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Abstract

As an extension of the “Cunningham” tables, we present tables of factorizations
of an ± 1 for 13 ≤ a < 100. The exponents n satisfy an < 10255 if a < 30, and
n ≤ 100 if a ≥ 30. The factorizations are complete for n ≤ 46, and the tables contain
no composite numbers smaller than 1080.
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1. Introduction

For many years there has been an interest in the prime factors of numbers of
the form an ± 1, where a is a moderately small integer (the base) and n is a positive
exponent. Such numbers often arise. For example, if a is prime then there is a finite
field F with an elements, and the multiplicative group of F has an−1 elements. Also,
for prime a the sum of divisors of an is σ(an) = (an+1 − 1)/(a− 1). Numbers of the
form an + 1 arise as factors of a2n − 1 and in other ways.

An extensive table of factors of an±1 for a ≤ 12 has been published by Brillhart
et al [6]. For historical reasons, the computation of [6] is referred to as the Cunningham
Project after the pioneering computations of Cunningham and Woodall [9]. For a
history, see the Introduction in [6].

In the course of proving [4, 5] that there is no odd perfect number less than
10300, we found the tables of [6] very useful, but needed to extend them to higher
bases. For example, we needed many factorizations of an − 1 for a = 13, 19, 31, 127.
The majority were computed using Lenstra’s Elliptic Curve Method (ECM) [13] and
in some difficult cases the Multiple Polynomial Quadratic Sieve (MPQS) [17, 18, 20].
The factors were kept in a machine-readable file which has been distributed together
with a simple factorization program factor for IBM PC and compatible computers [3].
The program factor should be considered primarily as a means of accessing a file of
known factors, rather than as a general-purpose factorization program. For surveys
of factorization algorithms and programs, we refer the reader to [1, 2, 7, 8, 10, 13, 14,
16, 17, 18, 19, 20].

Over the past few years we have systematically extended our list of factors,
concentrating on numbers an ± 1 for 13 ≤ a < 100, n ≤ 100, but also considering
some larger values of the exponent n for the smaller bases a. The tables are now
complete for n ≤ 46 and include no composites with less than 81 decimal digits1.
Approximately 78% of the numbers an ± 1 in the range of the tables have been
factorized completely; the remainder have one (or occasionally two) composite factors
whose prime factors are unknown. Judging from the size of factors currently being
found, most prime factors of less than 20 digits have already been found.

Although a project such as this is never complete, it seemed appropriate to
publish some of our factorizations in printed form2. Readers are invited to send any
new factors to the first author for incorporation in the machine-readable list and
possibly in later editions of these tables.

Recently a new algorithm, the Number Field Sieve (NFS) [12] has been used
successfully in factoring numbers of the form an ± 1, for example the ninth Fermat
number F9 = 229

+ 1. None of the factors given in our tables (for a ≥ 13) have been
found using NFS, but future extensions of the tables may well involve the use of NFS.

1 Occasionally such a composite arises when an incomplete factorization is found
by ECM, but the factorization can then be completed quickly using MPQS, so any
such “small” composites may be regarded as temporary aberrations.

2 The program factor [3] and machine-readable list of factors is still available from
the first author.
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2. Format of the Tables

For each base a, not a perfect power, in the range 13 ≤ a < 100, we give two
separate tables –

Table a−: factorizations of an − 1, n odd.
Table a+: factorizations of an + 1.

The exponent ranges are as follows –
A. 13 ≤ a < 30, exponents n such that an < 10255.
B. 30 ≤ a < 100, exponents n ≤ 100.

The border between cases A and B may may change in future extensions of the tables.

The tables are similar in format to the “short” tables of [6]. All known factors,
including algebraic3 and Aurifeuillian3 factors, are listed. Factors which are given
as decimal numbers are primes. Exponents are indicated by a hat (ˆ), for example
“2ˆ3” means 23. Multiplication is indicated by a period (.), for example 33 + 1 = 227
is written as “2ˆ2.7”. A period at the end of a line implies that the factorization is
continued on the next line.

A factor of more than 72 decimal digits may be written on more than one line. In
such a case the underscore character ( ) at the end of a line means that the following
line is a continuation.

The largest factor of an ± 1 may be found by division by the smaller factors.
Thus, such factors are often abbreviated. The notation “pxy” means a prime factor
of xy decimal digits. For example, the prime 1238926361552897 might be abbreviated
as p16. Similarly, the notation “cxy” means a composite number of xy decimal digits.
Occasionally two such composite factors are listed; they may be found by removing
known prime factors from large algebraic or Aurifeuillian factors. In such cases the
smaller composite factor is given explicitly in a comment of the form “[cxy = . . .]”.

3. Probable Primes

Numbers listed as prime in these tables have not in all cases been rigorously
proved to be prime; they may merely have passed a probabilistic primality test [11].
There is a positive but extremely small probability (less than 10−12) that a composite
number will pass such a test and be mistaken for a prime. In applications where it is
essential for primality to be proven rigorously, the reader should apply an algorithm
such as Morain’s elliptic curve primality test [15], which can easily prove or disprove
the primality of numbers of the size considered here.

3 For definitions of these terms, see [6, 19].
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