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Abstract. We survey the numerical stability of some fast algorithms for solving systems of linear
equations and linear least squares problems with a low displacement-rank structure. For example,
the matrices involved may be Toeplitz or Hankel. We consider algorithms which incorporate pivoting
without destroying the structure, and describe some recent results on the stability of these algorithms.
We also compare these results with the corresponding stability results for the well known algorithms
of Schur/Bareiss and Levinson, and for algorithms based on the semi-normal equations.
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1. Motivation. The standard direct method for solving dense n× n systems of
linear equations is Gaussian elimination with partial pivoting. The usual implemen-
tation requires of order n3 arithmetic operations.

In practice, linear systems often arise from some physical system and have a
structure which is a consequence of the physical system. For example, time-invariant
physical systems often give rise to Toeplitz systems of linear equations (§3.2). An
n×n Toeplitz matrix is a dense matrix because it generally has n2 nonzero elements.
However, it is determined by only O(n) parameters (in fact, by the 2n−1 entries in its
first row and column). Similar examples are Hankel, Cauchy, Toeplitz-plus-Hankel,
and Vandermonde matrices [38, 60].

When solving such a structured linear system it is possible to ignore the structure,
and this may have advantages if standard software is available and n is not too large.
However, if n is large or if many systems have to be solved, perhaps with real-time
constraints (e.g. in radar and sonar applications), then it is desirable to take advantage
of the structure. The primary advantage to be gained is that the time to solve a linear
system is reduced by a factor of order n to O(n2). Storage requirements may also be
reduced by a factor of order n, from O(n2) to O(n).

Most papers concerned with algorithms for structured linear systems concentrate
on the speed (usually measured in terms of the number of arithmetic operations
required) and ignore questions of numerical accuracy. However, it is dangerous to use
fast algorithms without considering their numerical properties. There is no point in
obtaining an answer quickly if it is much less accurate than is justified by the data.

In this paper we reverse the usual emphasis on speed, and concentrate on the
numerical properties of fast algorithms. Because there are many classes of structured
matrices, and an ever increasing number of fast algorithms, we can not attempt to be
comprehensive. Our aim is to introduce the reader to the subject, illustrate some of
the main ideas, and provide pointers to the literature.
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appear in Stability of Fast Methods for Linear Systems with Structure (editors, Ali H. Sayed and
Thomas Kailath), SIAM, Philadelphia, 1999, 103–116.
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The subject of numerical stability/instability of fast algorithms is confused for
several reasons:

1. Structured matrices are often very ill-conditioned. For example, the Hilbert
matrix [50], defined by ai,j = 1/(i + j − 1), is often used as an example of a poorly
conditioned matrix [29]. This is a typical example of a Hankel matrix. Reversing the
order of the rows gives a Toeplitz matrix.

2. The solution might be less sensitive to structured perturbations (i.e. per-
turbations which are physically plausible because they preserve the structure) than
to general (unstructured) perturbations. The effect of rounding errors in methods
which ignore the structure is generally equivalent to the introduction of unstructured
perturbations. Ideally we should use a method which only introduces structured per-
turbations, but this property often does not hold, or is difficult to prove, even for
methods which take advantage of the structure to reduce the number of arithmetic
operations.

3. The error bounds which can be proved are usually much weaker than what
is observed on “real” or “random” examples. Thus, methods which are observed to
work well in practice can not always be guaranteed, and it is hard to know if it is just
the analysis which is weak or if the method fails in some rare cases.

4. An algorithm may perform well on special classes of structured matrices,
e.g. positive definite matrices or matrices with positive reflection coefficients, but
perform poorly or break down on broader classes of structured matrices.

1.1. Outline. Different authors have given different (and sometimes inconsis-
tent) definitions of stability and weak stability. We shall follow Bunch [14, 15]. For
completeness, our definitions are given in §2.

