. In fact

F11 = 319489 · 974849 · 167988556341760475137 · 3560841906445833920513 · p564

where the 21-digit and 22-digit prime factors were found using ECM, and p564

is a 564-decimal digit prime. The factorisation required about 360 million mul-
tiplications mod N , which took less than 2 hours on a Fujitsu VP 100 vector
processor.

4.6 Quadratic sieve algorithms

Quadratic sieve algorithms belong to a wide class of algorithms which try to find
two integers x and y such that

x2 = y2 (mod N) (4.6)

Once such x and y are found, there is a good chance that GCD (x−y, N) is a nontrivial
factor of N .

One way to find x and y is to find a set of relations of the form

u2
i = v2

i wi (mod N), (4.7)

where the wi have all their prime factors in a moderately small set of primes (called the
factor base). Each relation (4.7) gives a row in matrix M whose columns correspond
to the primes in the factor base. Once enough rows have been generated, we can use
sparse Gaussian elimination in F2 [40] to find a linear dependency (mod 2) between
a set of rows of M . Multiplying the corresponding relations now gives a relation of
the form (4.6).

In quadratic sieve algorithms the numbers wi are the values of one (or more) poly-
nomials with integer coefficients. This makes it easy to factorise the wi by sieving. For
details of the process, we refer to the recent papers [12, 23, 30, 31, 37]. The conclusion
is that the best quadratic sieve algorithms such as the multiple polynomial quadratic
sieve algorithm MPQS [29] can, under plausible assumptions, factor a number N in
time O(exp(c(log N log log N)1/2)), where c ∼ 1. The constants involved are such
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that MPQS is usually faster than ECM if N is the product of two primes which both
exceed N1/3.

MPQS has been used to obtain many spectacular factorisations [10, 31, 37].
Lenstra and Manasse [23] (with many assistants scattered around the world) have
factorised several numbers larger than 10100, the largest (at the time of writing)
having 107 decimal digits. For example, a recent factorisation was the 103-decimal
digit number

(2361 + 1)/(3 · 174763) = 6874301617534827509350575768454356245025403 · p61

Such factorisations require many years of CPU time, but an “elapsed time” of only
a month or so because of the number of different processors which are working in
parallel, using machine cycles which would otherwise be idle.

4.7 The number field sieve (NFS)

Our numerical examples have all involved numbers of the form

ae ± b, (4.8)

for small a and b, although the ECM and MPQS factorisation algorithms do not take
advantage of this special form.

The number field sieve (NFS) is a new algorithm which does take advantage of
the special form (4.8). In concept it is similar to the quadratic sieve algorithm, but
it works over an algebraic number field defined by a, e and b. We refer the interested
reader to Lenstra et al [22] for details, and merely give an example from [22] to show
the power of the algorithm. For an introduction to the relevant concepts of algebraic
number theory, see [38].

Consider the 138-decimal digit number

n = 2457 + 1

as a candidate for factoring by NFS. Note that 8n = m5 + 8, where m = 292. We
work in the number field Q(α), where α satisfies

α5 + 8 = 0,

and in the ring of integers of Q(α). Because

m5 + 8 = 0 (mod n),

the mapping φ : α 7→ m mod n is a ring homomorphism from Z[α] to Z/nZ.

The idea is to search for pairs of small coprime integers u and v such that both
the algebraic integer u+αv and the (rational) integer u+mv can be factorised. (The
factor base now includes prime ideals and units as well as rational primes.) Because

φ(u + αv) = (u + mv) (mod n),
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each such pair gives a relation analogous to (4.7).

The prime ideal factorisation of u + αv corresponds to the factorisation of the
norm u5 − 8v5. Thus, we have to factor simultaneously two integers u + mv and
|u5 − 8v5|. Note that, for moderate u and v, both these integers are much smaller
than n, in fact they are O(n1/d), where d = 5 is the degree of the algebraic number
field. (The optimal choice of d is discussed in [22].)

