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Abstract 

The Fujitsu-ANU Parallel Mathematical Subroutine Library 
Project is a joint research program involving staff at the Aus- 
tralian National University and Fujitsu Japan. The aim of 
the project is to produce a library of mathematical subrou- 
tines for the vector-parallel Fujitsu VPP300 which result in 
high performance and accuracy on large problems. In order 
to utilise the architecture of the VPPSOO it is necessary to 
develop new algorithms for many of the standard numerical 
problems. 

1 Introduction 

The Fujitsu-ANU Parallel Mathematical Subroutine Library 
Project provides high performance mathematical subrou- 
tines for inclusion in the SSLII mathematical subroutine 
library for Fujitsu vector and vector/parallel supercomput- 
ers [12], in particular, for the Fujitsu VPP300. Because of 
the combination on the VPP300 of several high performance 
vector processors connected in a distinctive parallel architec- 
ture, standard parallel numerical algorithms may not per- 
form well. Thus the major work on the project has been in 
the development of new algorithms which achieve high per- 
formance through optimal use of the computer architecture. 

An announcement of the library was given in [7] in 1994. 
Since then the functionality of the library has been substan- 
tially extended. In this paper we will refer only briefly to 
the topics covered in [7] and concentrate on more recent de- 
velopments. A series of working notes is available on the 
WWW at 

http://anusf.anu.edu.au/Area4-Working-Notes 

The next section gives some details on the architecture 
of the VPP300 and a discussion of the issues which must be 
considered when writing high performance code. 

In the remaining sections of this paper several research 
areas in the project are highlighted and a brief discussion 
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of the algorithmic development required to produce high 
performance code for each is given. 

2 The Fujitsu VPP300 

2.1 Architecture 

The ANU VPP300 has a peak speed of about 29 Gflops with 
14 Gbytes of memory based on a uniform 7ns clock rate. 

Each processing element (PE) consists of the following: 

A low performance scalar unit (SU) which has a long- 
instruction-word (LIW) RISC CPU achieving approxi- 
mately lOOMflops peak using simultaneous scalar, VU 
and DTU instructions. Use of this unit must be min- 
imzed whenever possible. 

A vector unit (VU) with 1 load, 1 store, 1 add, 1 mul- 
tiply, 1 divide-pip; each completing 8 operations per 
cvcle CexceDt divide which does 8 operations Der 7 
cicle) .’ It & also possible to chain load-m&-add al- 
lowing a peak of 2.2 Gflops (matrix multiply achieves 
2.18Gflops). The vector registers are configurable in 
“power-of-two” steps between 256 registers of length 
64 words to 8 registers of length 2048 words. The 
actual configuration is optimised by the compiler de- 
pending on computational density within a particular 
loop. 

Memory (MSU) with 2GB of SDRAM memory on 5 
of the PEs and 512MB on the remainder. This is a 
substantial amount of memory per processor and can 
lead to near peak performance on long vector lengths. 

A data transfer unit (DTU) for direct memory ac- 
cess data communication to the interprocessor net- 
work. Communication between processors is via a 
crossbar switch (all processors are “equidistant” from 
one another) with a peak bandwidth of 570MB/s bi- 
directional and an achievable latency of about 5 psecs. 
Because of the crossbar connection parallel algorithms 
are not constrained to using communication to neigh- 
bouring processors only as all processors are equally 
“close” . This removes a major restriction from coding 
parallel algorithms. 

Parallelism in an algorithm is achieved in several ways. 
At one level parallelism is obtained from the vector opera- 
tions. This can be further exploited by coding so that several 
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of the different pipes are being used at the same time. At 
the top level, MIMD parallelism is used by having several of 
the processors working simultaneously. 

Basically, the design of the Fujitsu VPP series favours al- 
gorithms which use vector operations with very long vector 
lengths and stride one data access. In addition, the crossbar 
switch provides a very flexible communication mechanism so 
that in many cases one gets best performance by regroup- 
ing communication such that the number of communication 
steps used is minimised. 

