
Development of a Mathematical Subroutine Library
for Fujitsu Vector Parallel Processors

R. Brent, L. Grosz, D. Harrar II, M. Hegland, M. Kahn,
G. Keating, G. Mercer, 0. Nielsen, M. Osborne, B. Zhou

Australian National University
Canberrra ACT, 0200, Australia

and
M. Nakanishi

High Performance Computing Group, Fujitsu Ltd.
Numazu-Shi Shizuoka, 410-03, Japan

Abstract

The Fujitsu-ANU Parallel Mathematical Subroutine Library
Project is a joint research program involving staff at the Aus-
tralian National University and Fujitsu Japan. The aim of
the project is to produce a library of mathematical subrou-
tines for the vector-parallel Fujitsu VPP300 which result in
high performance and accuracy on large problems. In order
to utilise the architecture of the VPPSOO it is necessary to
develop new algorithms for many of the standard numerical
problems.

1 Introduction

The Fujitsu-ANU Parallel Mathematical Subroutine Library
Project provides high performance mathematical subrou-
tines for inclusion in the SSLII mathematical subroutine
library for Fujitsu vector and vector/parallel supercomput-
ers [12], in particular, for the Fujitsu VPP300. Because of
the combination on the VPP300 of several high performance
vector processors connected in a distinctive parallel architec-
ture, standard parallel numerical algorithms may not per-
form well. Thus the major work on the project has been in
the development of new algorithms which achieve high per-
formance through optimal use of the computer architecture.

An announcement of the library was given in [7] in 1994.
Since then the functionality of the library has been substan-
tially extended. In this paper we will refer only briefly to
the topics covered in [7] and concentrate on more recent de-
velopments. A series of working notes is available on the
WWW at

http://anusf.anu.edu.au/Area4-Working-Notes

The next section gives some details on the architecture
of the VPP300 and a discussion of the issues which must be
considered when writing high performance code.

In the remaining sections of this paper several research
areas in the project are highlighted and a brief discussion

Permission to make digital or hard copies of all or part ofthis work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the till citation on the fust page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICS 98 Melbourne Australia
Copyright ACM 1998 o-89791-9984981 7...$5.00

of the algorithmic development required to produce high
performance code for each is given.

2 The Fujitsu VPP300

2.1 Architecture

The ANU VPP300 has a peak speed of about 29 Gflops with
14 Gbytes of memory based on a uniform 7ns clock rate.

Each processing element (PE) consists of the following:

A low performance scalar unit (SU) which has a long-
instruction-word (LIW) RISC CPU achieving approxi-
mately lOOMflops peak using simultaneous scalar, VU
and DTU instructions. Use of this unit must be min-
imzed whenever possible.

A vector unit (VU) with 1 load, 1 store, 1 add, 1 mul-
tiply, 1 divide-pip; each completing 8 operations per
cvcle CexceDt divide which does 8 operations Der 7
cicle) .’ It & also possible to chain load-m&-add al-
lowing a peak of 2.2 Gflops (matrix multiply achieves
2.18Gflops). The vector registers are configurable in
“power-of-two” steps between 256 registers of length
64 words to 8 registers of length 2048 words. The
actual configuration is optimised by the compiler de-
pending on computational density within a particular
loop.

Memory (MSU) with 2GB of SDRAM memory on 5
of the PEs and 512MB on the remainder. This is a
substantial amount of memory per processor and can
lead to near peak performance on long vector lengths.

A data transfer unit (DTU) for direct memory ac-
cess data communication to the interprocessor net-
work. Communication between processors is via a
crossbar switch (all processors are “equidistant” from
one another) with a peak bandwidth of 570MB/s bi-
directional and an achievable latency of about 5 psecs.
Because of the crossbar connection parallel algorithms
are not constrained to using communication to neigh-
bouring processors only as all processors are equally
“close” . This removes a major restriction from coding
parallel algorithms.

Parallelism in an algorithm is achieved in several ways.
At one level parallelism is obtained from the vector opera-
tions. This can be further exploited by coding so that several

13

of the different pipes are being used at the same time. At
the top level, MIMD parallelism is used by having several of
the processors working simultaneously.

Basically, the design of the Fujitsu VPP series favours al-
gorithms which use vector operations with very long vector
lengths and stride one data access. In addition, the crossbar
switch provides a very flexible communication mechanism so
that in many cases one gets best performance by regroup-
ing communication such that the number of communication
steps used is minimised.

Many standard techniques display performance degra-
dation caused by short vector lengths, non-unit stride data
acess or complicated communication patterns requiring many
steps. Examples include the Stockham algorithms for FFTs,
divide-and-conquer methods for the solution of banded lin-
ear systems, standard random number generators and eigen-
value algorithms. Other common algorithms do not vec-
torise at all like the tridiagonal QR algorithm for eigenval-
ues.

