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Abstract

A method which uses one-sided Jacobi to solve
the symmetric eigenvalue problem in parallel is
presented. We describe a parallel ring ordering
for one-sided Jacobi computation. One distinc-
tive feature of this ordering is that it can sort
column norms in each sweep, which is very im-
portant to achieve fast convergence. Experimen-
tal results on both the Fujitsu AP1000 and the
Fujitsu VPP500 are reported.

1 Introduction

Jacobi methods for the symmetric eigenvalue
problem have recently attracted interest because
they are readily parallelisable and are more ac-
curate than QR-based methods for solving the
same problem [6].

There are two basic types of Jacobi, that is,
one-sided Jacobi and two-sided Jacobi. The tra-
ditional two-sided Jacobi method for the sym-
metric eigenvalue problem works by perform-
ing a sequence of orthogonal similarity updates
A  QTAQ with the property that each new
A, although full, is \more diagonal" than its
predecessor. Eventually, the o�-diagonal entries
are small enough to be ignored. Because both
column and row updatings are required, this
method su�ers from extensive communication of
small amounts of data between processors in par-
allel computation, and nonunit strides in vec-
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tor operations. One-sided Jacobi, though orig-
inally applied for singular value decomposition,
can also be adapted for the symmetric eigenvalue
problem. This method requires only column up-
dating and so does not need as much commu-
nication and is more suitable for vector pipeline
computing. Thus one-sided Jacobi is preferable
to two-sided Jacobi in pipeline/parallel compu-
tation.

In parallel implementation of one-sided Jacobi
SVD a key problem is how to choose a reason-
able, systematic order of rotations in each sweep
of the computation so that a fast convergence
rate is achieved. In this paper we describe a
parallel ring Jacobi ordering. One distinctive
feature of this ordering is that it can sort column
norms, which is very important for fast conver-
gence. The experimental results show that the
algorithm adopting this ordering can achieve the
same e�ciency (in terms of the total number of
sweeps) as the cyclic Jacobi algorithm in sequen-
tial computation.

The paper is organised as follows. The se-
quential one-sided Jacobi algorithm for comput-
ing the SVD is outlined in x2. Our parallel
ring Jacobi ordering is introduced in x3 and the
experimental results are presented in x4. The
method for adapting one-sided Jacobi in sym-
metric eigenvalue decomposition are described in
x5. Some conclusions are given in x6.

2 Sequential One-sided Jacobi

For a matrix A of order m � n (m � n) the
one-sided Jacobi method produces an orthogonal
matrix V such that AV = S, where the columns
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of S are orthogonal to within a given tolerance.
The non-zero columns of S can be normalised to
give

S = (Urj0)
 

�r 0
0 0

!
where r � n is the rank of A, and �r =
diag(�1; : : : ; �r). Thus

A = Ur�rV T
r

where Vr is an n � r matrix consisting of the
�rst r columns of V . This is the singular value
decomposition of A.

The matrix V can be generated as a product
of plane rotations. Consider the transformation
by a plane rotation:�

ai aj
� c �s

s c

!
=
�
ai0 aj 0

�
where c = cos �, s = sin �, and ai and aj are
the i-th and j-th columns of the matrix A. We
choose � to make ai0 and aj 0 orthogonal. As in
the traditional Jacobi algorithm, the rotations
are performed in a �xed sequence called a sweep,
each sweep consisting of n(n � 1)=2 rotations,
and every column in the matrix is orthogonalised
with every other column exactly once per sweep.
The iterative procedure terminates if one com-
plete sweep occurs in which all columns are or-
thogonal to working accuracy and no columns
are interchanged. If the rotations in a sweep
are chosen in a reasonable, systematic order, the
convergence rate is ultimately quadratic [9, 11].
Exceptional cases in which cycling occurs are
easily avoided by the use of a threshold strat-
egy [23].

There are two important implementation de-
tails which determine the speed of convergence
of the one-sided Jacobi method for computing
the SVD. The �rst is the method of ordering,
i.e., how to order the n(n�1)=2 rotations in one
sweep of computation. Various orderings have
been introduced in the literature. In sequen-
tial computation, the most commonly used is the
cyclic Jacobi ordering (cyclic ordering by rows or
by columns) [9, 12]. When discussing sequential
Jacobi algorithms in this paper, we assume that
the cyclic ordering by rows is applied.

The second important detail is the method
for generating the plane rotation parameters c

and s in each iteration. For the one-sided Ja-
cobi method there are three main rotation algo-
rithms, which we now describe.

Rotation Algorithm 1 This algorithm is de-
rived from the standard two-sided Jacobi
method for the eigenvalue decomposition of the
matrix B = ATA.

