
Random Number Generation and Simulation onVetor and Parallel Computers(invited paper)Rihard P. BrentOxford University Computing Laboratory,Wolfson Building, Parks Road,Oxford OX1 3QD, UKrpb�omlab.ox.a.uk
Abstrat. Pseudo-random numbers are often required for simulationsperformed on parallel omputers. The requirements for parallel randomnumber generators are more stringent than those for sequential randomnumber generators. As well as passing the usual sequential tests on eahproessor, a parallel random number generator must give di�erent, in-dependent sequenes on eah proessor. We onsider the requirementsfor a good parallel random number generator, and disuss generators forthe uniform and normal distributions. We also desribe a new lass ofgenerators for the normal distribution (based on a proposal by Wallae).These generators an give very fast vetor or parallel implementations.Implementations of uniform and normal generators on vetor and ve-tor/parallel omputers are disussed.
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2 Rihard P. Brent1 IntrodutionPseudo-random numbers have been used in Monte Carlo alulations sine theearliest days of digital omputers [32℄. In this paper we are onerned here withrandom number generators (RNGs) on fast, modern omputers { typially ei-ther vetor proessors or parallel omputers using vetor or pipelined RISC pro-essors. What we say about vetor proessors often applies to pipelined RISCproessors with a memory hierarhy (the vetor registers of a vetor proessororresponding to the �rst-level ahe of a RISC proessor).With the inreasing speed of vetor proessors and parallel omputers, on-siderable attention must be paid to the quality of random number generators. Aprogram running on a superomputer might use 108 random numbers per seondover a period of many hours or even months in the ase of QCD alulations,so 1014 random numbers might ontribute to the result. Small orrelations orother de�ienies in the random number generator ould easily lead to spuriouse�ets and invalidate the results of the omputation.Appliations require random numbers with various distributions (uniform,normal, exponential, binomial, Poisson, et.) but the algorithms used to gen-erate these random numbers usually require a good uniform random numbergenerator { see for example [2, 5, 14, 24, 34, 39℄. In this paper we onsider thegeneration of uniformly and normally distributed numbers.Pseudo-random numbers generated in a deterministi fashion on a digitalomputer an not be truly random. What is required is that �nite segments ofthe sequene behave in a manner indistinguishable from a truly random sequene.In pratie, this means that they pass all statistial tests whih are relevant tothe problem at hand. Sine the problems to whih a library routine will beapplied are not known in advane, random number generators in subroutinelibraries should pass a number of stringent statistial tests (and not fail any)before being released for general use.A sequene u0; u1; � � � depending on a �nite state must eventually be periodi,i.e. there is a positive integer p suh that un+p = un for all suÆiently large n.The minimal suh p is alled the period.Following are some of the more important requirements for a good uniformpseudo-random number generator and its implementation in a subroutine library(the modi�ations for a normal generator are obvious) {� Uniformity. The sequene of random numbers should pass statistial testsfor uniformity of distribution. In one dimension this is easy to ahieve. Mostgenerators in ommon use are provably uniform (apart from disretisationdue to the �nite wordlength) when onsidered over their full period.� Independene. Subsequenes of the full sequene u0; u1; � � � should be inde-pendent. For example, members of the even subsequene u0; u2; u4; � � � shouldbe independent of their odd neighbours u1; u3; � � �. Thus, the sequene ofpairs (u2n; u2n+1) should be uniformly distributed in the unit square. Moregenerally, random numbers are often used to sample a d-dimensional spae,so the sequene of d-tuples (udn; udn+1; : : : ; udn+d�1) should be uniformly



Vetor/Parallel Random Number Generation 3distributed in the d-dimensional ube [0; 1℄d for all \reasonable" values of d(ertainly for all d � 6).� Long Period. As mentioned above, a simulation might use 1014 random num-bers. In suh a ase the period pmust exeed 1014. For many generators thereare strong orrelations between u0; u1; � � � and um; um+1; � � �, where m = p=2(and similarly for other simple frations of the period). Thus, in pratie theperiod should be muh larger than the number of random numbers whihwill ever be used.