For all these cases new algorithms and implementations
have been found which optimise the use of the hardware.
Performance tests show that attention to these hardware
characteristics leads to substantially improved performance
for all the cases mentioned above. This hardware focus, how-
ever, is not reflected in the interface to the routines so that
users experience the higher performance but use similar call-
ing commands as required by standard parallel algorithms.

2.2 VPPFortran

Library code to be delivered as part of the project is written
using VPPFortran. Although it is common practice to use
message-passing languages such as PVM or MPI to develop
parallel algorithms, the parallel routines of the SSLII library
do not use these. VPPFortran is basically FORTRAN 90
plus compiler directives to promote parallel layout of data,
communication between processors, global sums, synchro-
nization and so on. There are some similarities between
VPPFortran and HPF especially in the mapping of index
domains to processors but the programmer has more con-
trol in VPPFortran. This is because the compiler directives
can be used to achieve both data and task distribution. This
provides extra flexibility similar to HPF2.0 with approved
extensions [21].

3 Linear Systems of Equations

A variety of solvers for systems of linear equations have been
included in the library. Different techniques are necessary to
achieve the best possible performance for different systems.
For banded matrices with a large bandwidth a torus-wrap
mapping of the data to the processors is used to give high
performance algorithms for both symmetric and nonsym-
metric matrices. This mapping can also be used for dense
matrices. An alternative approach for dense matrices uses
a blocked modified Cholesky for the symmetric case and a
blocked LU decomposition for the nonsymmetric case. Both
of these approaches were summarised in [7].

For more sparse matrices such as narrow-band matrices,
for example, block bidiagonal matrices, a wrap-around par-
titioning technique is used to achieve high performance on
the VPPSOO.

A suite of iterative solvers for both symmetric and non-
symmetric matrices has been developed for different sparse
matrix storage schemes as well as routines which use a re-
verse communication interface to allow the user to provide

application dependent subroutines for matrix/vector multi-
plication and preconditioning. More recent work has concen-
trated on developing an algebraic multilevel preconditioned
conjugate gradient method.

3.1 Wrap-around Partitioning

Wrap-around partitioning is a reordering of the unknowns
in a system of linear equations into q blocks of p unknowns
each for the purpose of highlighting groups of unknowns that
can be eliminated independently of one another in order
to permit vectorization of the elimination process [19]. Its
natural formulation is for block bidiagonal matrices. It can
be applied to narrow banded matrices of sufficiently regular
structure with a minimum of reorganisation. In this case
special structure can be exploited in the first pass only [ll].
Speed ups of order 20 times scalar speed can be obtained
fairly easily for small matrix subblock size m (m = 2 in the
tridiagonal case) and n > 1000. Wrap-around partitioning
has the important advantages:

It is not necessary for p and q to be exact factors of
n. This means that there is no requirement to use the
power of 2 strides associated with cyclic reduction with
consequent memory access degradation. Power of 3
stride is recommended;

The block bidiagonal structure is preserved under the
use of stable factorization techniques and so can be ap-
plied recursively. Our code employs orthogonal trans-
formations because stability of Gaussian elimination
with partial pivoting cannot be guaranteed for the full
generality of block bidiagonal matrices [36].

Consider for example the case n = 12. The block bidi-
agonal matrix is illustrated in Figure 1. The first stage of
reordering is illustrated for q = 2, p = 5 to make the point
that exact factors of n are not required and the result of
the transformation shown. The first stage of elimination
removes the B blocks with suffices {1,3,5,7,9}. Each elimi-
nation is independent of the others and so can be vectorized.
However, fill-in occurs if either pivoting is allowed in Gaus-
sian elimination, or orthogonal factorization is used. The
result is shown in Figure 1. Here blocks that remain nonzero
are shown by *, those deleted by 0, and those where fill is
introduced by an integer indicating the stage fill first oc-
curred. The key point is that the submatrix containing the
uneliminated unknowns is again block bidiagonal so the se-
quence of wrap-around partitioning and elimination can be
applied recursively. The recursion is terminated when the
matrix of the remaining unknowns is too small to benefit
from vectorization. This subproblem is solved sequentially.

3.2 Iterative Methods

The solution z of a large system of linear equations

Ax = b (1)

with a sparse coefficient matrix A E Rnx” is required within
many practical applications (e.g. discretization of partial
differential equations (PDEs)). Iterative methods of the
conjugate gradient type (CG) have proved to be suitable
algorithms as they are robust and can be efficiently im-
plemented on parallel and vector computers. However, as
there is no one CG method that is optimal for all matrices,
several CG methods have been implemented (classical CG,

14

0 1 *
* *

* *

Figure 1: Steps in wrap-around partitioning for a block bidi-
agonal matrix.

GMRES, TFQMR, LSQR, for more details see [7]) to enable
the user to select the optimal method for his problem.

