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Abstract

In this paper we discuss how to design efficient Jacobi-like algorithms for eigenvalue
decomposition of a real normal matrix. We introduce a block Jacobi-like method. This
method uses only real arithmetic and orthogonal similarity transformations and achieves
ultimate quadratic convergence. A theoretical analysis is conducted and some experimental
results are presented.
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1 Introduction

A real matrix A is said to be normal if it satisfies the equation

AAT = AT A

where AT is the transpose of matrix A. A normal matrix can be reduced to a diagonal form
using unitary similarity transformations

QAQH = D

where D is diagonal, Q is unitary and QH is the conjugate transpose of Q. The standard
sequential method for eigenvalue decomposition of this kind of matrix is the QR algorithm.
However, when massively parallel computation is considered, the parallel version of the QR-
based algorithms for solving unsymmetric eigenvalue problems may not be very efficient because
the algorithms are sequential in nature and not scalable.

One alternative to the QR method is a Jacobi method. Jacobi-based algorithms have recently
attracted a lot of attention as they have a higher degree of potential parallelism. The Jacobi
method, though originally designed for symmetric eigenvalue problems, can be extended to solve
eigenvalue problems for unsymmetric normal matrices [3, 9]. A problem is that we have to use
complex arithmetic even for real-valued normal matrices. Complex operations are expensive
and should be avoided if possible. A quaternion-Jacobi method was recently introduced [5]. In
this method a 4× 4 symmetric matrix can be reduced to a 2× 2 block diagonal form using one
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orthogonal similarity transformation. This method can also be extended to compute eigenvalues
of a general normal matrix. However, problems are that the original matrix has to be divided
into a sum of a symmetric matrix and a skew-symmetric matrix, and that the algorithm cannot
be used to solve the eigenvalue problem of near-normal matrices. Another parallel Jacobi-
like algorithm, named the RTZ (Real Two-Zero) algorithm, was also proposed recently [6].
This method uses real arithmetic and orthogonal similarity transformations. It is claimed that
quadratic convergence can be obtained when computing eigenvalues of a real near-normal matrix
with real distinct eigenvalues. However, a serious problem with this algorithm is that the process
may fail to converge if the matrix has complex eigenvalues.

In this paper we discuss a block Jacobi-like method for computing the eigenvalue decompo-
sition of a real normal matrix. The method uses only real arithmetic and orthogonal similarity
transformations. The theoretical analysis and experimental results show that ultimate quadratic
convergence can be achieved for general real normal matrices with distinct eigenvalues.

Our aim is to design scalable algorithms which can efficiently be implemented on parallel
machines. The key to parallelize a Jacobi (or Jacobi-like) algorithm is to design a parallel Jacobi
ordering. Ordering schemes may affect the overall performance. However, most existing parallel
Jacobi orderings are proved to be equivalent to the well-known sequential cyclic ordering [4, 12].
To simplify our discussion, therefore, we only use the cyclic Jacobi ordering.

Real normal matrices are generalisations of real symmetric matrices. A real symmetric
matrix is normal, but a real normal matrix is not necessarily symmetric. We shall focus our
attention on the unsymmetric case although the method to be described applies to both cases.

Since the RTZ algorithm uses a similar idea to ours, an analysis of the RTZ algorithm is
presented in Section 2. Our block method is described in Section 3. In that section we give a
theoretical analysis which indicates how to choose orthogonal similarity transformations so that
ultimate quadratic convergence can be obtained. Some experimental results are presented in
Section 4, and conclusions are in Section 5.

2 An Analysis of the RTZ Algorithm

The experimental results presented in [6] show that the convergence rate of the RTZ algorithm
is not quadratic if all eigenvalues of a given matrix are complex. However, the paper [6] did not
give any theoretical explanations. We show here that, when applying the RTZ algorithm, we
can obtain at best a linear convergence rate if the matrix has complex eigenvalues.

In the following a 4× 4 matrix

A =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 , (1)

or its block form (with each block being of size 2× 2)

A =

(
A11 A12

A21 A22

)
,

is used to show how the convergence rate may be affected when applying the RTZ algorithm.
The basic idea for computing the eigenvalue decomposition of a 4× 4 matrix using the RTZ

algorithm is as follows: The first leading diagonal element a11 in A11 is chosen together with the
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first row in A12, the first column in A21 and the whole of A22 to form a 3× 3 matrix, that is,

A1 =

 a11 a13 a14

a31 a33 a34

a41 a43 a44

 .