� Repeatability. For testing and development it is useful to be able to repeata run with exatly the same sequene of random numbers as was used inan earlier run [22℄. This is usually easy if the sequene is restarted from thebeginning (u0). It may not be so easy if the sequene is to be restarted fromsome other value, say um for a large integer m, beause this requires savingthe state information assoiated with the random number generator.� Portability. Again, for testing and development purposes, it is useful to beable to generate exatly the same sequene of random numbers on two di�er-ent mahines, possibly with di�erent wordlengths. In pratie it will be ex-pensive to simulate a long wordlength on a mahine with a short wordlength,but the onverse should be easy { a mahine with a long wordlength (sayw = 64) should be able to simulate a mahine with a smaller wordlengthwithout loss of eÆieny.� Disjoint Subsequenes. If a simulation is to be run on a mahine with severalproessors, or if a large simulation is to be performed on several indepen-dent mahines, it is essential to ensure that the sequenes of random numbersused by eah proessor are disjoint. Two methods of subdivision are om-monly used. Suppose, for example, that we require 4 disjoint subsequenesfor a mahine with 4 proessors. One proessor ould use the subsequene(u0; u4; u8; � � �), another the subsequene (u1; u5; u9; � � �), et. This partition-ing method is sometimes alled \deimation" or \leapfrog" [11℄. For eÆienyeah proessor should be able to \skip over" the terms whih it does not re-quire. Alternatively, proessor j ould use the subsequene (umj ; umj+1; � � �),where the indies m0;m1;m2;m3 are suÆiently widely separated that the(�nite) subsequenes do not overlap. This requires some eÆient method ofgenerating um for large m without generating all the intermediate valuesu1; : : : ; um�1.� EÆieny. It should be possible to implement the method eÆiently so thatonly a few arithmeti operations are required to generate eah random num-ber and all vetor/parallel apabilities of the mahine are used. To minimisesubroutine all overheads, the random number routine should return an ar-ray of (optionally) several numbers at a time.Several reent reviews [4, 6, 11, 16, 22, 24, 28, 33℄ of uniform random numbergenerators are available. The most important onlusion regarding uniform gen-erators is that good ones may exist, but are hard to �nd [33℄. Linear ongruentialgenerators with a \short" period (less than say 248) are ertainly to be avoided.Generalised (or \lagged") Fibonai generators using the \exlusive or" oper-ation are also to be avoided; other generalised Fibonai generators may be



4 Rihard P. Brentsatisfatory if the lags are suÆiently large (if they use the operation of additionthen the lags should probably be at least 1000). See, for example, [12, Table 2℄.Our reommendation, implemented as RANU4 on Fujitsu VP2200 and VPP300vetor/parallel proessors, is a generalised Fibonai generator with very largelags, e.g. (79500; 132049) (see [21℄), and areful initialisation whih avoids anyinitial atypial behaviour and ensures disjoint sequenes on parallel proessors.For further details see [6℄.In the interests of onserving spae, we refer the reader to the reviews itedabove for uniform generators, and onentrate our attention on the less oftenonsidered, but still important, ase of normal random number generation onvetor/parallel proessors. \Classial" generators are onsidered in x2, and aninteresting new lass of \Wallae" generators [40℄ is onsidered in x3.We do not attempt to over the important topi of testing random numbergenerators intended for use on vetor/parallel omputers. A good, reent sur-vey of this topi is [12℄. The user should always remember that a deterministisequene of pseudo-random numbers an not truly be random; all that testingan do is inspire on�dene that a generator is indistinguishable from randomin a partiular appliation [37, 38℄. In pratie, testing is essential to ull badgenerators, but an not provide any guarantees.2 Normal RNGs based on Uniform RNGsIn this setion we onsider some \lassial" methods for generating normallydistributed pseudo-random numbers. The methods all assume a good soure ofuniform random numbers whih is transformed in some manner to a sequeneof normally distributed random numbers. The transformation is not neessarilyone to one.The most well-known and widely used methods for generating normally dis-tributed random variables on sequential mahines [2, 5, 14, 20, 24, 26℄ involve theuse of di�erent approximations on di�erent intervals, and/or the use of \re-jetion" methods [14, 24℄, so they often do not vetorise well. Simple, \old-fashioned" methods may be preferable. In x2.1 we desribe two suh methods,and in xx2.2{2.3 we onsider their eÆient implementation on vetor proessors,and give the results of implementations on a Fujitsu VP2200/10. In xx2.4{2.5 weonsider some other methods whih are popular on serial mahines, and showthat they are unlikely to be ompetitive on vetor proessors.2.1 Some Normal GeneratorsAssume that a good uniform random number generator whih returns uniformlydistributed numbers in the interval [0; 1) is available, and that we wish to samplethe normal distribution with mean � and variane �2. We an generate twoindependent, normally distributed numbers x, y by the following old algorithmdue to Box and Muller [31℄ (Algorithm B1):