The sparse coefficient matrix may be given in the diag-
onal storage scheme or the ELLPACK storage format (see
[12]). In the diagonal storage scheme (typically used for dis-
cretization on a rectangular grid) any diagonal of the ma-
trix A that contains a non-zero element is stored on the
processors as a banded partioned vector. The matrix vec-
tor multiplication is the basic operation in all CG method
and achieves more than 1Gflop per processor by unrolling
over the number of diagonals. For a discretization on an
unstructured grid the ELLPACK storage format has proved
to be more efficient as it uses a more general concept of a di-
agonal by introducing an additional index vector. Although
this slows down the matrix vector multiplication (because of
indexed load operations in the linked triad) the ELLPACK
storage format is more efficient than the diagonal storage
scheme if the matrix contains a large number of sparse di-
agonals.

To improve the robustness and convergence behaviour of
the CG iteration a preconditioner can be used, ie. instead of
system (1) the iteration method is applied to the equivalent
system

M-IAx = M-lb (2)

with a suitable, non-singular matrix M. The intention is
that the new iteration matrix M-lA will have better nu-
merical properties than A.

Recent developments for SSLII use the algebraic multi-
level iteration (AMLI, see [2]). In the same way as multi-

grid methods, AMLI build up smaller coefficient matrices
(Mck))k,~,... ,I with M := M (‘) but, in contrast to multi-
grid techniques, only information available from the given
matrix A is used.

For Ic = 0,. . ,1 - 1 a subset Cc”+‘) of the unknowns
Cc”) of level Ic is selected. The coefficient matrix A(“) for
level k is split in the following way:

A(k) =
Agzl) A&+1)

A(‘“+l)
CF

A&
CC I

(3)

The columns and rows of the submatrix Ag:l) belong to
the unknowns in C(k)/C(k+l) and those of the submatrix
Ag$l) to the unknowns in C (‘+I). After approximating the
inverse of the matrix A$$l) by a diagonal matrix D$$‘)
the approximate factorization

1 (4)

of the matrix A(“) can be calculated. The matrix M(“+l)
becomes an approximation of the Schur complement

A(k+l):=Ag$l) -~@kF+l)~g$l)~g;l) (5)

by again applying the approximate factorization (4) of the
coefficient matrix A@+‘) or, on the lowest level (if 1 = k+ l),
an approximate solution of a linear system with coefficient
matrix A(‘).

Within the CG iteration, the procedure for calculating
the vector p := M-l r for a given vector r consists of a
sequence of block forward substitutions, the solution of a
linear system on the lowest level Ic followed by a sequence of
block backward substitutions. That is, p = AMLI(0, r) with

AMLI(k - 1, ~‘(~--l))
if (Ic - 1 = 1)

solve A(k-l)p(“-‘) = r(k--l)
else

(+, $‘) + ,(k-1)

qg) t T$’ _ A(‘“) DC’“) $4
CF FF F

pg’ t AMLI(lc, qg))

pg’ t D$$($’ - AgApg’)
pC-‘) + (p(p‘)

end if

(6)

return p(“-l)

This V-cycle type method does not give a minimal condition
number for the iteration matrix M-lA as does the W-cycle
type method, but by solving a sufficiently large system at
the lowest level 1, the computing time for a V-cycle method
is optimal, see [26].

The current implementation considers the case for which
the coefficient matrix is an M-matrix and is stored in diago-
nal storage format. Typically these matrices arise from finite
difference schemes of order two and finite element schemes
of order one on a rectangular grid. The routine indepen-
dently defines the sets (C(‘))k=r,... 1 of the unknowns for
the coarse levels by using an alternating direction technique
and includes an optimal selection of the number of levels 1.
The diagonal matrix Dg& IS constructed in such a way that
all matrices Ack) are M-matrices again which ensures that

15

there is no break down within the factorization (4) and the
CG iteration.

No. of unknowns 0.5’10b l’lOb 2.10” 4. lob
No. of processors 1 2 4 8
Time in seconds 6.11 7.53 10.1 13.6

This table shows timings for solution of linear systems
where the coefficient matrices arise from the finite difference
discretization of the differential operator -VaV on the 3-
dimensional unit cube. The function a jumps at the surface
of the unit sphere from 1 to 106. The accuracy of the level
of equation is 1OF. The optimal number of levels is about 8
and the number of CG steps about 50. However, in all cases
a CG method with Jacobi preconditioner could not return
a solution within 10 minutes of computing time.

Further work will improve the computing time for both
gather and scatter operations which require communication
and reduce the performance of the current implementation.
Also ELLPACK format and more general types of matrices
will be considered in future versions.