It is known that any real 3×3 matrix has at least one real eigenvalue. An eigenvector associated
with a real eigenvalue of the above matrix can be obtained and used to generate a Householder
matrix which is then applied to update the matrix A so that two off-diagonal elements a31

and a41 are annihilated. After that the second leading diagonal element a22 in A11 is chosen
(together with A22, the second row in A12 and the second column in A21) and another 3 × 3
matrix

A2 =

 a22 a23 a24

a32 a33 a34

a42 a43 a44


is formed. A Householder matrix is generated from an eigenvector (associated with a real
eigenvalue) of this 3 × 3 matrix so that two other lower triangular off-diagonal elements a32

and a42 are eliminated through a similarity transformation. However, this destroys the zeros
introduced previously. The two leading diagonal elements are thus chosen alternately and the
process continues until all the elements in A21 are small enough to be considered as zero.

In the following discussions ε denotes a small positive number close to zero. If certain
elements of a matrix are written as ε, we mean that the values of these elements are small and
of the same order of ε, but they are not necessarily the same.

If the above RTZ procedure converges, all the elements in A21 and A12 become ε after a few
iterations and each 3× 3 matrix will thus have the same form as

B =

 b11 ε ε
ε b22 b23

ε b32 b33

 . (2)

Assume that B is close to a normal block-diagonal matrix and written as

B = D + εF (3)

where the elements in F satisfy |fij | < 1 and D has a form

D =

 d11 0 0
0 d22 d23

0 d32 d33

 .

If the eigenvalues of D are well separated, it is easy to prove using perturbation theory [11] that
there exists an eigenvalue of B which satisfies the equation

|d11 − λ| = O(ε) (4)

and that an eigenvector v associated with λ will also satisfy

‖v − v′‖ = O(ε) (5)

for v′ an eigenvector associated with d11, a real eigenvalue of D. Therefore, we have the following
lemma.

3



Lemma 1 Let a 3× 3 matrix B have a form as in (2) and be written as in (3). There exists a
real eigenvalue λ of B , such that

|d11 − λ| = O(ε).

An eigenvector v associated with λ has a form

v = (v1 ε ε)T . (6)

Proof. The first part of the lemma is directly obtained from (4). Let v′ = (v1
′, v2

′, v3
′)T be an

eigenvector associated with d11, a real eigenvalue of D. Then

(D − d11I)v′ = 0,

or 
(d11 − d11)v1

′ + 0v2
′ + 0v3

′ = 0
0v1

′ + (d22 − d11)v2
′ + d23v3

′ = 0
0v1

′ + d32v2
′ + (d33 − d11)v3

′ = 0
.

Since the eigenvalues of D are well separated, the determinant of the coefficient matrix from the
second and the third equations will not be equal to zero. Thus v2

′ and v3
′ must be zero. We

then have
v′ =

(
v1

′, 0, 0
)T

.

From (5), therefore, v will have the form as in (6).

Since the RTZ algorithm uses Householder transformations, it can be seen in the following
that it is crucial for eigenvectors generated at each step to have the form as in (6) in order to
obtain ultimate quadratic convergence.

We now show how the lower triangular off-diagonal norm is affected when the generated
Householder matrix is applied to update certain rows and columns of the matrix.

Assume that a Householder vector v is chosen based on vector b = (b1 b2 b3)
T , that is,

v = (v1 b2 b3)
T for v1 = b1 + sign(b1)‖b‖ and ‖b‖ =

√
b2
1 + b2

2 + b2
3. The Householder matrix is

then obtained as H = I − 2vvT /vT v.
Suppose that the values of b2 and b3 are of order ε, but b1 is “large”. We have

1
‖b‖

=
1

sign(b1)b1

√
1 + (b2

2 + b2
3)/b2

1

≈ 1
sign(b1)b1

√
1 + ε2

≈ 1
sign(b1)b1

(1− 1
2
ε2).

It is easy to verify that the Householder matrix has the structure

H ≈

 −1 + ε2 ε ε
ε 1− ε2 ε2

ε ε2 1− ε2

 . (7)

When using this matrix to update (left multiply) a column vector (x1 0 0)T , it is easy to see
that, if x1 is of order ε, the zero elements will become O(ε2). If x1 is “large”, however, after the
updating, the zero elements will become O(ε), rather than O(ε2).
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Sweep Lower Block Triangular Norm
4 real eigenvalues 2 real and 2 complex eigenvalues

0 0.2620215927345935 0.6198994950456397
1 3.400727964203065e-02 3.649800212444496e-02
2 1.112102911733364e-06 6.950946615948856e-06
3 5.364457308382537e-25 1.705643339710924e-21

Table 1: The 4× 4 matrices have at most two complex eigenvalues.