The concept of displacement rank, discussed in §3, may be used to unify the
discussion of many algorithms for structured matrices [52, 53, 54]. It is well known
that systems of n linear equations with a low displacement rank (e.g. Toeplitz or
Hankel matrices) can be solved in O(n2) arithmetic operations. Asymptotically faster
algorithms with time bound O(n log2 n) exist [13], but are not considered here because
their numerical properties are generally poor and the constant factors hidden in the
“O” notation are large [1].

For positive definite Toeplitz matrices, the first O(n2) algorithms were introduced
by Kolmogorov [56], Wiener [78] and Levinson [57]. These algorithms are related to
recursions of Szegö [74] for polynomials orthogonal on the unit circle. Another class
of O(n2) algorithms, e.g. the Bareiss algorithm [2], are related to Schur’s algorithm
for finding the continued fraction representation of a holomorphic function in the unit
disk [64]. This class can be generalized to cover unsymmetric matrices and more
general “low displacement rank” matrices [54]. In §§4–6 we consider the numerical
stability of some of these algorithms. The GKO-Cauchy and GKO-Toeplitz algorithms
are discussed in §4. The Schur/Bareiss algorithm for positive definite matrices is
considered in §5.1, and generalized Schur algorithms are mentioned in §5.2. In §6 we
consider fast orthogonal factorization algorithms and the fast solution of structured
least squares problems.

Algorithms for Vandermonde and many other classes of structured matrices are
not considered here – we refer to the extensive survey by Olshevsky [60]. Also, we have
omitted any discussion of fast “lookahead” algorithms [18, 19, 30, 31, 42, 43, 44, 45, 72]
because, although such algorithms often succeed in practice, in the worst case they
require of order n3 operations.
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Much work has been done on iterative methods for Toeplitz and related systems.
Numerical stability is not a major problem with iterative methods, but the speed
of convergence depends on a good choice of preconditioner. We do not consider
iterative methods here, except to mention iterative refinement as a way of improving
the accuracy of weakly stable direct methods.

1.2. Notation. In the following, R denotes a structured matrix, T is a Toeplitz
or Toeplitz-type matrix, P is a permutation matrix, L is lower triangular, U is upper
triangular, and Q is orthogonal. In error bounds, On(ε) means O(εf(n)), where f(n)
is a polynomial in n. We do not usually try to specify the polynomial f(n) precisely
because it depends on the norm that is used to measure the error and on many
unimportant details of the implementation.

2. Stability and Weak Stability. In this section we give definitions of stability
and weak stability of algorithms for solving linear systems.

Consider algorithms for solving a nonsingular, n×n linear system Ax = b. There
are many definitions of numerical stability in the literature, for example [3, 4, 8, 9,
14, 24, 38, 51, 59, 61, 65]. Definitions 2.1 and 2.2 below are taken from Bunch [15].

Definition 2.1. An algorithm for solving linear equations is stable for a class

of matrices A if for each A in A and for each b the computed solution x̃ to Ax = b
satisfies Âx̃ = b̂, where Â is close to A and b̂ is close to b.

Definition 2.1 says that, for stability, the computed solution has to be the exact

solution of a problem which is close to the original problem. This is the classical
backward stability of Wilkinson [79, 80, 81]. We interpret “close” to mean close in the
relative sense in some norm, i.e.

‖Â − A‖/‖A‖ = On(ε), ‖b̂ − b‖/‖b‖ = On(ε).

Note that the matrix Â is not required to be in the class A. For example, A
might be the class of nonsingular Toeplitz matrices, but Â is not required to be a
Toeplitz matrix. If we require Â ∈ A we get what Bunch [15] calls strong stability.
For a discussion of the difference between stability and strong stability for Toeplitz
algorithms, see [34, 35, 48, 76].