4 Eigenvalue Problems

The first algorithms developed for solving symmetric eigen-
value problems were based on the Jacobi method as this
lends itself to parallel implementation. A one-sided Jacobi
method to calculate the Singular Value Decomposition of
the matrix was used which achieved high megaflop rates be-
cause of a specific rotation of blocks of data across proces-
sors [37]. The symmetric eigensolver was then built on top
of this. The resulting eigensolver was robust and accurate at
finding eigenvalues and vectors whatever the spectrum but
suffered from a high operation count. Subsequent work has
concentrated on developing symmetric eigensolvers based on
an initial reduction of the symmetric matrix to tridiagonal
form.

4.1 Tridiagonal Eigenvalue Problems

In order to compute eigendecompositions for tridiagonal ma-
trices the conventional procedure is to determine eigenvalues
using bisection, based on Sturm sign count evaluation (see,
e.g., [28]), then to compute the corresponding eigenvectors
via inverse iteration. Vectorization of the eigenvector com-
putation requires that the solution of tridiagonal linear sys-
tems be vectorized; this is accomplished using a variant of
the wrap-around partitioning described in Section 3.1 - note
that a tridiagonal matrix is transformed to block bidiagonal
form through a straightforward permutation. Also, since
bisection is not optimal on vector processors [32], we use
multisection, which entails subdividing an interval known
to contain an eigenvalue into greater than two subintervals
and/or locating more than one eigenvalue at a time. On the
VPPSOO computation of one eigenvalue via multisection can
be forty times as fast as using bisection.

When all eigenvalues are distinct, the algorithm is em-
harassingly parallel; a copy of the matrix T is stored on each
processor and each can compute eigenpairs without the need
for any information from other processors. However, when
numerically multiple or clustered eigenvalues have been de-
tected, it is generally necessary to reorthogonalize eigen-
vector approximations after inverse iteration. In a paral-
lel implementation this reorthogonalization entails consid-
erable communication for vectors stored on different proces-
sors. Hence it is necessary to insure that all eigenvectors
corresponding to a particular cluster reside on an individual
processor. To this end, we attempt to detect clusters during

multisection refinement. Depending on the size of the clus-
ters and the initial allocation of subspectra, load-imbalance
is likely, and, for large enough clusters, entire processors
may be dropped from the computation. Also, as clusters
become large, finite precision arithmetic can result in in-
consistencies in the way in which different processors have
determined clusters to be distributed; hence inter-processor
communication of a few integer values is necessary in order
to confirm the distribution of clusters. Further details of the
multisection algorithm and its implementation can be found
in [15], which also contains a brief performance comparison
with the corresponding LAPACK and ScaLAPACK routines
on a problem from computational quantum chemistry.

4.2 Symmetric/Hermitian Eigenvalue Problems

These routines are based directly on the tridiagonal eigen-
solver. The reduction to tridiagonal form is accomplished
via Householder transformations using a cyclic distribution
of columns; in the Hermitian case, the Hermitian matrix is
first reduced to complex tridiagonal form, then to real tridi-
agonal form. These reduction routines are standard and
hence are not discussed. Performance gains are attributable
to the efficiency of the tridiagonal eigensolver, i.e., to the im-
plementation of multisection and of inverse iteration using
wrap-around partitioning.

The following shows typical elapsed times to compute
the full eigendecomposition of a real symmetric matrix on
multiple processors of the VPP300.

Matrix Size 1 No. of Processors 1 Time in sets
4000 x 4000 I 4
8000 x 8000 1

I 103
4 633

4.3 Nonsymmetric Eigenvalue Problems

Development work on routines for the solution of general
nonsymmetric eigenvalue problems (EVPs)

Au=Xu, AEC”~“, x EC*, XEC, (7)

has only been initiated relatively recently. Thus far the
primary focus is limited to consideration of Newton-based
algorithms and Arnoldi methods. Very recently we have
also considered the composition of these two methods, and
we refer to these as “Arnoldi-Newton methods”. More de-
tailed descriptions of the Newton-based and Arnoldi-Newton
methods can be found in [27] and [16], respectively; here we
only briefly summarize the main ideas.

4.3.1 Newton-Based Methods

We restrict our attention to the standard EVP (7) (though
the development in [27] is in terms of generalized EVPs
Au = XBu). Let M(X) = (A - XI) : C” + C’” so that
(7) can be written IM(X)v = 0; this is embedded in the
more general family

A4(X)v = P(X)x, s*w =)E. (8)

As X approaches an eigenvalue x, M(X) becomes singular SO
that the solution 2) of the first of these equations becomes
unbounded for almost all p(X)x. Hence, the scaling condi-
tion, s*v = K, can only be satisfied if /J(X) -+ 0 as X + X.
Zeros of p(X) correspond to singularities of M(X) and there-
fore to eigenvalues of A. Differentiating equations (8) with
respect to X, rearranging terms and simplifyin f,,$ Newton
update takes the form X t X - s*v/(s*M- xv), where

16

for (7) dM/dX = -I. The vectors s and x can be cho-
sen dynamically; this engenders the possibility of exceeding
the characteristic second-order convergence rate of Newton’s
method [27]. In order to compute more than one eigenvalue
a variety of deflation strategies have been considered [27].
The major computational kernel - LU decomposition of A4
- is handled using extremely efficient software for linear sys-
tems [25].

