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Ramanujan and Euler's Constant

RICHARD P. BRENT

Abstract. We consider Ramanujan's contribution to formulas for Euler's
constant . For example, in his second notebook Ramanujan states that
(in modern notation)

1X
k=1

(�1)k�1

nk

�
xk

k!

�n
= lnx+  + o(1)

as x ! 1. This is known to be correct for the case n = 1, but incorrect
for n > 2. We consider the case n = 2. We also suggest a di�erent, correct
generalization of the case n = 1.

1. Introduction

Ramanujan gave many beautiful formulas for � and 1=�. Euler's constant
 = ��0(1) = 0:57721566 : : : , which occurs in many well-known formulas involv-
ing the Gamma function, the Riemann zeta function, the divisor function d(n),
etc. [15], seems to be more mysterious and more di�cult to compute than �.
For example, quadratically convergent iterations are known [6, 8, 21] for �, but
none are known for . Also, � is transcendental, but it is not even known if  is
irrational [3]. If  = p=q is rational, then q > 1015000. This result follows from
a computation [10] of the regular continued fraction expansion for .

There may be an analogy with �(3). Ap�ery [2, 17] proved �(3) irrational,
using the series

�(3) =
5
2

1X
k=1

(�1)k�1k!k!
(2k)!k3 ;

and, in Chapter 9 of his Notebooks, Ramanujan gives several similar series, some
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involving �(3). Ramanujan [4, I, p. 252] rediscovered Euler's formula

�(3) =
1X
k=1

Hk

(k + 1)2 ;

where Hk =
Pk
j=1 1=j is a Harmonic number. Harmonic numbers also occur in

formulas involving . For example, the well-known result

Hn = lnn+  +O(1=n)(1)

as n!1 is often used to give an alternative de�nition of .

2. Ramanujan's Papers and Notebooks

Ramanujan published one paper [18] speci�cally on . In it he generalizes an
interesting series of Glaisher:

 = 1�
1X
k=1

�(2k + 1)
(k + 1)(2k + 1)

:

Because the generalizations all involve the Riemann zeta function or related
functions, they are not convenient for computational purposes.

Much of Ramanujan's work was not published during his lifetime, but was
summarized in his Notebooks. These were �rst printed in facsimile [20], and
edited editions have since been published by Berndt [4]. Scanning the Notebooks,
we �nd many occurrences of . Owing to space limitations, we concentrate on
Chapter 4, Entry 9, Corollaries 1{2 [4, I, p. 98], because these are potentially
useful for computing . Corollary 1 is (in modern notation)

1X
k=1

(�1)k�1xk

k!k
= lnx+  + o(1)(2)

as x!1. In fact, Euler showed the more precise result [4, II, p. 167],
1X
k=1

(�1)k�1xk

k!k
� lnx�  =

Z 1
x

e�t
t
dt = O

�
e�x
x

�
;(3)

and this has been used by Sweeney [22] and others [5, 9] to compute Euler's con-
stant (one has to be careful because of cancellation in the series). In Ch. 12, En-
try 44(ii) [4, II, p. 168], Ramanujan correctly states that the error term O(e�x=x)
in (3) is between e�x=(1 + x) and e�x=x.

2.1. A Generalization. Ramanujan's Corollary 2 [4, I, p. 98] is that
1X
k=1

(�1)k�1

nk

�
xk

k!

�n
= lnx+  + o(1)(4)

for n > 0. We assume that n is a �xed positive integer. Clearly (4) general-
izes (2), which is just the case n = 1.
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Berndt [4, I, p. 98], using a result of Olver [16, Ex. 8.4, p. 309], shows that (4)
is false for n > 2, because the function de�ned by the left side of (4) changes
sign in�nitely often and grows exponentially large as x!1. Berndt leaves the
case n = 2 open. In fact, (4) is true if n = 2. Theorem 1 below gives an exact
expression for the error in (4) as an integral involving the Bessel function J0(x),
and Corollary 1 deduces an asymptotic expansion.