Many standard techniques display performance degra- 
dation caused by short vector lengths, non-unit stride data 
acess or complicated communication patterns requiring many 
steps. Examples include the Stockham algorithms for FFTs, 
divide-and-conquer methods for the solution of banded lin- 
ear systems, standard random number generators and eigen- 
value algorithms. Other common algorithms do not vec- 
torise at all like the tridiagonal QR algorithm for eigenval- 
ues. 

For all these cases new algorithms and implementations 
have been found which optimise the use of the hardware. 
Performance tests show that attention to these hardware 
characteristics leads to substantially improved performance 
for all the cases mentioned above. This hardware focus, how- 
ever, is not reflected in the interface to the routines so that 
users experience the higher performance but use similar call- 
ing commands as required by standard parallel algorithms. 

2.2 VPPFortran 

Library code to be delivered as part of the project is written 
using VPPFortran. Although it is common practice to use 
message-passing languages such as PVM or MPI to develop 
parallel algorithms, the parallel routines of the SSLII library 
do not use these. VPPFortran is basically FORTRAN 90 
plus compiler directives to promote parallel layout of data, 
communication between processors, global sums, synchro- 
nization and so on. There are some similarities between 
VPPFortran and HPF especially in the mapping of index 
domains to processors but the programmer has more con- 
trol in VPPFortran. This is because the compiler directives 
can be used to achieve both data and task distribution. This 
provides extra flexibility similar to HPF2.0 with approved 
extensions [21]. 

3 Linear Systems of Equations 

A variety of solvers for systems of linear equations have been 
included in the library. Different techniques are necessary to 
achieve the best possible performance for different systems. 
For banded matrices with a large bandwidth a torus-wrap 
mapping of the data to the processors is used to give high 
performance algorithms for both symmetric and nonsym- 
metric matrices. This mapping can also be used for dense 
matrices. An alternative approach for dense matrices uses 
a blocked modified Cholesky for the symmetric case and a 
blocked LU decomposition for the nonsymmetric case. Both 
of these approaches were summarised in [7]. 

For more sparse matrices such as narrow-band matrices, 
for example, block bidiagonal matrices, a wrap-around par- 
titioning technique is used to achieve high performance on 
the VPPSOO. 

A suite of iterative solvers for both symmetric and non- 
symmetric matrices has been developed for different sparse 
matrix storage schemes as well as routines which use a re- 
verse communication interface to allow the user to provide 

application dependent subroutines for matrix/vector multi- 
plication and preconditioning. More recent work has concen- 
trated on developing an algebraic multilevel preconditioned 
conjugate gradient method. 

3.1 Wrap-around Partitioning 

Wrap-around partitioning is a reordering of the unknowns 
in a system of linear equations into q blocks of p unknowns 
each for the purpose of highlighting groups of unknowns that 
can be eliminated independently of one another in order 
to permit vectorization of the elimination process [19]. Its 
natural formulation is for block bidiagonal matrices. It can 
be applied to narrow banded matrices of sufficiently regular 
structure with a minimum of reorganisation. In this case 
special structure can be exploited in the first pass only [ll]. 
Speed ups of order 20 times scalar speed can be obtained 
fairly easily for small matrix subblock size m (m = 2 in the 
tridiagonal case) and n > 1000. Wrap-around partitioning 
has the important advantages: 

It is not necessary for p and q to be exact factors of 
n. This means that there is no requirement to use the 
power of 2 strides associated with cyclic reduction with 
consequent memory access degradation. Power of 3 
stride is recommended; 

The block bidiagonal structure is preserved under the 
use of stable factorization techniques and so can be ap- 
plied recursively. Our code employs orthogonal trans- 
formations because stability of Gaussian elimination 
with partial pivoting cannot be guaranteed for the full 
generality of block bidiagonal matrices [36]. 