4.3.2 Arnoldi Methods

Arnoldi’s method was originally developed to reduce a ma-
trix to upper Hessenberg form; it is a Krylov subspace pro-
jection method in which an exact eigenvector u E C” of (7)
is approximated by some vector G residing in a Krylov sub-
space, Ic, = YC,(A,vl) E span{vi,Avi,A’vi, , Am-lvl},
of dimension m < n.

An orthonormal basis {vi, . , vj} for Ic, is constructed
using modified Gram-Schmidt (MGS) orthogonalization. On
forming the n x m matrix V, = [vi 1 lo,], one obtains the
projected eigenproblem

Hy = V;AV,y = iy, (9)

where H E Cm’” is upper Hessenberg and m < n. The
eigenvalues of H can be computed using, e.g. QR. Dominant
eigenvalues of H approximate those of A, with the accuracy
increasing as m does.

For a broad overview of the many modifications that are
typically made to Arnoldi’s method in order to increase ef-
ficiency, robustness, etc., see, e.g., [31]. Our current imple-
mentation uses restarting in conjunction with an implicit de-
flation process. In order that non-extremal eigenvalues can
be computed, a shift-invert procedure is used; this amounts
to applying Arnoldi’s method to A = (A - al)-’ - extreme
eigenvalues of A correspond to eigenvalues near to the shift
u. Unlike the implementation of the Newton procedures,
the Arnoldi routine currently uses only real arithmetic and
hence only real shifts.

4.3.3 Arnoldi-Newton Methods

Shift-inversion in the context of the Arnoldi method is ex-
actly equivalent to inverse iteration (factorization of M) in
the context of the Newton-based procedure. This is clearly
the most computationally expensive portion of each of the
algorithms. The Newton-based procedures, though capa-
ble of quadratic and even third-order convergence, suffer
when good initial data are unavailable. The Arnoldi method
drives eigen-estimates toward the exact values from the out-
set; however, achieving the ultimately desired convergence
involves many issues such as what forms of restarting, defla-
tion, spectral transformation, preconditioning, acceleration,
etc. should be used, when, and how often? Unfortunately,
the answers to these questions may be problem-dependent,
and this hampers the development of robust and efficient
software. Hence, the drawbacks of these two methods are in
a sense orthogonal, and we have recently begun experiment-
ing with Arnoldi-Newton methods. The basic idea so far is
to use the Arnoldi method (in real arithmetic only) to get
good initial estimates to the (generally complex) eigenvalues
and Schur vectors of interest, then to use the Newton-based
method to obtain the final eigendata. Ideally, the resulting
Arnoldi estimates can be refined to machine precision with
only one additional Newton step since this should effectively
double the accuracy once quadratic convergence is obtain-
able. These methods have been implemented and applied

I Low Order Complex Transforms i Twiddle Factor Multiplication

I

Figure 2: Design of the Fujitsu VPP FFT library

to problems from the study of chemical reactions and from
fiber optics [16]. Preliminary results are promising.

5 Fast Fourier Transforms

It was known to Gauss that an order 12 trigonometric inter-
polation can be performed by doing 3 order 4 interpolations
followed by doing 4 order 3 interpolations [13]. This was
generalized to an arbitrary product of relatively prime fac-
tors of the order n by Good [14] and to arbitrary factors
by Cooley-Tukey [9]. They also suggested the first practical
algorithms, the FFTs. The basic idea by Gauss and Good
is now called splitting and underlies most high-performance
FFT algorithms [34]. On the top level, it allows “blocking”
and leads to the parallel 4 step algorithm [33, 181. Applied
recursively, splitting provides the well-known “butterflies”
of the FFTs. The butterflies do show the data flow but also
expose the basic FFT building blocks which are identified
in [17] to be:

l multiple Fourier transforms of small prime order

l simple index digit permutations

l unitary scaling transforms (“twiddle factors”)

The Fujitsu FFT library has been systematically de-
signed around these building blocks called the BAFFS (BA-
sic Fast Fourier transform Subroutines). The layered design
of the FFT library is displayed in Figure 2.

To get high performance for power 2 transforms, ele-
mentary transform subroutines for the orders 2,4,8 and 16
are used. This reduces the number of memory accesses by
reusing data in the registers but it also brings the floating
point operation count from 5n log,(n) for the radix 2 algo-
rithms down to 4 log,(n) which is the same operation count
as achieved by the split radix algorithm [lo]. In the case of
mixed radices the operation count was reduced by the ap-
plication of the prime factor algorithm for small composite
order transforms.