Stability does not imply that the computed solution x̃ is close to the exact solution
x, unless the problem is well-conditioned. Provided κε is sufficiently small, stability
implies that

‖x̃ − x‖/‖x‖ = On(κε).(2.1)

For more precise results, see Bunch [15] and Wilkinson [79].
As an example, consider the method of Gaussian elimination. Wilkinson [79]

shows that

‖Â − A‖/‖A‖ = On(gε),

where g = g(n) is the “growth factor”. g depends on whether partial or complete
pivoting is used. In practice g is usually moderate, even for partial pivoting. However,
a well-known example shows that g(n) = 2n−1 is possible for partial pivoting, and
it has been shown that examples where g(n) grows exponentially with n may arise
in applications, e.g. for linear systems arising from boundary value problems. Even
for complete pivoting, it has not been proved that g(n) is bounded by a polynomial
in n. Wilkinson [79] showed that g(n) ≤ n(log n)/4+O(1), and Gould [39] showed that
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g(n) > n is possible for n > 12; there is still a large gap between these results. Thus,
to be sure that Gaussian elimination satisfies Definition 2.1, we must restrict A to
the class of matrices for which g is On(1). In practice this is not a problem, because
g can easily be checked a posteriori [81].

Although stability is desirable, it is more than we can prove for many useful algo-
rithms. Thus, following Bunch [15], we define the (weaker, but still useful) property
of weak stability.

Definition 2.2. An algorithm for solving linear equations is weakly stable for a

class of matrices A if for each well-conditioned A in A and for each b the computed

solution x̃ to Ax = b is such that ‖x̃ − x‖/‖x‖ is small.

In Definition 2.2, we take “small” to mean On(ε), and “well-conditioned” to mean
that κ(A) is On(1), i.e. is bounded by a polynomial in n. From (2.1), stability implies
weak stability.

Define the residual r = Ax̃ − b. It is well-known [80] that

1

κ

‖r‖
‖b‖ ≤ ‖x̃ − x‖

‖x‖ ≤ κ
‖r‖
‖b‖ .(2.2)

Thus, for well-conditioned A, ‖x̃ − x‖/‖x‖ is small if and only if ‖r‖/‖b‖ is small.
This observation clearly leads to an alternative definition of weak stability:

Definition 2.3. An algorithm for solving linear equations is weakly stable for a

class of matrices A if for each well-conditioned A in A and for each b the computed

solution x̃ to Ax = b is such that ‖Ax̃ − b‖/‖b‖ is small.

2.1. Example: orthogonal factorization. To illustrate the concepts of stabil-
ity and weak stability, consider computation of the Cholesky factor R of AT A, where
A is an m×n matrix of full rank n. A good O(mn2) algorithm is to compute the QR
factorization

A = QR

of A using Householder or Givens transformations [38]. It can be shown [80] that the
computed matrices Q̃, R̃ satisfy

Â = Q̂R̃(2.3)

where Q̂T Q̂ = I, Q̃ is close to Q̂, and Â is close to A. Thus, the algorithm is stable
in the sense of backward error analysis. Note that ‖AT A − R̃T R̃‖/‖AT A‖ is small,
but ‖Q̃ − Q‖ and ‖R̃ − R‖/‖R‖ are not necessarily small. Bounds on ‖Q̃ − Q‖ and
‖R̃ − R‖/‖R‖ depend on κ, and are discussed in [36, 66, 81].

A different algorithm is to compute (the upper triangular part of) AT A, and then
compute the Cholesky factorization of AT A by the usual (stable) algorithm. The
computed result R̃ is such that R̃T R̃ is close to AT A. However, this does not imply
the existence of Â and Q̂ such that (2.3) holds (with Â close to A and some Q̂ with

Q̂T Q̂ = I) unless A is well-conditioned [67]. By analogy with Definition 2.3 above,
we may say that Cholesky factorization of AT A gives a weakly stable algorithm for
computing R, because the “residual” AT A − R̃T R̃ is small.