Vetor/Parallel Random Number Generation 51. Generate independent uniform numbers u; v 2 [0; 1).2. Set r  �p�2 ln(1� u).3. Set x r sin(2�v) + � and y  r os(2�v) + �.The proof that the algorithm is orret is similar to the proof of orretnessof the Polar method given in Knuth [24℄.Algorithm B1 is a reasonable hoie on a vetor proessor if vetorised squareroot, logarithm and trigonometri funtion routines are available. Eah normallydistributed number requires 1 uniformly distributed number, 0:5 square roots,0:5 logarithms, and 1 sin or os evaluation. Vetorised implementations of theBox-Muller method are disussed in x2.2.A variation of Algorithm B1 is the Polarmethod of Box, Muller and Marsagliadesribed in Knuth [24, Algorithm P℄:1. Generate independent uniform numbers x; y 2 [�1; 1).2. Set s x2 + y2.3. If s 2 (0; 1) then go to step 4 else go to step 1 (i.e. rejet x and y).4. Set r  �p�2 ln(s)=s, and return rx + � and ry + �.It is easy to see that, at step 4, (x; y) is uniformly distributed in the unitirle, so s is uniformly distributed in [0; 1).A proof that the values returned by Algorithm P are independent, nor-mally distributed random numbers (with mean � and variane �2) is given inKnuth [24℄. On average, step 1 is exeuted 4=� times, so eah normally dis-tributed number requires 4=� ' 1:27 uniform random numbers, 0.5 divisions, 0.5square roots, and 0.5 logarithms. Compared to Algorithm B1, we have avoidedthe sin and os omputation at the expense of more uniform random numbers,0.5 divisions, and the ost of implementing the aeptane/rejetion proess.This an be done using a vetor gather. Vetorised implementations of the Polarmethod are disussed in x2.3.2.2 Vetorised Implementation of the Box-Muller MethodWe have implemented the Box-Muller method (Algorithm B1 above) and severalre�nements (B2, B3) on a Fujitsu VP2200/10 vetor proessor at the AustralianNational University. The implementations all return double-preision real results,and in ases where approximations to sin, os, sqrt and/or ln have been made,the absolute error is onsiderably less than 10�10. Thus, statistial tests usingless than about 1020 random numbers should not be able to detet any biasdue to the approximations. The alling sequenes allow for an array of randomnumbers to be returned. This permits vetorisation and amortises the ost of asubroutine all over the ost of generating many random numbers.Our method B2 is the same as B1, exept that we replae alls to the librarysin and os by an inline omputation, using a fast, but suÆiently aurate,approximation (for details see [7℄).Times, in mahine yles per normally distributed number, for methods B1,B2 (and other methods desribed below) are given in Table 1. In all ases the



6 Rihard P. Brentgeneralised Fibonai random number generator RANU4 (desribed in [6℄) wasused to generate the required uniform random numbers, and a large number ofrandom numbers were generated, so that vetor lengths were long. RANU4 gen-erates a uniformly distributed random number in 2.2 yles on the VP2200/10.(The yle time of the VP2200/10 at ANU is 3.2 nse, and two multiplies andtwo adds an be performed per lok yle, so the peak speed is 1.25 Gop.)The Table gives the total times and also the estimated times for the fourmain omponents:1. ln omputation (atually 0.5 times the ost of one ln omputation sine thetimes are per normal random number generated).2. sqrt omputation (atually 0.5 times).3. sin or os omputation.4. other, inluding uniform random number generation.Table 1. Cyles per normal random numberomponent B1 B2 B3 P1 P2 R1ln 13.1 13.1 7.1 13.1 7.1 0.3sqrt 8.8 8.8 1.0 8.8 1.0 0.0sin/os 13.8 6.6 6.6 0.0 0.0 0.0other 5.9 5.6 11.6 11.9 13.8 35.1total 41.6 34.1 26.3 33.8 21.9 35.4The results for method B1 show that the sin/os and ln omputations arethe most expensive (65% of the total time). Method B2 is suessful in reduingthe sin/os time from 33% of the total to 19%.In Method B2, the omputation of p� ln(1� u) onsumes 64% of the time.An obvious way to redue this time is to use a fast approximation to the funtionf(u) =p� ln(1� u);just as we used a fast approximation to sin and os to speed up method B1.However, this is diÆult to aomplish with suÆient auray, beause thefuntion f(u) is badly behaved at both endpoints of the unit interval. Method B3overomes this diÆulty in the following way.1. We approximate the funtiong(u) = u�1=2f(u) =r� ln(1� u)u ;rather than f(u). Using the Taylor series for ln(1 � u), we see that g(u) =1 + u=4 + � � � is well-behaved near u = 0.