For highly composite numbers n there are many possible
ways to choose the factors p and 4 of the order n = pq. Thus
there are many different splittings possible. The common
algorithms choose either p or q to be small [34]. This has
the advantage that further splitting has to be done for only
one of the factors p or q. However, from a computational
point of view, this is not necessarily the best choice. For
example, it is shown in [17] that if p and q are chosen to
be the same up to a small factor, self-sorting and in-place
algorithms result.

17

Figure 3: Two recursive splittings of 65536

Figure 4: Performance of a 1D complex FFT on one proces-
sor

The recursive factorization of n and thus the splitting-
based FFT can be represented as a tree as shown in Figure 3.
The transform based on the tree on the right of Figure 3 can
be done in a self-sorting and in-place way and, in addition,
requires fewer operations if performed in parallel as locally
only order 256 transforms are done. The method based on
the left tree requires locally order 4096 transforms and thus
higher order twiddle factors. There is also a possibility to
exploit any relative primeness of factors of n [20]. A sys-
tematic exploitation of the advantages obtained by careful
choice of the splitting is one of the most innovative aspects
of the Fujitsu VPP FFT library [22].

In the FFT library all the steps involving communication
have been collected together. This has the advantage of
simplifying software maintenance, in particular it facilitates
movement between different paradigms like task parallelism
(VPP Fortran), message passing (MPI) and data parallelism
(HPF). This comes at some performance cost due to lower
overlap of communication with computation. This conflict
between ease of software maintenance and performance is
being investigated.

The performance of the 1D FFT is Snlog,(n)/t where n
is the problem size and t is the time required. From Figure 4
it can be seen that close to peak performance is achieved for
large enough problem sizes on one processor. Furthermore,
in Figure 5 the speedup of the parallel algorithm compared
with execution on one processor shows the scalability of the
algorithm.

Figure 5: Scalability of FFT on the VPP 300

6 Wavelet Transforms

Wavelets yield very good and sparse approximations for
most practically occurring functions and data sets and are
thus ideally suited for compression [8]. We consider 2D
wavelet transforms which can be represented as matrix-matrix
products

Y = w,xw,’ (10)

where X E RNXM is the data matrix and WN (and WM)
are the wavelet transform matrices. These are not formed
explicitly, instead the fast wavelet transform is used which
forms the matrix vector product WNX as a succession of
steps of the form

The parallel implementation of (10) depends on the distri-
bution of the data X and the result Y to the processors. We
have considered vertical blocking:

x=

or horizontal blocking:

x=

m

where each “slice” is associated with the memory of a dif-
ferent processor. The basic method to compute (10) is, as
for FFTs, the split-transform algorithm:

1) Z :=xw,’
2) Y:=wMz

If X is blocked vertically, then the first step is done with-
out communication. The second step requires no commu-
nication if 2 (and Y) is blocked horizontally. However, a
personahsed all-to-all communication step in the form of a
matrix transpose is required in between. This algorithm is
called the “replicated” transform and is in structure identi-
cal with that used in the FFT transforms described above.

18

As for FFTs the great advantage of this method is that all
communication is contained in a separate step which makes
the software more manageable.

If X is blocked vertically then a small amount of com-
munication is required. Furthermore the vertical blocking of
the resulting 2 allows for application of the communication-
less transform for the computation of Y. Thus the costly
personalised all-to-all step is completely avoided. However,
the two steps require different software and the first step
does require communication which complicates the software
engineering.

On the Fujitsu VPP 300 a wavelet transform with D =
10 coefficients gave the following performance:

P] M=N] replicated combined
1 1 512 I 1.3 G~~oD/s I 1.3 G~~oD/s
2 1024 1.3 Gflo&‘s 2.8 Gflo;)s
4 2048 2.3 Gilop/s 5.9 Gflop/s
8 4096 3.8 Gflopjs 11.8 Gflop/s

In the “replicated” column the performance of the repli-
cated algorithm with both X and Y blocked vertically is
displayed and in the “combined” column the performance
of the algorithm which uses horizontal blocking for X and
vertical blocking for Y is given.

7 Pseudo-Random Number Generators

7.1 Uniform Distribution

Several authors [l, 3, 301 have considered the generation
of uniformly distributed pseudo-random numbers on vector
and parallel computers. The method which we implemented
on the Fujitsu VP and VPP series machines is based on the
generalized Fibonacci recurrence

x, = xn+ + xnws mod 2”,

where w depends on the floating-point fraction length, r >
s > 0, and xT + zs + 1 is a primitive polynomial (mod 2).
For example, we could choose w = 52, T = 132049, and
s = 79500. As shown in [5], the period of such a generator
is Zwu-l(2? - I). If the code is written to take advantage of
the vector units, each random number can be generated in
less than three processor cycles. The generator can easily
be implemented on a parallel machine by using a suitable
(different) initialization on each processor. For details see
[3, 71.