Consider for example the case n = 12. The block bidi- 
agonal matrix is illustrated in Figure 1. The first stage of 
reordering is illustrated for q = 2, p = 5 to make the point 
that exact factors of n are not required and the result of 
the transformation shown. The first stage of elimination 
removes the B blocks with suffices {1,3,5,7,9}. Each elimi- 
nation is independent of the others and so can be vectorized. 
However, fill-in occurs if either pivoting is allowed in Gaus- 
sian elimination, or orthogonal factorization is used. The 
result is shown in Figure 1. Here blocks that remain nonzero 
are shown by *, those deleted by 0, and those where fill is 
introduced by an integer indicating the stage fill first oc- 
curred. The key point is that the submatrix containing the 
uneliminated unknowns is again block bidiagonal so the se- 
quence of wrap-around partitioning and elimination can be 
applied recursively. The recursion is terminated when the 
matrix of the remaining unknowns is too small to benefit 
from vectorization. This subproblem is solved sequentially. 

3.2 Iterative Methods 

The solution z of a large system of linear equations 

Ax = b (1) 

with a sparse coefficient matrix A E Rnx” is required within 
many practical applications (e.g. discretization of partial 
differential equations (PDEs)). Iterative methods of the 
conjugate gradient type (CG) have proved to be suitable 
algorithms as they are robust and can be efficiently im- 
plemented on parallel and vector computers. However, as 
there is no one CG method that is optimal for all matrices, 
several CG methods have been implemented (classical CG, 

14 



0 1 * 
* * 

* * 

Figure 1: Steps in wrap-around partitioning for a block bidi- 
agonal matrix. 

GMRES, TFQMR, LSQR, for more details see [7]) to enable 
the user to select the optimal method for his problem. 

The sparse coefficient matrix may be given in the diag- 
onal storage scheme or the ELLPACK storage format (see 
[12]). In the diagonal storage scheme (typically used for dis- 
cretization on a rectangular grid) any diagonal of the ma- 
trix A that contains a non-zero element is stored on the 
processors as a banded partioned vector. The matrix vec- 
tor multiplication is the basic operation in all CG method 
and achieves more than 1Gflop per processor by unrolling 
over the number of diagonals. For a discretization on an 
unstructured grid the ELLPACK storage format has proved 
to be more efficient as it uses a more general concept of a di- 
agonal by introducing an additional index vector. Although 
this slows down the matrix vector multiplication (because of 
indexed load operations in the linked triad) the ELLPACK 
storage format is more efficient than the diagonal storage 
scheme if the matrix contains a large number of sparse di- 
agonals. 

To improve the robustness and convergence behaviour of 
the CG iteration a preconditioner can be used, ie. instead of 
system (1) the iteration method is applied to the equivalent 
system 

M-IAx = M-lb (2) 

with a suitable, non-singular matrix M. The intention is 
that the new iteration matrix M-lA will have better nu- 
merical properties than A. 

Recent developments for SSLII use the algebraic multi- 
level iteration (AMLI, see [2]). In the same way as multi- 

grid methods, AMLI build up smaller coefficient matrices 
(Mck))k,~,... ,I with M := M (‘) but, in contrast to multi- 
grid techniques, only information available from the given 
matrix A is used. 

For Ic = 0,. . ,1 - 1 a subset Cc”+‘) of the unknowns 
Cc”) of level Ic is selected. The coefficient matrix A(“) for 
level k is split in the following way: 

A(k) = 
Agzl) A&+1) 

A(‘“+l) 
CF 

A& 
CC I 

(3) 

The columns and rows of the submatrix Ag:l) belong to 
the unknowns in C(k)/C(k+l) and those of the submatrix 
Ag$l) to the unknowns in C (‘+I). After approximating the 
inverse of the matrix A$$l) by a diagonal matrix D$$‘) 
the approximate factorization 

1 (4) 

of the matrix A(“) can be calculated. The matrix M(“+l) 
becomes an approximation of the Schur complement 

A(k+l):=Ag$l) -~@kF+l)~g$l)~g;l) (5) 

by again applying the approximate factorization (4) of the 
coefficient matrix A@+‘) or, on the lowest level (if 1 = k+ l), 
an approximate solution of a linear system with coefficient 
matrix A(‘). 