Vetor/Parallel Random Number Generation 72. The approximation to g(u) is only used in the interval 0 � u � � , where� < 1 is suitably hosen. For � < u < 1 we use the slow but aurate libraryln and sqrt routines.3. We make a hange of variable of the form v = (�u + �)=(u + Æ), where�; : : : ; Æ are hosen to map [0; � ℄ to [�1; 1℄, and the remaining degrees offreedom are used to move the singularities of the funtion h(v) = g(u) as faraway as possible from the region of interest (whih is �1 � v � 1). To bemore preise, let � be a positive parameter. Then we an hoose� = 1�� ��+ 2�2 ;v = (�+ 1)� (�+ 2)u� 22(�+ 1)� (�+ 2)u� ;and the singularities of h(v) are at �(�+ 1).For simpliity, we hoose � = 1, whih experiment shows is lose to optimalon the VP2200/10. Then � = 8=9, v = (6u� 4)=(4� 3u), and h(v) has singular-ities at v = �2, orresponding to the singularities of g(u) at u = 1 and u =1.A polynomial of the form h0 + h1v + � � � + h15v15 an be used to approximateh(v) with absolute error less than 2 � 10�11 on [�1; 1℄. About 30 terms wouldbe needed if we attempted to approximate g(u) to the same auray by a poly-nomial on [0; � ℄. We use polynomial approximations whih are lose to minimaxapproximations. These may easily be obtained by trunating Chebyshev series,as desribed in [10℄.It appears that this approah requires the omputation of a square root, sinewe really want f(u) = u1=2g(u), not g(u). However, a trik allows this squareroot omputation to be avoided, at the expense of an additional uniform randomnumber generation (whih is heap) and a few arithmeti operations. Reall thatu is a uniformly distributed random variable on [0; 1). We generate two indepen-dent uniform variables, say u1 and u2, and let u  max(u1; u2)2. It is easy tosee that u is in fat uniformly distributed on [0; 1). However, u1=2 = max(u1; u2)an be omputed without alling the library sqrt routine. To summarise, a non-vetorised version of method B3 is:1. Generate independent uniform numbers u1; u2; u3 2 [0; 1).2. Set m max(u1; u2) and u m2.3. If u > 8=9 then3.1. set r  �p� ln(1� u) using library routines, else3.2. set v  (6u� 4)=(4� 3u), evaluate h(v) as desribed above, andset r  �mh(v).4. Evaluate s sin(2�u3 � �) and  os(2�u3 � �) as in [7℄.5. Return � + rp2 and � + srp2, whih are independent, normalrandom numbers with mean � and standard deviation �.Vetorisation of method B3 is straightforward, and an take advantage ofthe \list vetor" tehnique on the VP2200. The idea is to gather those u > 8=9



8 Rihard P. Brentinto a ontiguous array, all the vetorised library routines to ompute an arrayof p� ln(1� u) values, and satter these bak. The gather and satter opera-tions introdue some overhead, as an be seen from the row labelled \other" inthe Table. Nevertheless, on the VP2200, method B3 is about 23% faster thanmethod B2, and about 37% faster than the straightforward method B1. Theseratios ould be di�erent on mahines with more (or less) eÆient implementa-tions of satter and gather.Petersen [35℄ gives times for normal and uniform random number generatorson a NEC SX-3. His implementation normalen of the Box-Muller method takes55.5 nse per normally distributed number, i.e. it is 2.4 times faster than ourmethod B1, and 1.51 times faster than our method B3. The model of SX-3 usedby Petersen has an e�etive peak speed of 2.75 Gop, whih is 2.2 times the peakspeed of the VP2200/10. Considering the relative speeds of the two mahinesand the fat that the SX-3 has a hardware square root funtion, our results areenouraging.2.3 Vetorised Implementation of the Polar MethodThe times given in Table 1 for methods B1{B3 an be used to predit the bestpossible performane of the Polar method (x2.1). The Polar method avoids theomputation of sin and os, so ould gain up to 6.6 yles per normal ran-dom number over method B3. However, we would expet the gain to be lessthan this beause of the overhead of a vetor gather aused by use of a reje-tion method. A straightforward vetorised implementation of the Polar method,alled method P1, was written to test this predition. The results are shown inTable 1. 