7.2 Normal Distribution

In many applications, random numbers from specified non-
uniform distributions are required. A common requirement
is for the normal distribution with given mean and variance.

The most efficient methods for generating normally dis-
tributed random numbers on sequential machines [23, 241
involve the use of different approximations on different in-
tervals, and/or the use of “rejection” methods, so they do
not vectorize well. Other methods are preferable on vector
processors. The Box-Muller and Polar methods [23] were
considered in [4]. The Polar method was implemented as
RANNB and was the fastest vectorized method for normally
distributed numbers known at the time [29], although much
slower than the best uniform random number generators.

Recently Wallace [35] proposed a new class of pseudo-
random generators for normal variates. These generators
do not require a stream of uniform pseudo-random numbers
(except for initialization) or the evaluation of elementary

functions such as log, sqrt, sin or cos (needed by the Box-
Muller and Polar methods). The crucial observation is that,
if x is an n-vector of normally distributed random numbers,
and A is an n x n orthogonal matrix, then y = Aa: is an-
other n-vector of normally distributed numbers. Thus, given
a pool of nN normally distributed numbers, we can generate
another pool of nN normally distributed numbers by per-
forming N matrix-vector multiplications. The inner loops
are very suitable for implementation on vector processors.
The vector lengths are proportional to N, and the number
of arithmetic operations per normally distributed number is
proportional to ‘n. Typically we choose n to be small, say
2 2 n < 4, and N to be large.

Wallace implemented variants of his new method on a
scalar RISC workstation, and found that its speed was com-
parable to that of a fast uniform generator. The same per-
formance relative to a fast uniform generator is achievable on
a vector processor, although some care has to be taken with
the implementation. Details of an implementation (RANN4)
of Wallace’s method on the VPP are given in [6]. RANN4 is
several times faster than RANNS.

Because Wallace’s class of methods is new, there is little
knowledge of their statistical properties. However, statisti-
cal tests performed on RANN4 have been satisfactory.

8 Conclusion

Several areas of research in the ANU-Fujitsu Parallel Math-
ematical Subroutine Library project have been discussed.
High performance has been achieved by developing algo-
rithms amenable to vectorization and parallelisation and by
devoting a great deal of attention to implementation details.

There exist a considerable number of other routines in
the library which have not been addressed here; some of
these were discussed in [7]. Also, we note that as part of
the development of the parallel library (SSLIIVPP) many
single processor routines have been developed to be included
in Fujitsu’s SSLIIVP, an extensive mathematical subroutine
library for vector processors.

References

PI

PI

[31

[41

151

PI

[71

S. L. Anderson, Random Number Generators on Vec-
tor Supercomputers and other Advanced Architectures,
SIAM Review, 32, 221-251, 1990.

0. Axelsson and M. Neytcheva, Algebraic multilevel it-
eration method for Stieltjes matrices, Num. Lin. Alg.
Appl., 1, 213-236, 1994.

R. P. Brent, Uniform Random Number Generators for
Supercomputers, Proc. Fifth Australian Supercomputer
Conference, Melbourne, 95-104, 1992.

R. P. Brent, Fast Normal Random Number Generators
for Vector Processors, Area 4 working note #4, 1993.

R. P. Brent, On the Periods of Generalized Fibonacci
Recurrences, Math. Comp., 63, 389-401, 1994.

R. P. Brent, A fast Vectorised Implementation of Wal-
lace’s Normal Random Number Generator, Area 4
Working Note #21, 1997.

R. Brent, A. Cleary, M. Hegland, J. Jenkinson, Z.
Leyk, M. Osborne, P. Price, S. Roberts, D. Singleton
and M. Nakanishi, Implementation and Performance
of Scalable Scient$c Library Subroutines on Fujitsu’s

19

VPP500 Parallel- Vector Supercomputer, Proceedings of
the Scalable High Performance Computing Conference,
Knoxville, Tennesee, May 1994, IEEE/CS Press, 526-
533, 1994.

[8] C. K. Chui, Wavelets: a mathematical tool for signal
processing, SIAM Monographs on Mathematical Mod-
eling and Computation, Society for Industrial and Ap-
plied Mathematics (SIAM), Philadelphia, PA, With a
foreword by Gilbert Strang, 1997.

[9] J.W. Cooley and J.W. Tukey, An algorithm for the
machine calculation of complex Fourier series, Math.
Comp. 19, 297-301, 1965.

[lo] P. Duhamel and H. Hollman, Split radix FFT algo-
rithms, Electron. Lett., 20, 14-16, 1984.

[ll] C.Dun, M.Hegland, and M.Osborne, Stable parallel so-
lution methods for tridiagonal systems of linear equa-
tions, CTAC95 Proceedings, 1996.