Within the CG iteration, the procedure for calculating 
the vector p := M-l r for a given vector r consists of a 
sequence of block forward substitutions, the solution of a 
linear system on the lowest level Ic followed by a sequence of 
block backward substitutions. That is, p = AMLI(0, r) with 

AMLI(k - 1, ~‘(~--l)) 
if (Ic - 1 = 1) 

solve A(k-l)p(“-‘) = r(k--l) 
else 

(+, $‘) + ,(k-1) 

qg) t T$’ _ A(‘“) DC’“) $4 
CF FF F 

pg’ t AMLI(lc, qg)) 

pg’ t D$$($’ - AgApg’) 
pC-‘) + (p($p$‘) 

end if 

(6) 

return p(“-l) 

This V-cycle type method does not give a minimal condition 
number for the iteration matrix M-lA as does the W-cycle 
type method, but by solving a sufficiently large system at 
the lowest level 1, the computing time for a V-cycle method 
is optimal, see [26]. 

The current implementation considers the case for which 
the coefficient matrix is an M-matrix and is stored in diago- 
nal storage format. Typically these matrices arise from finite 
difference schemes of order two and finite element schemes 
of order one on a rectangular grid. The routine indepen- 
dently defines the sets (C(‘))k=r,... 1 of the unknowns for 
the coarse levels by using an alternating direction technique 
and includes an optimal selection of the number of levels 1. 
The diagonal matrix Dg& IS constructed in such a way that 
all matrices Ack) are M-matrices again which ensures that 
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there is no break down within the factorization (4) and the 
CG iteration. 

No. of unknowns 0.5’10b l’lOb 2.10” 4. lob 
No. of processors 1 2 4 8 
Time in seconds 6.11 7.53 10.1 13.6 

This table shows timings for solution of linear systems 
where the coefficient matrices arise from the finite difference 
discretization of the differential operator -VaV on the 3- 
dimensional unit cube. The function a jumps at the surface 
of the unit sphere from 1 to 106. The accuracy of the level 
of equation is 1OF. The optimal number of levels is about 8 
and the number of CG steps about 50. However, in all cases 
a CG method with Jacobi preconditioner could not return 
a solution within 10 minutes of computing time. 

Further work will improve the computing time for both 
gather and scatter operations which require communication 
and reduce the performance of the current implementation. 
Also ELLPACK format and more general types of matrices 
will be considered in future versions. 

4 Eigenvalue Problems 

The first algorithms developed for solving symmetric eigen- 
value problems were based on the Jacobi method as this 
lends itself to parallel implementation. A one-sided Jacobi 
method to calculate the Singular Value Decomposition of 
the matrix was used which achieved high megaflop rates be- 
cause of a specific rotation of blocks of data across proces- 
sors [37]. The symmetric eigensolver was then built on top 
of this. The resulting eigensolver was robust and accurate at 
finding eigenvalues and vectors whatever the spectrum but 
suffered from a high operation count. Subsequent work has 
concentrated on developing symmetric eigensolvers based on 
an initial reduction of the symmetric matrix to tridiagonal 
form. 

4.1 Tridiagonal Eigenvalue Problems 

In order to compute eigendecompositions for tridiagonal ma- 
trices the conventional procedure is to determine eigenvalues 
using bisection, based on Sturm sign count evaluation (see, 
e.g., [28]), then to compute the corresponding eigenvectors 
via inverse iteration. Vectorization of the eigenvector com- 
putation requires that the solution of tridiagonal linear sys- 
tems be vectorized; this is accomplished using a variant of 
the wrap-around partitioning described in Section 3.1 - note 
that a tridiagonal matrix is transformed to block bidiagonal 
form through a straightforward permutation. Also, since 
bisection is not optimal on vector processors [32], we use 
multisection, which entails subdividing an interval known 
to contain an eigenvalue into greater than two subintervals 
and/or locating more than one eigenvalue at a time. On the 
VPPSOO computation of one eigenvalue via multisection can 
be forty times as fast as using bisection. 