Suppose that after k sweeps we have the up-
dated matrix A(k) =

h
a(k)

1 a(k)
2 � � � a(k)

n

i
:

To annihilate the o�-diagonal element b(k)
ij of

B(k) = (A(k))TA(k) in the (k + 1)th sweep, we
�rst need to compute b(k)

ii , b(k)
ij and b(k)

jj , that is,

b(k)
ii = (a(k)

i )Ta(k)
i = ka(k)

i k2;

b(k)
ij = (a(k)

i )Ta(k)
j

and
b(k)
jj = (a(k)

j )Ta(k)
j = ka(k)

j k2:
where kxk is the 2-norm of the vector x. The
plane rotation factors c and s, which are used
to orthogonalise the corresponding two columns,
are then generated based on the two-sided Jacobi
method. It can be proved that the value of b(k)

ii
is increased and the value of b(k)

jj is decreased
after a plane rotation operation if b(k)

ii > b(k)
jj .

Otherwise, b(k)
ii is decreased and b(k)

jj is increased.

Rotation Algorithm 2 The second algo-
rithm, introduced by Hestenes [13], is the same
as the Algorithm 1 except that the columns a(k)

i
and a(k)

j are to be swapped if ka(k)
i k < ka(k)

j k
for i < j before the orthogonalisation of the two
columns. Therefore, we always have b(k+1)

ii �
b(k+1)
jj . When the cyclic ordering by rows is

applied, the computed singular values will be
sorted in a nonincreasing order.

Rotation Algorithm 3 The third algorithm
was derived by Nash [19] and implemented on
the ILLIAC IV by Luk [16]. To determine the
rotation parameters c and s for orthogonalising
two columns i and j, one extra condition has to
be satis�ed in this algorithm, that is,

ka(k+1)
i k2 � ka(k)

i k2 = ka(k)
j k2 � ka(k+1)

j k2 � 0:
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With this extra condition the rotation parame-
ters are chosen so that ka(k+1)

i k is greater than
ka(k+1)

j k after the orthogonalisation, without ex-
plicitly exchanging the two columns. As in Al-
gorithm 2, the computed singular values will ap-
pear in a nonincreasing order if the cyclic order-
ing by rows is applied.

It is known from numerical experiments that
an implementation which uses Rotation Algo-
rithm 2 or 3 is more e�cient than the one using
Rotation Algorithm 1 when the cyclic ordering
is applied.

It is easy to verify that implicit in the cyclic
ordering is a sorting procedure which can sort
the values of n elements into nonincreasing (or
nondecreasing) order in n(n� 1)=2 steps. Since
rotation algorithms 2 and 3 always increase b(k)

ii
and decrease b(k)

jj for i < j when orthogonal-
ising the two columns, the column norms tend
to be sorted after each sweep of computations.
Therefore, the columns and their norms tend to
be approximately determined after a few sweeps
and only change by a small amount during each
sweep. Since the column norms are not sorted
during each sweep when using rotation algo-
rithm 1, it is possible that the norm of column i
may be increased when two columns i and j are
orthogonalised in a sweep, but norm of column j
will be increased when the two columns meet
again in the next sweep. Thus there are oscilla-
tions in column norms and (empirically) it takes
more sweeps for the same problem to converge.
This e�ect was also noted in [6, 20]. It is proba-
bly the main reason why applying Rotation Al-
gorithm 2 or 3 is more e�cient than applying
Rotation Algorithm 1.

In order to compare the performance in terms
of the total number of sweeps with parallel im-
plementations which are described in the follow-
ing sections, we give in Table 1 some experimen-
tal results obtained on a (sequential) Sun Sparc
workstation.

3 The Ring Jacobi Ordering

We have seen in the previous section that sort-
ing the column norms in each sweep is a very
important issue. Our experimental results con-
�rm that if an ordering does not include a proper

Size Alg. 1 Alg. 2 Alg. 3
80 11 9 9
100 12 8 8
120 11 9 9
140 12 9 9
160 12 9 9
180 12 9 9
200 12 9 10

Table 1: Results for the cyclic Jacobi ordering
on a Sun workstation.

sorting procedure in each sweep, it may con-
verge relatively slowly [24]. In this section we
describe a parallel ring ordering. This ordering
can not only generate the required index pairs in
a minimum number of steps, but also sort col-
umn norms at the same time.

Our Jacobi ordering consists of two proce-
dures, forward sweep and backward sweep, as il-
lustrated in Fig. 1. They are applied alternately
during the computation.

In either forward or backward sweep the n
indices are organised into two rows. Any two
indices in the same column at a step form one
index pair. One index in each column is then
shifted to another column as shown by the ar-
rows so that di�erent index pairs can be gener-
ated at the next step. The up-and-down arrow
in Fig. 1 indicates the exchange of two indices
in the column before one is shifted. Each sweep
(forward or backward), taking n � 1 steps, can
generate n(n�1)=2 di�erent Jacobi pairs, as well
as sort the values of n elements into nonincreas-
ing (or nondecreasing) order.