3. Classes of Structured Matrices. Structured matrices R satisfy a Sylvester

equation which has the form

∇{Af ,Ab}(R) = AfR − RAb = ΦΨ ,(3.1)
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where Af and Ab have some simple structure (usually banded, with 3 or fewer full
diagonals), Φ and Ψ are n × α and α × n respectively, and α is some fixed integer.
The pair of matrices (Φ, Ψ) is called the {Af , Ab}-generator of R.

α is called the {Af , Ab}-displacement rank of R. We are interested in cases where
α is small (say at most 4).

For a discussion of the history and some variants of (3.1), see [33] and the refer-
ences given there, in particular [47, 53].

3.1. Cauchy and Cauchy-type matrices. Particular choices of Af and Ab

lead to definitions of basic classes of matrices. Thus, for a Cauchy matrix

C(t, s) =

[
1

ti − sj

]

ij

,

we have

Af = Dt = diag(t1, t2, . . . , tn) ,

Ab = Ds = diag(s1, s2, . . . , sn)

and

ΦT = Ψ = [1, 1, . . . , 1] .

As a natural generalization, we can take Φ and Ψ to be any rank-α matrices, with
Af , Ab as above. Then a matrix R satisfying the Sylvester equation (3.1) is said to
be a Cauchy-type matrix.

3.2. Toeplitz matrices. For a Toeplitz matrix T = [tij ] = [ai−j ], we take

Af = Z1 =





0 0 · · · 0 1
1 0 0

0 1
...

...
. . .

...
0 · · · 0 1 0




, Ab = Z−1 =





0 0 · · · 0 −1
1 0 0

0 1
...

...
. . .

...
0 · · · 0 1 0




,

Φ =

[
1 0 · · · 0
a0 a1−n + a1 · · · a−1 + an−1

]T

,

and

Ψ =

[
an−1 − a−1 · · · a1 − a1−n a0

0 · · · 0 1

]
.

We can generalize to Toeplitz-type matrices by taking Φ and Ψ to be general rank-α
matrices.
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4. Structured Gaussian Elimination. Let an input matrix, R1, have the
partitioning

R1 =

[
d1 wT

1

y1 R̃1

]
.

The first step of normal Gaussian elimination is to premultiply R1 by

[
1 0T

−y1/d1 I

]
,

which reduces it to
[

d1 wT
1

0 R2

]
,

where

R2 = R̃1 − y1w
T
1 /d1

is the Schur complement of d1 in R1. At this stage, R1 has the factorization

R1 =

[
1 0T

y1/d1 I

] [
d1 wT

1

0 R2

]
.

One can proceed recursively with the Schur complement R2, eventually obtaining a
factorization R1 = LU .

The key to structured Gaussian elimination is the fact that the displacement struc-
ture is preserved under Schur complementation, and that the generators of the Schur
complement Rk+1 can be computed from the generators of Rk in O(n) operations.

Row and/or column interchanges destroy the structure of matrices such as Toeplitz
matrices. However, if Af is diagonal (which is the case for Cauchy and Vandermonde
type matrices), then the structure is preserved under row permutations.

This observation leads to the GKO-Cauchy algorithm of Gohberg, Kailath and
Olshevsky [33] for fast factorization of Cauchy-type matrices with partial pivoting, and
many recent variations on the theme by Boros, Gohberg, Ming Gu, Heinig, Kailath,
Olshevsky, M. Stewart, et al: see [10, 33, 40, 46, 60, 68].

4.1. The GKO-Toeplitz algorithm. Heinig [46] showed that, if T is a Toeplitz-
type matrix, then

R = FTD−1F ∗

is a Cauchy-type matrix, where

F =
1√
n

[e2πi(k−1)(j−1)/n]1≤k,j≤n

is the Discrete Fourier Transform matrix,

D = diag(1, eπi/n, . . . , eπi(n−1)/n),

and the generators of T and R are simply related.
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The transformation T ↔ R is perfectly stable because F and D are unitary. Note
that R is (in general) complex even if T is real. This increases the constant factors in
the time bounds, because complex arithmetic is required.