Suppose that all the elements in the off-diagonal blocks become small after a few sweeps
and that the last two elements in the first column have been eliminated by the immediately
preceding iteration in which a11 and the corresponding 3 × 3 matrix are chosen. The updated
matrix then has a form

A =


a11 a12 ε ε
a21 a22 ε ε
0 ε a33 a34

0 ε a43 a44

 .

Now we choose a22 and the corresponding 3× 3 matrix as a22 ε ε
ε a33 a34

ε a43 a44


and apply the RTZ procedure again to annihilate the last two elements in the second column
of matrix A. Assume that this 3 × 3 matrix has the same properties as the matrix described
in Lemma 1. The eigenvector will be in the same form as in (6). Therefore, the generated
Householder matrix is of the form like (7).

The last three elements in the first column of matrix A will be affected in the updating
procedure using this Householder matrix. If A11 has two real eigenvalues, we may reasonably
assume that a21 and a12 are of order ε. (If not, an orthogonal similarity transformation can
be applied to annihilate a21 without using complex arithmetic as A11 has two real eigenvalues.)
When this Householder matrix is applied, the values of the zero elements in the first column will
be of order ε2. Quadratic convergence may then be achieved. If A11 (as well as A22) has two
complex eigenvalues, however, the value of a21 may no longer be small. The values of the zero
elements in the first column will be increased to O(ε) as we discussed above. The convergence
rate is thus only linear at best.

To verify our analysis we implemented the RTZ algorithm. Some experimental results are
given in Table 1 and Table 2. In the experiment the RTZ algorithm is used to decompose three
different kinds of 4×4 normal matrices. The first matrix has four real eigenvalues and the second
one has two real and two complex eigenvalues. The RTZ algorithm works efficiently for these
two matrices. As indicated in Table 1, a better than quadratic convergence rate is achieved.

The problem occurs when all four eigenvalues of a normal matrix are complex. The lower
block triangular norm converges to zero very slowly when the RTZ algorithm is used. Let the
two pairs of complex eigenvalues have the form as λ ± iµ. In our experiment λ is set to be a
positive random number smaller than one, while specific values are assigned to µ. When µ is set
to be very small, the eigenvalues will be close to real. Our experimental results show that the
convergence is very slow when µ is great. As shown in Table 2, for example, the matrix does
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Sweep Lower Block Triangular Norm
µ = 0.5 µ = 0.05 µ = 0.005

0 0.6711408155892714 0.2333023567461740 0.2246552719474016
1 0.2716123691993152 1.199223022243009e-02 2.135320869285008e-02
2 9.755104834822810e-02 5.917326295608719e-05 1.059463164110422e-06
3 3.263905677008454e-02 2.918965666220263e-07 5.251887781007312e-11
4 1.082900741978114e-02 1.439900400735424e-09 2.603424651608092e-15
5 3.589505732485564e-03 7.102903566815823e-12 1.832988980675934e-17
6 1.189696302360603e-03 3.503800613515733e-14
7 3.943053592985449e-04 1.728394398251085e-16
8 1.306858932316573e-04 1.213931761292142e-17
27 1.008676811946900e-13
28 3.343089487481607e-14
29 1.108010728487409e-14
30 3.672315027649536e-15

Table 2: The matrix has four complex eigenvalues.

not converge to block triangular form even after thirty sweeps when µ = 0.5. It converges faster
only if µ becomes smaller. This evidence confirms the correctness of our analysis.

In the above we only considered a very simple problem, that is, the 4 × 4 case. When
the matrix size is much larger, the slow local convergence can significantly affect the global
convergence. In certain cases the process may not even converge.

3 Block Jacobi-Like Method

To simplify our discussion, we assume that the matrix size is even. The basic idea of our
method is described as follows: A real normal matrix is first divided into blocks. To avoid using
complex arithmetic the size of each block is chosen to be 2× 2 so that each pair of conjugate
complex eigenvalues can be grouped into the same block. A sequence of orthogonal similarity
transformations is then applied to annihilate the off-diagonal blocks in the lower triangle and
this process continues until all the lower triangular off-diagonal blocks are considered as zero.
The basic structure of the method is depicted in Fig. 1.

In Fig. 1 NITN denotes the number of lower triangular off-diagonal blocks, or number of
iterations in a sweep, which is equal to n(n − 2)/8 for n the size of the problem. The 2 × 2
block Aij has the form

Aij =

(
a2i−1,2j−1 a2i−1,ij

a2i,2j−1 a2i,2j

)
and therefore B is of size 4 × 4. A counter NZCONT is used to check how many off-diagonal
blocks in the lower triangle are zero. If this is equal to NITN, the process stops. The cyclic
ordering is used for sequential computation. If we consider each block as a single element, The
action of the designed algorithms is just the same as that of a nonblocked Jacobi algorithm.
Therefore, any existing efficient parallel orderings, for example, those in [1, 2, 4, 10, 12, 13], can
be adopted to form an efficient parallel algorithm for solving the problem.