We outline a proof that n(n � 1)=2 di�erent
Jacobi pairs can be generated in n � 1 steps by
either a forward or backward sweep. To do this,
we �rst permute the initial positions of n indices
for the round robin ordering [5] and then show
that the orderings can generate the same index
pairs at any step. Since it is well known that
the round robin ordering generates n(n � 1)=2
di�erent index pairs in n � 1 steps, this shows
the correctness of our claim. The detailed proof
of this claim is tedious and is omitted.

It can easily be veri�ed that the forward sweep
and the backward sweep are essentially the same,
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Figure 1: The ring Jacobi ordering. (a) forward
sweep and (b) backward sweep.

except that one sorts the elements into nonde-
creasing order and the other sorts the elements
into nonincreasing order. Thus we only use the
forward sweep as an example to show the proce-
dure on how to sort n elements into nondecreas-
ing order. (For details see [24].)

If the numbers in Fig. 1(a) are not considered
as indices, but as the values of n elements, the
Figure gives an example of sorting n elements
from nonincreasing order to nondecreasing or-
der. In each step the smaller element in each
column is placed on the top except in even steps
the larger element is placed on the top if the col-
umn has a up-and-down arrow in it. Since the
up-and-down arrow indicates the exchange of the
two elements in the column, these arrows can be
removed in even steps by letting the smaller ele-
ments be placed at the top of the corresponding
columns. Thus, we may describe the sorting pro-
cedure as follows:

One forward sweep can be applied to sort n
elements in a nondecreasing order. Each step in
the sweep consists of two substeps. The �rst sub-
step compares the two elements in each column
and places the smaller one on the top and the
larger one at the bottom. The second substep
then shifts the elements located at the bottom to
the next column according to the arrows which
form a ring, as depicted in Fig. 1(a). At each
odd step the two elements in the column with a
up-and-down arrow have to exchange their posi-
tions before the shift takes place. The n elements
are sorted into nondecreasing order after n � 1
such steps (see top row of Fig. 1(b)).

Since both index ordering and sorting can
be done simultaneously in either a forward or
a backward sweep, it may seem that applying
these two sweeps alternately in the SVD com-
putation is not necessary. The reason why we
perform the two sweeps alternately is as follows.
Suppose that the n indices are initially placed
in a nonincreasing order. They will be sorted
into nondecreasing order during a forward sweep.
However, the natural order of indices for index
ordering at each step is maintained during sort-
ing. Thus the n(n � 1)=2 di�erent index pairs
are also generated during the computation. Al-
though the original (nonincreasing) order is re-
stored when a backward sweep is performed, the
exchange of positions of some indices is probable.
As a consequence some index pairs may not be
produced during the computation. This can eas-
ily be veri�ed by an example of sorting a small
number of indices (which are initially placed in a
nonincreasing order) using the backward sweep.

4 Experimental Results

In order to see the importance of sorting the
column norms in a parallel implementation of
the one-sided Jacobi SVD, we implemented our
ring ordering algorithm on the Fujitsu AP1000
at the Australian National University. In the ex-
periment both singular values and singular vec-
tors are computed on the AP1000, which is con-
�gured as a one-dimensional array.

An algorithm without partitioning not very
useful in practice for general-purpose parallel
computation because the system con�guration
is �xed, but the size of user's problem may vary.
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size Algorithm 1 Algorithm 2 Algorithm 3
T S T S T S

200 11.58 12 10.01 10 10.02 10
400 63.35 13 57.39 11 57.42 11
600 210.8 14 187.1 12 185.6 12
800 499.5 15 416.7 12 416.3 12
1000 945.2 15 799.1 12 799.8 12
1200 1702 16 1407 12 1445 13
1400 2787 17 2280 13 2272 13

Table 2: Results for the ring Jacobi ordering on
an AP1000 with 100 cells con�gured as a linear
array (T = time (sec.), S = sweeps).

Our partitioning strategy is based on the method
described in [21]. However, a major di�erence is
that we take sorting into consideration. Assume
that the given system has p processors. We �rst
divide n columns of the matrix into 2p blocks.
(The block sizes are not necessarily the same.)
At the beginning of a sweep, the columns in each
block are orthogonalised with each other exactly
once using the cyclic-by-row ordering. If Rota-
tion Algorithm 2 or 3 is applied, the norms of
columns in each block should be sorted in or-
der. We then consider each block as a super
index and follow the designed ordering so that
p(p � 1) super index pairs can be generated in
p � 1 super steps. In the computation of each
super index pair each column in one block must
be orthogonalised with each column in the other
block once only using the cyclic-by-row ordering,
but no columns in the same block are orthogo-
nalised. If a block in a super index pair is con-
sidered as the column associated with index i
(or index j), the norms of all columns in that
block should be increased (or decreased) during
the orthogonalisation with the columns in the
other block when Rotation Algorithm 2 or 3 is
applied. It is easy to show that the sorting pro-
cedure is also implemented on the completion of
the sweep.