Heinig’s observation was exploited by Gohberg, Kailath and Olshevsky [33]: R
can be factorized as R = PT LU using GKO-Cauchy. Thus, from the factorization

T = F ∗PT LUFD ,

a linear system involving T can be solved in O(n2) operations. The full procedure
of conversion to Cauchy form, factorization, and solution requires O(n2) (complex)
operations.

Other structured matrices, such as Hankel, Toeplitz-plus-Hankel, Vandermonde,
Chebyshev-Vandermonde, etc, can be converted to Cauchy-type matrices in a similar
way.

4.2. Error Analysis. Because GKO-Cauchy and GKO-Toeplitz involve partial
pivoting, we might guess that their stability would be similar to that of Gaussian
elimination with partial pivoting. Unfortunately, there is a flaw in this reasoning.
During GKO-Cauchy the generators have to be transformed, and the partial pivoting
does not ensure that the transformed generators are small.

Sweet and Brent [73] show that significant generator growth can occur if all the el-
ements of ΦΨ are small compared to those of |Φ||Ψ|. This can not happen for ordinary
Cauchy matrices because Φ(k) and Ψ(k) have only one column and one row respec-
tively. However, it can happen for higher displacement-rank Cauchy-type matrices,
even if the original matrix is well-conditioned.

4.3. The Toeplitz Case. In the Toeplitz case there is an extra constraint on
the selection of Φ and Ψ, but it is still possible to give examples where the normalized
solution error grows like κ2 and the normalized residual grows like κ, where κ is the
condition number of the Toeplitz matrix. Thus, the GKO-Toeplitz algorithm is (at
best) weakly stable.

It is easy to think of modified algorithms which avoid the examples given by
Sweet and Brent, but it is difficult to prove that they are stable in all cases. Stability
depends on the worst case, which may be rare and hard to find by random sampling.

The problem with the original GKO algorithm is growth in the generators. Ming
Gu suggested exploiting the fact that the generators are not unique. Recall the
Sylvester equation (3.1). Clearly we can replace Φ by ΦM and Ψ by M−1Ψ, where
M is any invertible α × α matrix, because this does not change the product ΦΨ.
Similarly at later stages of the GKO algorithm.

Ming Gu [40] proposes taking M to orthogonalize the columns of Φ (that is, at
each stage perform an orthogonal factorization of the generators). M. Stewart [68]
proposes a (cheaper) LU factorization of the generators. In both cases, clever pivoting
schemes give error bounds analogous to those for Gaussian elimination with partial
pivoting.

4.4. Gu and Stewart’s error bounds. The error bounds obtained by Ming
Gu and M. Stewart involve a factor Kn, where K depends on the ratio of the largest
to smallest modulus elements in the Cauchy matrix

[
1

ti − sj

]

ij

.
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Although this is unsatisfactory, it is similar to the factor 2n−1 in the error bound
for Gaussian elimination with partial pivoting. In practice, the latter factor is ex-
tremely pessimistic, which explains why Gaussian elimination with partial pivoting
is popular [49]. Perhaps the bounds of Ming Gu and M. Stewart are similarly pes-
simistic, although practical experience is not yet extensive enough to be confident
of this. M. Stewart [68] gives some interesting numerical results which indicate that
his scheme works well, but more numerical experience is necessary before a definite
conclusion can be reached.

4.5. A general strategy for guaranteed results. It often happens that there
is a choice of

1. A fast algorithm which usually gives an accurate result, but occasionally fails
(or at least can not be proved to succeed every time), or

2. An algorithm which is guaranteed to be stable but is slow.

In such cases, a good strategy is to use the fast algorithm, but then check the normal-
ized residual ||Ax̃ − b||/(||A|| · ||x̃||, where x̃ is the computed solution of the system
Ax = b. If the residual is sufficiently small we can accept x̃ as a reasonably accurate
solution. In the rare cases that the residual is not sufficiently small we can can use
the slow but stable algorithm (alternatively, if the residual is not too large, one or
two iterations of iterative refinement may be sufficient and faster [51, 81]).