The structure in Fig. 1 is similar to any standard block Jacobi schemes. The crux is how to
choose the orthogonal transformation matrices Q during the computation such that the quadratic
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NITN = n(n-2)/8
NZCONT = 0
REPEAT UNTIL NZCONT = NITN

DOi = 1, n/2
DOj = i+1, n/2

B =

(
Aii Aij

Aji Ajj

)
IF (‖Aji‖ not zero) THEN

1. Find an orthogonal matrix Q such that B is reduced to a block
triangular form through a similarity transformation.
2. Update the corresponding rows and columns of A using Q.

ELSE
NZCONT = NZCONT + 1

END IF
END DO

END DO
IF (NZCONT 6= NITN) NZCONT = 0

END REPEAT

Figure 1: The basic structure of the block Jacobi-like method.

convergence can be achieved. The remaining paper will deal with this very important issue. In
the following ‖A‖ denotes the Frobenius norm of A.

Lemma 2 Let a normal matrix A be divided into blocks Bij. If A is nearly block triangular,
that is, ∑

k>i

‖Bki‖2 = O(ε), for all i,

then A is nearly block diagonal.

Proof. Let C = AAT and C ′ = AT A. We have Cii =
∑

k BikB
T
ik and C ′

ii =
∑

k BT
kiBki. Since

the matrix A is normal,

Cii − C ′
ii =

∑
k

BikB
T
ik −

∑
k

BT
kiBki = 0,

or
BiiB

T
ii −BT

iiBii =
∑
k 6=i

(BT
kiBki −BikB

T
ik). (8)

Taking the sum of the diagonal elements on both sides of the above equation, we have the
following relation for all i:

0 =
∑
k 6=i

(‖Bki‖2 − ‖Bik‖2). (9)

When i = 1, the above implies that∑
k>1

‖B1k‖2 =
∑
k>1

‖Bk1‖2 = O(ε).
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When i = 2, we have ∑
k>2

‖B2k‖2 + ‖B21‖2 =
∑
k>2

‖Bk2‖2 + ‖B12‖2,

or ∑
k>2

‖B2k‖2 =
∑
k>2

‖Bk2‖2 + ‖B12‖2 − ‖B21‖2

≤
∑
k>2

‖Bk2‖2 +
∑
k>1

‖B1k‖2

= O(ε).

Therefore, by induction we can easily prove∑
k>i

‖Bik‖2 = O(ε).

From Lemma 2 we see that, if we can reduce a real normal matrix to a block upper triangular
form using orthogonal similarity transformations, the matrix will become block diagonal.

We show in the following three lemmas that, if the orthogonal transformation matrices are
chosen properly and if the process converges for a normal matrix with distinct eigenvalues, the
convergence rate will ultimately be quadratic.

Lemma 3 If a normal matrix A is divided into blocks Bij, then the main diagonal blocks have
the following property:

‖BiiB
T
ii −BT

iiBii‖ ≤
∑
k 6=i

(‖Bki‖2 + ‖Bik‖2). (10)

Proof. From equation (8) we have

‖BiiB
T
ii −BT

iiBii‖ ≤
∑
k 6=i

‖BT
kiBki −BikB

T
ik‖

≤
∑
k 6=i

(‖BT
kiBki‖+ ‖BikB

T
ik‖).

Since ‖BT
kiBki‖ ≤ ‖BT

ki‖‖Bki‖ = ‖Bki‖2, we thus obtain

‖BiiB
T
ii −BT

iiBii‖ ≤
∑
k 6=i

(‖Bki‖2 + ‖Bik‖2).

It can be seen from this lemma that each block on the main diagonal will be very close to a
normal matrix if the norm of each off-diagonal block is small, that is,

‖BiiB
T
ii −BT

iiBii‖ = O(ε2)

if max(‖Bij‖) = ε for i 6= j.
The next lemma shows that, when the lower off-diagonal block of a 2 × 2 block matrix is

annihilated through an orthogonal similarity transformation, the norm of its upper off-diagonal
block will also be decreased if this block matrix is close to normal.
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Lemma 4 Assume that a 2 × 2 non-normal block matrix B, with the size of each block being
2× 2, is close to a normal matrix and has the property

‖BBT −BT B‖ = O(η) (11)

where η is a small positive number, and that B has four nonzero eigenvalues and can be reduced
to a block triangular form through an orthogonal similarity transformation, that is,

QT BQ = D (12)

where Q is a real orthogonal matrix and

D =

(
D11 D12

0 D22

)
(13)

for each block Dij being of size 2× 2.
Let the eigenvalues of D11 and D22 be λ1i and λ2i for i = 1, 2, respectively. (These are also

the eigenvalues of B.) If the eigenvalues of D11 are separated from those of D22 and they satisfy
the following two inequalities:

c1 ≤ |λij | ≤ c2 (14)

and ∣∣∣∣∣1− λ1i

λ2j

∣∣∣∣∣ > c3 (15)

for c1, c2 and c3 constants greater than zero, then we have

‖D12‖ = O(η).