When all eigenvalues are distinct, the algorithm is em- 
harassingly parallel; a copy of the matrix T is stored on each 
processor and each can compute eigenpairs without the need 
for any information from other processors. However, when 
numerically multiple or clustered eigenvalues have been de- 
tected, it is generally necessary to reorthogonalize eigen- 
vector approximations after inverse iteration. In a paral- 
lel implementation this reorthogonalization entails consid- 
erable communication for vectors stored on different proces- 
sors. Hence it is necessary to insure that all eigenvectors 
corresponding to a particular cluster reside on an individual 
processor. To this end, we attempt to detect clusters during 

multisection refinement. Depending on the size of the clus- 
ters and the initial allocation of subspectra, load-imbalance 
is likely, and, for large enough clusters, entire processors 
may be dropped from the computation. Also, as clusters 
become large, finite precision arithmetic can result in in- 
consistencies in the way in which different processors have 
determined clusters to be distributed; hence inter-processor 
communication of a few integer values is necessary in order 
to confirm the distribution of clusters. Further details of the 
multisection algorithm and its implementation can be found 
in [15], which also contains a brief performance comparison 
with the corresponding LAPACK and ScaLAPACK routines 
on a problem from computational quantum chemistry. 

4.2 Symmetric/Hermitian Eigenvalue Problems 

These routines are based directly on the tridiagonal eigen- 
solver. The reduction to tridiagonal form is accomplished 
via Householder transformations using a cyclic distribution 
of columns; in the Hermitian case, the Hermitian matrix is 
first reduced to complex tridiagonal form, then to real tridi- 
agonal form. These reduction routines are standard and 
hence are not discussed. Performance gains are attributable 
to the efficiency of the tridiagonal eigensolver, i.e., to the im- 
plementation of multisection and of inverse iteration using 
wrap-around partitioning. 

The following shows typical elapsed times to compute 
the full eigendecomposition of a real symmetric matrix on 
multiple processors of the VPP300. 

Matrix Size 1 No. of Processors 1 Time in sets 
4000 x 4000 I 4 
8000 x 8000 1 

I 103 
4 633 

4.3 Nonsymmetric Eigenvalue Problems 

Development work on routines for the solution of general 
nonsymmetric eigenvalue problems (EVPs) 

Au=Xu, AEC”~“, x EC*, XEC, (7) 

has only been initiated relatively recently. Thus far the 
primary focus is limited to consideration of Newton-based 
algorithms and Arnoldi methods. Very recently we have 
also considered the composition of these two methods, and 
we refer to these as “Arnoldi-Newton methods”. More de- 
tailed descriptions of the Newton-based and Arnoldi-Newton 
methods can be found in [27] and [16], respectively; here we 
only briefly summarize the main ideas. 

4.3.1 Newton-Based Methods 

We restrict our attention to the standard EVP (7) (though 
the development in [27] is in terms of generalized EVPs 
Au = XBu). Let M(X) = (A - XI) : C” + C’” so that 
(7) can be written IM(X)v = 0; this is embedded in the 
more general family 

A4(X)v = P(X)x, s*w = )E. (8) 

As X approaches an eigenvalue x, M(X) becomes singular SO 
that the solution 2) of the first of these equations becomes 
unbounded for almost all p(X)x. Hence, the scaling condi- 
tion, s*v = K, can only be satisfied if /J(X) -+ 0 as X + X. 
Zeros of p(X) correspond to singularities of M(X) and there- 
fore to eigenvalues of A. Differentiating equations (8) with 
respect to X, rearranging terms and simplifyin f,,$ Newton 
update takes the form X t X - s*v/(s*M- xv), where 
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for (7) dM/dX = -I. The vectors s and x can be cho- 
sen dynamically; this engenders the possibility of exceeding 
the characteristic second-order convergence rate of Newton’s 
method [27]. In order to compute more than one eigenvalue 
a variety of deflation strategies have been considered [27]. 
The major computational kernel - LU decomposition of A4 
- is handled using extremely efficient software for linear sys- 
tems [25]. 

4.3.2 Arnoldi Methods 

Arnoldi’s method was originally developed to reduce a ma- 
trix to upper Hessenberg form; it is a Krylov subspace pro- 
jection method in which an exact eigenvector u E C” of (7) 
is approximated by some vector G residing in a Krylov sub- 
space, Ic, = YC,(A,vl) E span{vi,Avi,A’vi, , Am-lvl}, 
of dimension m < n. 