An example of this general strategy is the solution of a Toeplitz system by Ming
Gu or M. Stewart’s modification of the GKO algorithm. We can use the O(n2)
algorithm, check the residual, and resort to iterative refinement or a stable O(n3)
algorithm in the (rare) cases that it is necessary. Computing the residual takes only
O(n log n) arithmetic operations.

5. Positive Definite Structured Matrices. An important class of algorithms,
typified by the algorithm of Bareiss [2], find an LU factorization of a Toeplitz matrix T ,
and (in the symmetric case) are related to the classical algorithm of Schur [17, 32, 64].

It is interesting to consider the numerical properties of these algorithms and
compare with the numerical properties of the Levinson algorithm (which essentially
finds an LU factorization of T−1).

5.1. The Bareiss algorithm for positive definite matrices. Bojanczyk,
Brent, de Hoog and Sweet (abbreviated BBHS) have shown in [8, 70] that the nu-
merical properties of the Bareiss algorithm are similar to those of Gaussian elimina-
tion (without pivoting). Thus, the algorithm is stable for positive definite symmetric
Toeplitz matrices.

The Levinson algorithm can be shown to be weakly stable for bounded n, and
numerical results by Varah [77], BBHS and others suggest that this is all that we
can expect. Thus, the Bareiss algorithm is (generally) better numerically than the
Levinson algorithm.

Cybenko [24] showed that if certain quantities called “reflection coefficients” are
positive then the Levinson-Durbin algorithm for solving the Yule-Walker equations
(a positive-definite system with special right-hand side) is stable. Unfortunately,
Cybenko’s result is not usually applicable, because most positive-definite Toeplitz
matrices do not usually satisfy the restrictive condition on the reflection coefficients.
Some relevant numerical examples are given in [8].

5.2. The generalized Schur algorithm. The Schur algorithm can be gener-
alized to factor a large variety of structured matrices [52, 54]. For example, suitably
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generalized Schur algorithms apply to block Toeplitz matrices, Toeplitz block matri-
ces, and to matrices of the form T T T , where T is rectangular Toeplitz.

It is natural to ask if the stability results of BBHS (which are for the classical
Schur/Bareiss algorithm) extend to the generalized Schur algorithm. This was con-
sidered by Chandrasekharan and Sayed [20] and M. Stewart and Van Dooren [69].
The displacement structure considered in [20] is more general than that considered
in [69], which in turn is more general than that considered in [8, 70]. Each increase
in generality complicates the analysis and seems to make the stability result more
dependent on details of the method of implementing the hyperbolic rotations which
occur in the algorithms. The interested reader is referred to [20, 69] for details.

The overall conclusion is that the generalized Schur algorithm is stable for positive
definite symmetric (or Hermitian) matrices, provided the hyperbolic transformations
in the algorithm are implemented correctly.

6. Fast Orthogonal Factorization. In an attempt to achieve stability without
pivoting, and to solve m×n least squares problems (m ≥ n), it is natural to consider
algorithms for computing an orthogonal factorization

T = QU(6.1)

of an m × n Toeplitz matrix T . We assume that T has full rank n. For simplicity, in
the time bounds we assume m = O(n) to avoid functions of both m and n.

The first O(n2) (more precisely, O(mn)) algorithm for computing the factoriza-
tion (6.1) was introduced by Sweet [70]. Unfortunately, Sweet’s algorithm is unstable:
see Luk and Qiao [58].

Other O(n2) algorithms for computing the matrices Q and U or U−1 were given by
Bojanczyk, Brent and de Hoog (abbreviated BBH) [6], Chun et al [23], Cybenko [25],
and Qiao [62], but none of them has been shown to be stable, and in several cases
examples show that they are unstable.