Proof. Since B = QDQT and BT = QDT QT , we have

‖BBT −BT B‖ = ‖Q(DDT −DT D)QT ‖.

Thus
‖DDT −DT D‖ = O(η). (16)

It is easy to see that the second block of the first column in DDT−DT D is D22D
T
12−DT

12D11. We
know that ‖D12‖ 6= 0. Otherwise, B is a normal matrix which is contrary to our assumption.
Since ‖D12‖ 6= 0 and the eigenvalues are nonzero and distinct, ‖D22D

T
12 − DT

12D11‖ may be
nonzero. However, it is easy to see from (16) that it should be of order η at most, that is,

‖D22D
T
12 −DT

12D11‖ = O(η). (17)

Since B has four nonzero eigenvalues, both D11 and D22 have full rank. The following
inequality holds:

‖DT
12 −D−1

22 DT
12D11‖ ≤ ‖D−1

22 ‖‖D22D
T
12 −DT

12D11‖.

According to one of our assumptions, that is, the eigenvalues of matrix B are bounded by two
positive constants c1 and c2, ‖D−1

22 ‖ should also be bounded by two positive constants, that is,

1
c2
≤ ‖D−1

22 ‖ ≤
1
c1

.

We thus have
‖DT

12 −D−1
22 DT

12D11‖ = O(η). (18)
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Let
D11 = Q1R1Q

H
1

and
D−1

22 = Q2R2Q
H
2

be the eigenvalue decomposition of D11 and D−1
22 for Q1 and Q2 unitary and R1 and R2 upper

triangular, and define
QH

2 DT
12Q1 = E.

we then have

‖E −R2ER1‖ = ‖Q2(E −R2ER1)QH
1 ‖

= ‖DT
12 −D−1

22 DT
12D11‖ (19)

= O(η).

Let

E =

(
e11 e12

e21 e22

)
,

R1 =

(
r
(1)
11 r

(1)
12

0 r
(1)
22

)
and

R2 =

(
r
(2)
11 r

(2)
12

0 r
(2)
22

)
.

Expanding G = E −R2ER1, we obtain

G =

(
s11e11 − r

(2)
12 r

(1)
11 e21 s12e12 − r

(2)
11 r

(1)
12 e11 − r

(2)
12 r

(1)
12 e21 − r

(2)
12 r

(1)
22 e22

s21e21 s22e22 − r
(2)
22 r

(1)
12 e21

)

where sji = 1− r
(2)
jj r

(1)
ii .

Since r
(1)
ii is an eigenvalue of D11 and 1/r

(2)
jj is an eigenvalue of D22, then

|sji| =
∣∣∣1− r

(2)
jj r

(1)
ii

∣∣∣
=

∣∣∣∣∣1− λ1i

λ2j

∣∣∣∣∣
> c3.

According to equation (19) all the elements in G must be of order η, that is,

|s21e21| = O(η);∣∣∣s11e11 − r
(2)
12 r

(1)
11 e21

∣∣∣ = O(η);∣∣∣s22e22 − r
(2)
22 r

(1)
12 e21

∣∣∣ = O(η);∣∣∣s12e12 − r
(2)
11 r

(1)
12 e11 − r

(2)
12 r

(1)
12 e21 − r

(2)
12 r

(1)
22 e22

∣∣∣ = O(η).

It is then easy to verify from the above four equations that all the elements in E must be
of order η. From the first equation we can obtain |e21| = O(η) because s21 is greater than a
constant c3. After we know that e21 is of order η, we can easily verify that e11 (and e22) is of
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order η from the second equation (and the third equation). Because e11, e21 and e22 are all of
order η, we obtain |e12| = O(η) from the fourth equation. Therefore, we have

‖D12‖ = ‖Q2EQH
1 ‖

= ‖E‖
= O(η).