Using these ideas, Lenstra et al [22] recently factorised n, obtaining

n = 3 · p49 · p89,

where
p49 = 6885357560205319573060633896800918448254904729193

is a 49-digit prime and p89 is an 89-digit prime. The whole computation took about
nine weeks on a network of several hundred CVAX processors. Because the NFS
algorithm took advantage of the special form of c138, the reader should not assume that
a 138-digit number intended for use in a public key cryptosystem could be factorised
in a comparable time.

It is interesting to note that extrapolation of the times required by NFS for
several factorisations in [22] suggests that a number of 155 decimal digits such as
F9 = 229

+ 1 could be completely factorised by NFS in about six months if the data-
handling problems and difficulties of the sparse Gaussian elimination phase could be
overcome. We would not be surprised if F9 were completely factored by the time this
paper appears in print. (Postscript: it has been.)

5. A Mathematical Application of Factorisation

In Section 2 we described a practical application of primality testing algorithms.
In this section we describe a mathematical application of primality testing and integer
factorisation algorithms. The application is of historical interest but not (as far as we
know) of any practical value.

Let σ(N) be the sum of the positive divisors of an integer N . For example,
σ(28) = 1+2+4+7+14+28 = 56. An integer N is called perfect if σ(N) = 2N . It is
known that an even number is perfect if and only if it has the form N = 2k−1(2k−1),
where 2k − 1 is a (Mersenne) prime. For example, 6 = 2 · 3 and 28 = 4 · 7 have this
form and are perfect. No odd perfect number has ever been found, nor has it been
proved that none exists.

The function σ(N) is multiplicative: it satisfies

σ(mn) = σ(m)σ(n)

for all relatively prime, positive m,n. Also, it is easy to see that

σ(pα) = 1 + p + p2 + · · ·+ pα =
pα+1 − 1

p− 1
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for prime p and α > 0. Thus, if N has the prime power decomposition (1.1) we can
easily evaluate

σ(N) =
k∏

j=1

σ(pαj

j ).

There is an algorithm which will find an odd perfect number less than a given
bound B (if one exists), or prove that there is none, in much less time than would be
required to check each odd N < B explicitly. To outline the algorithm, suppose that
N < B is an odd perfect number with prime power decomposition (1.1). Using

2 =
σ(N)

N
<

k∏
j=1

1
1− 1/pj

,

it is easy to show that N must be divisible by a reasonably small prime p = o(log B),
which gives a finite number of possible components pα. Now

pα‖N ⇒ σ(pα)|2N,

so factorisation of σ(pα) gives a number of primes which divide N . Proceeding in this
way we deduce that more and more primes divide N , until eventually a contradiction
to N < B is obtained, or (optimistically) we converge to a finite set of primes which
do divide an odd perfect number. In practice the latter alternative never seems to
occur, and we obtain a tree of factorisations which prove that there is no odd perfect
number less than B.

The difficulty in applying the procedure outlined is in factorising σ(pα) for large
components pα. Using various tricks [7, 8], it is possible to restrict attention to
components pα < B2/5 (approximately). In this way it has recently been shown that

Theorem 2 [8]. There is no odd perfect number less than 10300.

The proof required many factorisations, which were accomplished using the ECM
and MPQS algorithms. No doubt the upper bound 10300 could be increased by using
the NFS algorithm.

6. Conclusion

We have sketched some algorithms for primality testing and integer factorisation.
The algorithms draw on results in elementary number theory, algebraic number theory
and probability theory. As well as their inherent interest and applicability to other
areas of mathematics, advances in computing technology have given them practical
applications in the area of secure communications.

Despite much progress in the development of efficient algorithms, our knowledge
of the complexity of factorisation (and hence the security of the RSA cryptosystem) is
inadequate. We need to find a polynomial time factorisation algorithm or else prove
that one does not exist! If one does exist, then the RSA cryptosystem is insecure and
we need to find a provably secure replacement for it.
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