It may be surprising that fast algorithms for computing an orthogonal factoriza-
tion (6.1) are unstable. The classical O(n3) algorithms are stable because they form
Q as a product of elementary orthogonal matrices (usually Givens or Householder
matrices [36, 38, 81]). Unlike the classical algorithms, the O(n2) algorithms do not
form Q in a numerically stable manner as a product of matrices which are (close to)
orthogonal. This observation explains both their speed and their instability!

For example, the algorithms of BBH [6] and Chun et al [23] depend on Cholesky
downdating, and numerical experiments show that they do not give a Q which is close
to orthogonal. This is not too surprising, because Cholesky downdating is known to
be a sensitive numerical problem [5, 67].

6.1. Use of the semi-normal equations. It can be shown that, provided the
Cholesky downdates are implemented in a certain way (analogous to the condition
for the stability of the generalized Schur algorithm), the BBH algorithm computes U
in a weakly stable manner [7]. In fact, the computed upper triangular matrix Ũ is
about as good as can be obtained by performing a Cholesky factorization of T T T , so

‖T T T − ŨT Ũ‖/‖T TT ‖ = Om(ε) .

Thus, by solving

ŨT Ũx = T T b



10 R. P. BRENT

(the so-called semi-normal equations) we have a weakly stable algorithm for the so-
lution of general Toeplitz systems Tx = b in O(n2) operations. The solution can be
improved by iterative refinement if desired [37]. The computation of Q is avoided,
and the algorithm is applicable to full-rank Toeplitz least squares problems. The
disadvantage of this method is that, by implicitly forming T T T , the condition of the
problem is effectively squared. If the condition number κ = κ(T ) is in the range

1√
ε
≤ κ ≤ 1

ε

then it will usually be impossible to get any significant figures in the result (iterative
refinement may fail to converge) without reverting to a slow but stable orthogonal
factorization algorithm. One remedy is to use double-precision arithmetic, i.e. replace
ε by ε2, but this may be difficult if ε already corresponds to the maximum precision
implemented by hardware.

Another way of computing the upper triangular matrix U , but not the orthogonal
matrix Q, in (6.1), is to apply the generalized Schur algorithm to T T T . This method
also squares the condition number.

6.2. Computing Q stably. It seems difficult to give a satisfactory O(n2) algo-
rithm for the computation of Q in the factorization (6.1). Using a modification of the
embedding approach pioneered by Chun and Kailath [22, 52], Chandrasekharan and
Sayed [21] give a stable algorithm to compute a factorization

T = LQU(6.2)

where L is lower triangular. (Of course, the factorization (6.2) is not unique.) The
algorithm of [21] can be used to solve linear equations, but not least squares problems
(because T has to be square, and in any case the matrix Q in (6.2) is different from
the matrix Q in (6.1)). Because the algorithm involves embedding the n × n matrix
T in a 2n × 2n matrix

[
T T T T T

T 0

]
,

the constant factors in the operation count are large: 59n2 +O(n log n), which should
be compared to 8n2 + O(n log n) for BBH and the semi-normal equations. (These
operation counts apply for m = n: see [7] for operation counts of various algorithms
when m ≥ n.) Thus, although the embedding approach is elegant and leads to
interesting (and in some cases stable) O(n2) algorithms, a penalty is the significant
increase in the constant factors. This is analogous to the penalty paid by the GKO
algorithm because of the introduction of complex arithmetic.

7. Conclusions. Although this survey has barely scratched the surface, we hope
that the reader who has come this far is convinced that questions of numerical stability
are amongst the most interesting, difficult, and useful questions that we can ask about
fast algorithms for structured linear systems. It is not too hard to invent a new fast
algorithm, but to find a new stable algorithm is more difficult, and to prove its stability
or weak stability is a real challenge!
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