Assume that a normal matrix is divided into blocks of size 2× 2 and that the norm of each
off-diagonal blocks is of order ε. Further we assume that each Bij in (10) is a 2× 2 block (i.e.,
4 × 4) submatrix. Thus the norm of each off-diagonal submatrix Bij for i 6= j must also have
an order of ε. From Lemma 3 we obtain

‖BiiB
T
ii −BT

iiBii‖ = O(ε2)

where Bii is of the same form as B in Fig. 1.
After an orthogonal similarity transformation which reduces Bii to a block upper triangular

matrix, the norm of the upper off-diagonal block in Bii should have the same order as ‖BiiB
T
ii −

BT
iiBii‖ according to the above lemma. Therefore, it will be of order ε2.

Since the off-diagonal norm of Bii is reduced from O(ε) to O(ε2) and the norms of other Bijs
are not affected during the updating procedure, we thus obtain a steady decrease in off-diagonal
norm during the computation. In the following we show that, if the orthogonal transformation
matrices are chosen properly, ultimate quadratic convergence can be achieved.

Explicitly write matrices B and Q in (12) as 2× 2 block matrices, that is,

B =

(
A11 A12

A21 A22

)

and

Q =

(
Q11 Q12

Q21 Q22

)
and assume that ‖A12‖ = O(ε) and ‖A21‖ = O(ε). Then we have the following lemma.

Lemma 5 Assume that the eigenvalues of A11 and A22 are γ1i, γ2i for i = 1, 2, respectively,
and the eigenvalues of D11 and D22 (which are also the eigenvalues of B) are defined as those
in Lemma 4. If we can find an orthogonal matrix Q such that, after the similarity transforma-
tion QT BQ = D, the eigenvalues γij of Aii and the eigenvalues λij of Dii satisfy the following
inequality ∣∣∣∣∣1− γik

λjl

∣∣∣∣∣ > c3 (20)

for i 6= j, and c3 being a constant greater than zero, then the norms of both Q12 and Q21 in the
generated orthogonal matrix must be of order ε, that is,

‖Q12‖ = O(ε)

and
‖Q21‖ = O(ε).
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Proof. From (12) we have(
A11 A12

A21 A22

)(
Q11 Q12

Q21 Q22

)
=

(
Q11 Q12

Q21 Q22

)(
D11 D12

0 D22

)
. (21)

Thus
A21Q11 + A22Q21 = Q21D11,

or
A21Q11 = Q21D11 −A22Q21,

or
A21Q11D

−1
11 = Q21 −A22Q21D

−1
11 (22)

and
A11Q12 + A12Q22 = Q11D12 + Q12D22,

or
(A12Q22 −Q11D12)D−1

22 = Q12 −A11Q12D
−1
22 . (23)

Since ‖A21‖ = O(ε), ‖A12‖ = O(ε) and ‖D12‖ = O(ε2) which can be obtained by combining the
results of Lemma 2 and Lemma 4, the norms of the left-side of the equations in (22) and (23)
must be of order ε. We thus have

‖Q21 −A22Q21D
−1
11 ‖ = O(ε) (24)

and
‖Q12 −A11Q12D

−1
22 ‖ = O(ε). (25)

The above two equations have the same form as in (18). Adopting the same technique as that
used in Lemma 4, therefore, we can easily obtain ‖Q21‖ = O(ε) and ‖Q12‖ = O(ε).

Using an orthogonal transformation matrix with ‖Q21‖ = O(ε) and ‖Q12‖ = O(ε) to update
(premultiply) a vector (0 0 v3 v4)T (or (v1 v2 v3 v4)T for v1 and v2 being of order ε2), the zero
elements in the vector will become O(ε2) (or v1 and v2 will remain their original order) if both v3

and v4 are of order ε. This is one of the key factors for obtaining ultimate quadratic convergence.
Consider a 4 × 4 block matrix A for each block being of size 2× 2 and that after k sweeps

the norm of each off-diagonal block becomes the order of ε, that is,

A(k) =


A11 ε12 ε13 ε14
ε21 A22 ε23 ε24
ε31 ε32 A33 ε34
ε41 ε42 ε43 A44


where the off-diagonal block Aij is represented by εij which means ‖Aij‖ is of order ε.

Assume that the cyclic ordering is adopted in the computation. At the (k + 1)th sweep
A21 will be annihilated first. According to the basic structure of the block Jacobi-lick method
depicted in Fig. 1, a submatrix B is formed, that is,

B =

(
A11 ε12

ε21 A22

)
.

Since all off-diagonal blocks Aij are of order ε, from Lemma 3 we have

‖BBT −BT B‖ = O(ε2).
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After an orthogonal similarity transformation on B to annihilate A21, the norm of A12 will
become O(ε2) according to Lemma 4.