An orthonormal basis {vi, . , vj} for Ic, is constructed 
using modified Gram-Schmidt (MGS) orthogonalization. On 
forming the n x m matrix V, = [vi 1 lo,], one obtains the 
projected eigenproblem 

Hy = V;AV,y = iy, (9) 

where H E Cm’” is upper Hessenberg and m < n. The 
eigenvalues of H can be computed using, e.g. QR. Dominant 
eigenvalues of H approximate those of A, with the accuracy 
increasing as m does. 

For a broad overview of the many modifications that are 
typically made to Arnoldi’s method in order to increase ef- 
ficiency, robustness, etc., see, e.g., [31]. Our current imple- 
mentation uses restarting in conjunction with an implicit de- 
flation process. In order that non-extremal eigenvalues can 
be computed, a shift-invert procedure is used; this amounts 
to applying Arnoldi’s method to A = (A - al)-’ - extreme 
eigenvalues of A correspond to eigenvalues near to the shift 
u. Unlike the implementation of the Newton procedures, 
the Arnoldi routine currently uses only real arithmetic and 
hence only real shifts. 

4.3.3 Arnoldi-Newton Methods 

Shift-inversion in the context of the Arnoldi method is ex- 
actly equivalent to inverse iteration (factorization of M) in 
the context of the Newton-based procedure. This is clearly 
the most computationally expensive portion of each of the 
algorithms. The Newton-based procedures, though capa- 
ble of quadratic and even third-order convergence, suffer 
when good initial data are unavailable. The Arnoldi method 
drives eigen-estimates toward the exact values from the out- 
set; however, achieving the ultimately desired convergence 
involves many issues such as what forms of restarting, defla- 
tion, spectral transformation, preconditioning, acceleration, 
etc. should be used, when, and how often? Unfortunately, 
the answers to these questions may be problem-dependent, 
and this hampers the development of robust and efficient 
software. Hence, the drawbacks of these two methods are in 
a sense orthogonal, and we have recently begun experiment- 
ing with Arnoldi-Newton methods. The basic idea so far is 
to use the Arnoldi method (in real arithmetic only) to get 
good initial estimates to the (generally complex) eigenvalues 
and Schur vectors of interest, then to use the Newton-based 
method to obtain the final eigendata. Ideally, the resulting 
Arnoldi estimates can be refined to machine precision with 
only one additional Newton step since this should effectively 
double the accuracy once quadratic convergence is obtain- 
able. These methods have been implemented and applied 
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Figure 2: Design of the Fujitsu VPP FFT library 

to problems from the study of chemical reactions and from 
fiber optics [16]. Preliminary results are promising. 

5 Fast Fourier Transforms 

It was known to Gauss that an order 12 trigonometric inter- 
polation can be performed by doing 3 order 4 interpolations 
followed by doing 4 order 3 interpolations [13]. This was 
generalized to an arbitrary product of relatively prime fac- 
tors of the order n by Good [14] and to arbitrary factors 
by Cooley-Tukey [9]. They also suggested the first practical 
algorithms, the FFTs. The basic idea by Gauss and Good 
is now called splitting and underlies most high-performance 
FFT algorithms [34]. On the top level, it allows “blocking” 
and leads to the parallel 4 step algorithm [33, 181. Applied 
recursively, splitting provides the well-known “butterflies” 
of the FFTs. The butterflies do show the data flow but also 
expose the basic FFT building blocks which are identified 
in [17] to be: 

l multiple Fourier transforms of small prime order 

l simple index digit permutations 

l unitary scaling transforms (“twiddle factors”) 

The Fujitsu FFT library has been systematically de- 
signed around these building blocks called the BAFFS (BA- 
sic Fast Fourier transform Subroutines). The layered design 
of the FFT library is displayed in Figure 2. 