The exact expression for n = 2 is a special case of a formula given by Luke [13,
p. 48] and [1, formula 11.1.20]. However, the connection with Ramanujan does
not seem to have been noticed before.

2.2. Avoiding Cancellation. In Chapter 3, Entry 2, Corollary 2, Ramanu-
jan states that the sum on the left side of (2) can be written as

e�x
1X
k=0

Hk
xk

k!
:

This is easy to prove [4, I, pp. 46{47]. Thus, (2) gives

1X
k=0

Hk
xk

k!

� 1X
k=0

xk

k!
= lnx+  + o(1):(5)

This is more convenient than (2) for computation, because there is no cancella-
tion in the series when x > 0. In Section 4 we indicate how Ramanujan might
have generalized (5) in much the same way that he attempted to generalize (2).

3. Ramanujan's Corollary for n = 2

The following result [11] shows that (4) is valid for n = 2. Recall that J0(x)
is a Bessel function of the �rst kind and order zero.

Theorem 1. Let

e(x) =
1X
k=1

(�1)k�1

2k

�
xk

k!

�2

� lnx� :

Then, for real positive x,

e(x) =
Z 1

2x

J0(t)
t

dt:

We omit details of the proof of Theorem 1. However, the reader should be
able to construct a proof by proceeding as in [4, I, p. 99], using the fact thatZ 1

0

�
e�t � J0(2t)

t

�
dt = 0:(6)

A slightly more general result than (6) is given in [12, equation 6.622.1] and is
attributed to Nielsen [14]. An independent proof is given in [11].
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Corollary 1. Let e(x) be as in Theorem 1. Then, for large positive x, e(x)
has an asymptotic expansion

e(x) =
1

2�1=2x3=2

�
cos
�

2x+
�
4

�
+

13 sin
�
2x+ �

4

�
16x

+O
�

1
x2

��
:

For computational purposes, it is much better to take n = 1 than n = 2 in (4),
because the error for n = 1 is O(e�x=x).

4. A Di�erent Generalization

Equation (4) may be obtained from (2) by replacing xk=k! by (xk=k!)n=n. An
analogous generalization of (5) is

1X
k=0

Hk

�
xk

k!

�n� 1X
k=0

�
xk

k!

�n
= lnx+  + o(1)(7)

as x!1. Relation (5) is just the case n = 1.
It is easy to show that (7) is valid for all positive integer n. An essential

di�erence between (4) and (7) is that there is a large amount of cancellation
between terms of size 
�(enxx�(n+2)=2) on the left side of (4), but there is no
cancellation in the numerator and denominator on the left side of (7). The
function (xk=k!)n acts as a smoothing kernel with a peak at k ' x � 1

2 . In
view of (1), the result (7) is not surprising, but the speed of convergence may be
surprising. Brent and McMillan [10] show that

1X
k=0

Hk

�
xk

k!

�n� 1X
k=0

�
xk

k!

�n
= lnx+  +O(e�cnx)(8)

as x!1, where cn =

(
1 if n = 1,
2n sin2(�=n) if n � 2.

In the case n = 2, the formula (8) has error O(e�4x). Brent and McMillan [10]
used this case with x ' 17,400 to compute  to more than 30,000 decimal places.
From Corollary 1, the same value of x in (4) would give less than 8-decimal place
accuracy. Also, more than 15,000 decimal places would have to be used in the
computation to compensate for cancellation of terms 
�(e2x=x2) in (4).

The case n = 3 of (8) is interesting because maxn=1;2;::: cn = c3 = 4:5: How-
ever, no one seems to have used n > 2 in a serious computation of .

It would be interesting to consider the behaviour of the functions occurring
in (4) and (8) for positive but non-integral values of n. Certainly (7) is valid for
all positive n, but we do not know if (8) holds when n is positive but not an
integer (assuming a suitable extension of the de�nition of cn).
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