Next A31 is annihilated. For the same reason we have ‖A13‖ = O(ε2) after the orthogonal
similarity transformation. However, A21 will become nonzero again. If the norms of the off-
diagonal blocks of the generated orthogonal matrix are of order ε, we can have ‖A21‖ = O(ε2)
and ‖A12‖ = O(ε2) after the updating.

It can be seen from above discussion that ‖Aji‖ will become O(ε2) after Aij is annihilated
for i > j and during the successive transformations both ‖Aji‖ and ‖Aij‖ can remain to be of
order ε2 if at each step the orthogonal transformation matrix is chosen properly such as that
described in Lemma 5. After the (k + 1)th sweep the matrix will become

A(k+1) =


A11 ε212 ε213 ε214
ε221 A22 ε223 ε224
ε231 ε232 A33 ε234
ε241 ε242 ε243 A44

 .

Therefore, the asymptotic quadratic convergence is obtained.
Now the problem is how to choose the orthogonal transformation matrix so that the norms

of its off-diagonal blocks are of order ε. The inequality in (20) plays a crucial role in proving
Lemma 5. When B is close to normal, the eigenvalues of A11 and A22, the diagonal blocks
of B, will be very close to the true eigenvalues of B. If an orthogonal transformation also
involves (either implicitly or explicitly) a permutation on rows and columns between blocks, the
eigenvalues of A11 can be very close to those of D22. In that case the inequality in (20) will not
be satisfied. We do not know if the generated orthogonal matrix still has the desired form when
the inequality in (20) cannot be satisfied.

A natural way to alleviate this problem is to incorporate sorting with Jacobi ordering. With
sorting diagonal blocks can be settled down more quickly. After the diagonal blocks being
settled down, there will be no permutation on rows and columns between blocks and thus the
inequality in (20) is guaranteed. Experiments (e.g. those presented in [7, 12]) have shown that
to incorporate sorting with Jacobi ordering can always improve the performance for symmetric
matrices. In the next section we give some experimental results which show that the ultimate
quadratic convergence can be obtained for general normal matrices by incorporating a sorting
procedure with the cyclic ordering when the QR algorithm with double implicit shift is used in
the block Jacobi-like method for the local block submatrix reduction.

4 Experimental Results

In our experiments the basic algorithm for reducing B in Fig. 1 to a block triangular matrix at
each step is the QR algorithm with double implicit shift and relevant subroutines in EISPACK [8]
are used. (Note diagonal eigenvalues have sometimes to be swapped to ensure the norm of the
lower off-diagonal block ‖Aji‖ = 0.)

The stopping criteria used in our experiment is the same as that in EISPACK, that is, an
off-diagonal element aij is considered as zero if |aij | ≤ (|aii|+ |ajj |)∗ εmach for εmach the machine
precision. The norm of a lower triangular off-diagonal block ‖Aji‖ is considered as zero if all
the elements in it are considered as zero. The computation stops if all the lower triangular
off-diagonal blocks are considered as zero.

The test matrices used in the experiment are generated by computing QDQT , where Q is

13



Sweep Lower Block Triangular Norm
Matrix 1 Matrix 2 Matrix 3

0 1.216919467218377 1.942474075382786 2.496954343408182
1 0.8439242118214305 1.444070030260214 1.849869669358216
2 0.6715976208966092 0.9099848524494509 1.085259770981389
3 0.5694434773575591 0.5781929865448607 0.4617255166054944
4 0.4741511123441828 0.3448206046877936 0.1168896666930765
5 0.4158622482882098 0.2100276271297201 2.394464637809306e-02
6 0.3396277313047820 0.1199726773598173 1.947540032820058e-04
7 0.2952900301463802 9.980169372632480e-02 9.808465071791773e-09
8 0.2670511113785617 9.139422480738207e-02 1.177560482223073e-15
9 0.1976341619796229 6.635400959295680e-02 3.205392919010865e-16
21 4.058256009664995e-02 4.109644046234354e-07
22 3.774124341065204e-02 4.109430061021018e-07
23 2.982459710120542e-02 2.170532650662510e-09
24 1.472832625703867e-02 2.183222832088858e-09
25 1.366728263813406e-02 9.386963954187879e-11
26 1.125831279655028e-02 3.310682565962637e-16
27 4.490752073166923e-03
28 4.213903185722646e-03
29 3.239742746922371e-03
30 2.037809355066387e-03

Table 3: Sweeps and lower blocks triangular norms for 40× 40 matrices obtained by using the
block algorithm without sorting.

an orthogonal matrix and D is a block diagonal matrix. Each block in D is of size 2× 2, that is,

Dii =

(
d1 d2

d3 d4

)

where the four elements are positive random numbers smaller than one. When d2 = −d3 and
d1 = d4, we have two complex eigenvalues d1 ± id2. Otherwise, we set d2 = d3 = 0 for two real
eigenvalues. We use three different matrices in the experiments. The first matrix has distinct
real eigenvalues, the second one has half of its eigenvalues real and the other half complex. and
the third contains distinct complex eigenvalues.