To get high performance for power 2 transforms, ele- 
mentary transform subroutines for the orders 2,4,8 and 16 
are used. This reduces the number of memory accesses by 
reusing data in the registers but it also brings the floating 
point operation count from 5n log,(n) for the radix 2 algo- 
rithms down to 4 log,(n) which is the same operation count 
as achieved by the split radix algorithm [lo]. In the case of 
mixed radices the operation count was reduced by the ap- 
plication of the prime factor algorithm for small composite 
order transforms. 

For highly composite numbers n there are many possible 
ways to choose the factors p and 4 of the order n = pq. Thus 
there are many different splittings possible. The common 
algorithms choose either p or q to be small [34]. This has 
the advantage that further splitting has to be done for only 
one of the factors p or q. However, from a computational 
point of view, this is not necessarily the best choice. For 
example, it is shown in [17] that if p and q are chosen to 
be the same up to a small factor, self-sorting and in-place 
algorithms result. 
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Figure 3: Two recursive splittings of 65536 

Figure 4: Performance of a 1D complex FFT on one proces- 
sor 

The recursive factorization of n and thus the splitting- 
based FFT can be represented as a tree as shown in Figure 3. 
The transform based on the tree on the right of Figure 3 can 
be done in a self-sorting and in-place way and, in addition, 
requires fewer operations if performed in parallel as locally 
only order 256 transforms are done. The method based on 
the left tree requires locally order 4096 transforms and thus 
higher order twiddle factors. There is also a possibility to 
exploit any relative primeness of factors of n [20]. A sys- 
tematic exploitation of the advantages obtained by careful 
choice of the splitting is one of the most innovative aspects 
of the Fujitsu VPP FFT library [22]. 

In the FFT library all the steps involving communication 
have been collected together. This has the advantage of 
simplifying software maintenance, in particular it facilitates 
movement between different paradigms like task parallelism 
(VPP Fortran), message passing (MPI) and data parallelism 
(HPF). This comes at some performance cost due to lower 
overlap of communication with computation. This conflict 
between ease of software maintenance and performance is 
being investigated. 

The performance of the 1D FFT is Snlog,(n)/t where n 
is the problem size and t is the time required. From Figure 4 
it can be seen that close to peak performance is achieved for 
large enough problem sizes on one processor. Furthermore, 
in Figure 5 the speedup of the parallel algorithm compared 
with execution on one processor shows the scalability of the 
algorithm. 

Figure 5: Scalability of FFT on the VPP 300 

6 Wavelet Transforms 

Wavelets yield very good and sparse approximations for 
most practically occurring functions and data sets and are 
thus ideally suited for compression [8]. We consider 2D 
wavelet transforms which can be represented as matrix-matrix 
products 

Y = w,xw,’ (10) 

where X E RNXM is the data matrix and WN (and WM) 
are the wavelet transform matrices. These are not formed 
explicitly, instead the fast wavelet transform is used which 
forms the matrix vector product WNX as a succession of 
steps of the form 

The parallel implementation of (10) depends on the distri- 
bution of the data X and the result Y to the processors. We 
have considered vertical blocking: 

x= 

or horizontal blocking: 

x= 

m 

where each “slice” is associated with the memory of a dif- 
ferent processor. The basic method to compute (10) is, as 
for FFTs, the split-transform algorithm: 

1) Z :=xw,’ 
2) Y:=wMz 

If X is blocked vertically, then the first step is done with- 
out communication. The second step requires no commu- 
nication if 2 (and Y) is blocked horizontally. However, a 
personahsed all-to-all communication step in the form of a 
matrix transpose is required in between. This algorithm is 
called the “replicated” transform and is in structure identi- 
cal with that used in the FFT transforms described above. 
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As for FFTs the great advantage of this method is that all 
communication is contained in a separate step which makes 
the software more manageable. 

If X is blocked vertically then a small amount of com- 
munication is required. Furthermore the vertical blocking of 
the resulting 2 allows for application of the communication- 
less transform for the computation of Y. Thus the costly 
personalised all-to-all step is completely avoided. However, 
the two steps require different software and the first step 
does require communication which complicates the software 
engineering. 