13.8 yles are saved by avoiding the sin and os funtion evaluations,but the overhead inreases by 6.0 yles, giving an overall saving of 7.8 yles or19%. Thus, method P1 is about the same speed as method B2, but not as fastas method B3.Enouraged by our suess in avoiding most ln and sqrt omputations in theBox-Muller method (see method B3), we onsidered a similar idea to speed upthe Polar method. Step 4 of the Polar method (x2.1) involves the omputationof p�2 ln(s)=s, where 0 < s < 1. The funtion has a singularity at s = 0, butwe an approximate it quite well on an interval suh as [1=9; 1℄, using a methodsimilar to that used to approximate the funtion g(u) of x2.2.Inspetion of the proof in Knuth [24℄ shows that step 4 of the Polar methodan be replaed by4a. Set r  �p�2 ln(u)=s,and return rx + � and ry + �where u is any uniformly distributed variable in (0; 1℄, provided u is independentof artan(y=x). In partiular, we an take u = 1�s. Thus, omitting the onstantfator �p2, we need to evaluate p� ln(1� s)=s, but this is just g(s), and wean use exatly the same approximation as in x2.2. This gives us method P2. Tosummarise, a non-vetorised version of method P2 is:



Vetor/Parallel Random Number Generation 91. Generate independent uniform numbers x; y 2 [�1; 1).2. Compute s x2 + y2.3. If s � 1 then go to step 1 (i.e. rejet x and y) else go to step 4.4. If s > 8=9 then4.1. set r  �p� ln(1� s)=s using library routines, else4.2. set v  (6s�4)=(4�3s), evaluate h(v) as desribed in x2.2, andset r  �h(v).5. Return xrp2 + � and yrp2 + �, whih are independent, normalrandom numbers with mean � and standard deviation �.To vetorise steps 1-3, we simply generate vetors of xj and yj values, om-pute sj = x2j + y2j , and ompress by omitting any triple (xj ; yj ; sj) for whihsj � 1. This means that we an not predit in advane how many normal ran-dom numbers will be generated, but this problem is easily handled by introduinga level of bu�ering.The seond-last olumn of Table 1 gives results for method P2. There is asaving of 11.9 yles or 35% ompared to method P1, and the method is 17%faster than the fastest version of the Box-Muller method (method B3). Theost of logarithm and square root omputations is only 37% of the total, theremainder being the ost of generating uniform random numbers (about 13%)and the ost of the rejetion step and other overheads (about 50%). On theVP2200/10 we an generate more than 14 million normally distributed randomnumbers per seond.2.4 The Ratio MethodThe Polar method is one of the simplest of a lass of rejetion methods forgenerating random samples from the normal (and other) distributions. Otherexamples are given in [2, 5, 14, 24℄. It is possible to implement some of thesemethods in a manner similar to our implementation of method P2. For example,a popular method is the Ratio Method of Kinderman and Monahan [23℄ (alsodesribed in [24℄, and improved in [26℄). In its simplest form, the Ratio Methodis given by Algorithm R:1. Generate independent uniform numbers u; v 2 [0; 1).2. Set x p8=e(v � 12 )=(1� u).3. If �x2 ln(1�u) > 4 then go to step 1 (i.e. rejet x) else go to step 4.4. Return �x+ �.Algorithm R returns a normally distributed random number using on average8=p�e ' 2:74 uniform random numbers and 1.37 logarithm evaluations. Forthe proof of orretness, and various re�nements whih redue the number oflogarithm evaluations, see [23, 24, 26℄. The idea of the proof is that x is normallydistributed if the point (u; v) lies inside a ertain losed urve C whih in turn isinside the retangle [0; 1℄� [�p2=e;+p2=e℄. Step 3 rejets (u; v) if it is outsideC.