Some of the experimental results from apply-
ing di�erent rotation algorithms are given in Ta-
ble 2. It is easy to see from the table that the
program adopting Rotation Algorithm 1 is not as
e�cient as those adopting rotation algorithms 2
or 3, especially when the problem size is large.
If the total number of sweeps is counted, these
results are consistent with those in Table 1 (ob-

tained in sequential computation using the cyclic
ordering by rows). In our experiment we also
measured the sensitivity of the performance to
the number of processors used in the computa-
tion. The results show that the total number
of sweeps required for the computation of the
same SVD will not vary as the processor num-
ber is changed. Our experimental results are
thus clear evidence which shows how important
it is to adopt a proper sorting procedure in each
sweep.

Size Sweeps Time (sec.) Mop rate
1000 12 30.7335 1365
1200 12 48.0632 1513
1400 13 73.0251 1626
1600 13 99.4422 1786
1800 13 134.6897 1879
2000 13 175.2245 1983
2400 13 299.7816 2006
2800 13 444.6302 2151
3200 13 625.6428 2285

Table 3: Results on a Fujitsu VPP500 using 4
processors.

PEs Size Time (sec.)
4 2000 195
8 2000 102
16 2016 53
32 2048 27

Table 4: Results on a Fujitsu VPP500 using dif-
ferent numbers of processors.

We recently implemented our one-sided Jacobi
SVD algorithm on a Fujitsu VPP500. Some ex-
perimental results are given in Tables 3 and 4.
It can be seen from Table 3 that our algo-
rithm achieves over one third of the peak per-
formance for solving large size problems. (The
peak performance of a four-processor VPP500
is 6.4 Gops.) We can also see from Table 4
that a linear speedup is achieved by using di�er-
ent number of processors (ranging from 4 to 32)
for solving a given problem. These results con-
�rm that for massively parallel computation of
singular value decomposition the best approach
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may be to adopt one-sided Jacobi as advocated
in [4, 5].

5 The Eigenvalue Problem

The SVD algorithm can be used to �nd the
eigenvalues and eigenvectors of a symmetric ma-
trix. For a symmetric matrix A of size n�n the
one-sided Jacobi method produces an orthogonal
matrix V such that AV = S, where S has or-
thogonal columns. We have STS = V TATAV =
�2. Thus the eigenvalues �i and singular values
�i of a symmetric matrix are equal, except pos-
sibly for signs, i.e. �i = ��i. The signs of the
eigenvalues can be obtained using the Rayleigh
quotient:

�i =
vTi Avi
vTi vi

:

If we calculate eigenvalues one by one, it is
impossible to achieve peak performance. This is
because matrix-vector products su�er from the
need for one memory reference per multiply-add.
The performance may be limited by memory ac-
cesses rather than by oating-point arithmetic.
In order to achieve high e�ciency we should
compute all eigenvalues simultaneously using the
equation

V TAV = �

(where V is assumed to be orthonormal).
To minimise the communication cost the com-

putation is divided into two steps, i.e., Y = AV
and V TY = �. There are various parallel al-
gorithms for computing matrix multiplications.
We choose an e�cient one which places the re-
sulting matrix Y (in the �rst step) in a natural
order. Since V and Y are stored in the same
manner and � is diagonal, the multiplication of
the two matrices in the second step only involves
local operations and has operation count O(n2).

If A is positive de�nite, an alternative way of
�nding the eigenvalues and eigenvectors of A is
by �rst computing the Cholesky factorization of
A and then performing and SVD [6, 22].

6 Conclusions

We have shown that the one-sided Jacobi
method can achieve high e�ciency with parallel

orderings provided consideration is given to sort-
ing the column norms. Our parallel ring Jacobi
ordering can do both index ordering and sorting
simultaneously during a sweep. The experimen-
tal results show that this ring ordering algorithm
can achieve the same convergence rate as the
sequential cyclic Jacobi ordering. Some exper-
iments have been conducted on Fujitsu AP1000
and VPP500 computers. We found that for cer-
tain problems Jacobi produces results with high
accuracy, but QR-based methods do not.

Finally, we point out that the parallel odd-
even index ordering [17] and the parallel odd-
even transposition sort [1, 2] both have the
same communication structure. The two pro-
cedures can be combined into a new algorithm
which can e�ciently implement one-sided Ja-
cobi on general-purpose distributed memory ma-
chines [25].
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