On the Fujitsu VPP 300 a wavelet transform with D = 
10 coefficients gave the following performance: 

P ] M=N ] replicated combined 
1 1 512 I 1.3 G~~oD/s I 1.3 G~~oD/s 
2 1024 1.3 Gflo&‘s 2.8 Gflo;)s 
4 2048 2.3 Gilop/s 5.9 Gflop/s 
8 4096 3.8 Gflopjs 11.8 Gflop/s 

In the “replicated” column the performance of the repli- 
cated algorithm with both X and Y blocked vertically is 
displayed and in the “combined” column the performance 
of the algorithm which uses horizontal blocking for X and 
vertical blocking for Y is given. 

7 Pseudo-Random Number Generators 

7.1 Uniform Distribution 

Several authors [l, 3, 301 have considered the generation 
of uniformly distributed pseudo-random numbers on vector 
and parallel computers. The method which we implemented 
on the Fujitsu VP and VPP series machines is based on the 
generalized Fibonacci recurrence 

x, = xn+ + xnws mod 2”, 

where w depends on the floating-point fraction length, r > 
s > 0, and xT + zs + 1 is a primitive polynomial (mod 2). 
For example, we could choose w = 52, T = 132049, and 
s = 79500. As shown in [5], the period of such a generator 
is Zwu-l(2? - I). If the code is written to take advantage of 
the vector units, each random number can be generated in 
less than three processor cycles. The generator can easily 
be implemented on a parallel machine by using a suitable 
(different) initialization on each processor. For details see 
[3, 71. 

7.2 Normal Distribution 

In many applications, random numbers from specified non- 
uniform distributions are required. A common requirement 
is for the normal distribution with given mean and variance. 

The most efficient methods for generating normally dis- 
tributed random numbers on sequential machines [23, 241 
involve the use of different approximations on different in- 
tervals, and/or the use of “rejection” methods, so they do 
not vectorize well. Other methods are preferable on vector 
processors. The Box-Muller and Polar methods [23] were 
considered in [4]. The Polar method was implemented as 
RANNB and was the fastest vectorized method for normally 
distributed numbers known at the time [29], although much 
slower than the best uniform random number generators. 

Recently Wallace [35] proposed a new class of pseudo- 
random generators for normal variates. These generators 
do not require a stream of uniform pseudo-random numbers 
(except for initialization) or the evaluation of elementary 

functions such as log, sqrt, sin or cos (needed by the Box- 
Muller and Polar methods). The crucial observation is that, 
if x is an n-vector of normally distributed random numbers, 
and A is an n x n orthogonal matrix, then y = Aa: is an- 
other n-vector of normally distributed numbers. Thus, given 
a pool of nN normally distributed numbers, we can generate 
another pool of nN normally distributed numbers by per- 
forming N matrix-vector multiplications. The inner loops 
are very suitable for implementation on vector processors. 
The vector lengths are proportional to N, and the number 
of arithmetic operations per normally distributed number is 
proportional to ‘n. Typically we choose n to be small, say 
2 2 n < 4, and N to be large. 

Wallace implemented variants of his new method on a 
scalar RISC workstation, and found that its speed was com- 
parable to that of a fast uniform generator. The same per- 
formance relative to a fast uniform generator is achievable on 
a vector processor, although some care has to be taken with 
the implementation. Details of an implementation (RANN4) 
of Wallace’s method on the VPP are given in [6]. RANN4 is 
several times faster than RANNS. 

Because Wallace’s class of methods is new, there is little 
knowledge of their statistical properties. However, statisti- 
cal tests performed on RANN4 have been satisfactory. 

8 Conclusion 

Several areas of research in the ANU-Fujitsu Parallel Math- 
ematical Subroutine Library project have been discussed. 
High performance has been achieved by developing algo- 
rithms amenable to vectorization and parallelisation and by 
devoting a great deal of attention to implementation details. 

There exist a considerable number of other routines in 
the library which have not been addressed here; some of 
these were discussed in [7]. Also, we note that as part of 
the development of the parallel library (SSLIIVPP) many 
single processor routines have been developed to be included 
in Fujitsu’s SSLIIVP, an extensive mathematical subroutine 
library for vector processors. 
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