In our first experiment we did not adopt any special sorting procedure. Table 3 gives the
lower block triangular norms after each sweep for computing eigenvalues of the matrices of size
40×40. It can be seen from the table that our block algorithm perform well for the matrix which
has only complex eigenvalues, but not so well for the matrices which contain real eigenvalues.
The algorithm for block submatrix reduction is the QR with double implicit shift. It does not
sort real eigenvalues. Though it does not order complex eigenvalues either, the lower 2×2 block
will converge to the true eigenvalues rapidly when it is close to a pair of conjugate complex
eigenvalues because of the double shift. Therefore, the rows and columns of the block submatrix
will not be exchanged during the orthogonal similarity transformation. This can be considered
as sorting although it does not sort the eigenvalues in a normal way. That may be the reason why
the matrix with only complex eigenvalues can converge to the block diagonal form quadratically.

In our second experiment the same QR algorithm was used for block submatrix reduction. In
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Sweep Lower Block Triangular Norm
Matrix 1 Matrix 2 Matrix 3

0 1.216919467218377 1.942474075382786 2.496954343408182
1 0.6750246824159247 1.461835195736259 1.839162340923474
2 0.2199706803702323 0.9192624818874845 1.094029846622824
3 4.559208067945802e-02 0.4212417065916218 0.3932978785936760
4 2.000134475041065e-03 7.792134902151260e-02 7.739108958000541e-02
5 5.069396887509214e-06 4.672120103780485e-03 2.036895300210892e-03
6 1.708986452402760e-11 8.243231692930333e-06 8.707250423915960e-07
7 3.322903255620598e-16 1.606329703756845e-11 1.568197532065648e-13
8 1.764324938059070e-16 1.246328515799187e-16

Table 4: Sweeps and lower blocks triangular norms for 40× 40 matrices obtained by using the
block algorithm with sorting.

Matrix size 40 80 120 160 200
Matrix 1 7 8 9 9 10
Matrix 2 8 10 11 12 13
Matrix 3 8 10 11 12 13

Table 5: Sweeps taken for matrices of various sizes.

each step, however, we added a sorting procedure after the QR algorithm to sort real eigenvalues
(if any) into nonincreasing order. When the real eigenvalues in each block submatrix are sorted
in a nonincreasing order, the cyclic ordering can guarantee that all the real eigenvalues will be
sorted in a nonincreasing order. The experimental results are presented in Table 4 for the same
matrices as in our first experiment. It can be seen that quadratic convergence is obtained for
all the matrices after the sorting procedure is incorporated. This is a firm evidence showing the
importance of sorting for the block Jacobi-like method.

Some experimental results for matrices of different sizes are given in Table 5. We can see
from this table that it takes a few more sweeps to converge for a matrix with complex eigenvalues
than for a matrix with all real eigenvalues. We tried sorting the complex eigenvalues to improve
the performance, but no significant improvement was achieved. It seems that the problem is
harder to solve by the block Jacobi-like method when the matrix has some complex eigenvalues.

5 Conclusions

In this paper we first gave an analysis of the RTZ algorithm and showed that at best a linear
convergence rate can be obtained when this algorithm is applied to decompose a normal matrix
which has complex eigenvalues. However, our analysis and experimental results indicate that
quadratic convergence may be achieved if the given matrix has only real eigenvalues. Thus the
algorithm is still useful for eigenvalue decomposition of a normal or near normal matrix if the
matrix has only real eigenvalues.

We then discussed a block Jacobi-like method for eigenvalue decomposition of a real normal
matrix using real arithmetic. The theoretical analysis shows that ultimate quadratic convergence
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can be achieved for matrices with distinct eigenvalues if the orthogonal transformation is chosen
properly. Some experimental results are also given to show the importance of incorporating
a sorting procedure when the QR algorithm with double implicit shift is used for local block
submatrix reduction. It is expected that ultimate quadratic, or near-quadratic convergence
is achievable when the algorithms are applied to compute the eigenvalue decomposition of a
near-normal matrix.

It should be noted that the algorithm used in our experiment is not the only candidate. For
example, similar results were obtained when we used a scheme which combines the RTZ and
the QR algorithms for local block submatrix reduction [14]. The key to the success is that the
generated orthogonal transformation matrices at each step should satisfy the inequality in (20).
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