[12] Fujitsu SSLII/VPP User’s Guide (Scientific Subroutine
Library), Fujitsu, Japan.

[13] C. Gauss, Theoria interpolationis method0 novo trac-
tata, vol. 3, Kiinigliche Gesellschaft der Wissenschaften,
GSttingen, 1866.

[14] I.J. Good, The interaction algorithm and practical
Fourier analysis, J. Roy. Stat. Sot. Ser. B 22, 372-375,
1958

[15] D.L. Harrar II and M.H. Kahn, On the eficient solution
of symmetric/HeTmitian eigenvalue problems on par-
allel arrays of vector processors, Computational Tech-
niques and Applications: CTAC ‘97 (Adelaide, Aus-
tralia) (J. Noye, M. Teubner, and A. Gill, eds.), World
Scientific, To appear 1998.

[16] D.L. Harrar II and M.R. Osborne, Composite Arnoldi-
Newton methods for large nonsymmetric eigenvalue
problems, Computational Techniques and Applications:
CTAC ‘97 (Adelaide, Australia) (J. Noye, M. Teubner,
and A. Gill, eds.), World Scientific, To appear 1998.

[17] M. Hegland, A self-sorting in-place fast Fourier trans-
form algorithm suitable for vector and parallel process-
ing, Numerische Mathematik 68, no. 4, 507-547, 1994.

[18] M. Hegland, An implementation of multiple and multi-
variate Fourier transforms on vector pTocessors, SIAM
J. Sci. Comp. 16, no. 2, 271-288, 1995.

[19] M.Hegland, and M.Osborne, Wrap-around partitioning
for block bidiagonal linear systems, JIMA Num. Anal.,
To appear.

[20] M. Hegland and W. Wheeler, Linear bijections and the
fast Fourier transform, Applicable Algebra in Engineer-
ing, Communication and Computing 8, no. 2, 143-163,
1997.

[21] High Performance Fortran, High Performance Fortran
Forum, Jan 31, 1997.

[22] G. Keating, Choosing trees for FFTs, Parallel Com-
puting Workshop ‘97 Proceedings, Australian National
University, P2-X-1 - P2-X-6, 1997.

[23] D. E. Knuth, The Art of Computer Programming,
Volume 2: Seminumerical Algorithms (third edition).
Addison-Wesley, Menlo Park, 1997.

[24] J. L. Leva, A Fast Normal Random Number Generator,
ACM Transactions on Mathematical Software, 18,449-
453, 1992.

[25] M. Nakanishi, H. Ina and K. Miura, A High Perfor-
mance Linear Equation Solver on the VPP500 Paral-
lel Supercomputer, Proceedings of Supercomputing 94,
Washington D.C., Nov. 1994.

[26] M. Neytcheva, Experience in implementing the alge-
braic multilevel iteration method on a SIMD-type com-
puter, Appl. Numer. Math., 19,71-90, 1995.

[27] M.R. Osborne and D.L. Harrar II, Inverse iteration and
deflation in general eigenvalue problems, Tech. Report
Mathematics Research Report No. MRR 012-97, Aus-
tralian National University, 1997.

[28] B.N. Parlett, The Symmetric Eigenvalue Problem,
Prentice Hall, Englewood Cliffs, 1980.

[29] W. P. Petersen, Some Vectorized Random Number Gen-
erators for Uniform, Normal, and Poisson Distribu-
tions for CRAY X-MP, J. Supercomputing, 1, 327-335,
1988.

[30] W. P. Petersen, Lagged Fibonacci Series Random Num-
ber Generators for the NEC SX-3, International J. of
High Speed Computing, 6, 387-398, 1994.

[31] Y. Saad, Numerical Methods for Large Eigenvalue Prob-
lems, Manchester University Press (Series in Algo-
rithms and Architectures for Advanced Scientific Com-
puting), Manchester, 1992.

[32] H.D. Simon, Bisection is not optimal on vector proces-
sors, SIAM J. Sci. Stat. Comput. 10, 205-209, 1989.

[33] P. N. Swarztrauber, Multiprocessor FFTs, Parallel
Comput., 5, 197-210, 1987.

[34] C. Van Loan, Computational frameworlcs for the fast
Fourier transform, SIAM, 1992.

[35] C. S. Wallace, Fast Pseudo-Random Generators for

Normal and Exponential Variates, ACM Trans. on
Mathematical Software, 22, 119-127, 1996.

[36] S.J.Wright, A collection of problems for which Gaussian
elimination with partial pivoting is unstable, SISSC, 14,
231-238,1993.

[37] B.B.Zhou and R.P. Brent, A Parallel Ring Ordering for
Eficient One-sided Jacobi SVD Computations, Journal
of Parallel and Distributed Computing, 42, pp.l-10,
1997.

20