10 Rihard P. BrentThe funtion ln(1� u) ourring at step 3 has a singularity at u = 1, but itan be evaluated using a polynomial or rational approximation on some interval[0; � ℄, where � < 1, in muh the same way as the funtion g(u) of x2.2.The re�nements added by Kinderman and Monahan [23℄ and Leva [26℄ avoidmost of the logarithm evaluations. The following step is added:2.5. If P1(u; v) then go to step 4else if P2(u; v) then go to step 1else go to step 3.Here P1(u; v) and P2(u; v) are easily-omputed onditions. Geometrially, P1orresponds to a region R1 whih lies inside C, and P2 orresponds to a regionR2 whih enloses C, but R1 and R2 have almost the same area. Step 3 is onlyexeuted if (u; v) lies in the borderline region R2nR1.Step 2.5 an be vetorised, but at the expense of several vetor satter/gatheroperations. Thus, the saving in logarithm evaluations is partly anelled out byan inrease in overheads. The last olumn (R1) of Table 1 gives the times forour implementation on the VP2200. As expeted, the time for the logarithmomputation is now negligible, and the overheads dominate. In perentage termsthe times are:1% logarithm omputation (using the library routine),17% uniform random number omputation,23% satter and gather to handle borderline region,59% step 2.5 and other overheads.Although disappointing, the result for the Ratio method is not surprising, be-ause the omputations and overheads are similar to those for method P2 (thoughwith less logarithm omputations), but only half as many normal random num-bers are produed. Thus, we would expet the Ratio method to be slightly betterthan half as fast as method P2, and this is what Table 1 shows.2.5 Other MethodsOn serial mahines our old algorithm GRAND [5℄ is ompetitive with the Ratiomethod. In fat, GRAND is the fastest of the methods ompared by Leva [26℄.GRAND is based on an idea of Von Neumann and Forsythe for generating sam-ples from a distribution with density funtion  exp(�h(x)), where 0 � h(x) � 1:1. Generate a uniform random number x 2 [0; 1), and set u0  h(x).2. Generate independent uniform random numbers u1; u2; : : : 2 [0; 1)until the �rst k > 0 suh that uk�1 < uk.3. If k is odd then return x,else rejet x and go to step 1.A proof of orretness is given in Knuth [24℄.It is hard to see how to implement GRAND eÆiently on a vetor proessor.There are two problems {



Vetor/Parallel Random Number Generation 111. k is not bounded, even though its expeted value is small. Thus, a sequeneof gather operations seems to be required. The result would be similar toPetersen's implementation [35℄ of a generator for the Poisson distribution(muh slower than his implementation for the normal distribution).2. Beause of the restrition 0 � h(x) � 1, the area under the normal urveexp(�x2=2)=p2� has to be split into di�erent regions from whih samplesare drawn with probabilities proportional to their areas. This ompliatesthe implementation of the rejetion step.For these reasons we would expet a vetorised implementation of GRAND tobe even slower than our implementation of the Ratio method. Similar ommentsapply to other rejetion methods whih use an iterative rejetion proess and/orseveral di�erent regions.3 Vetorisation of Wallae's Normal RNGReently Wallae [40℄ proposed a new lass of pseudo-random generators fornormal variates. These generators do not require a stream of uniform pseudo-random numbers (exept for initialisation) or the evaluation of elementary fun-tions suh as log, sqrt, sin or os (needed by the Box-Muller and Polar methods).The ruial observation is that, if x is an n-vetor of normally distributed randomnumbers, and A is an n�n orthogonal matrix, then y = Ax is another n-vetorof normally distributed numbers. Thus, given a pool of nN normally distributednumbers, we an generate another pool of nN normally distributed numbers byperforming N matrix-vetor multipliations. The inner loops are very suitablefor implementation on vetor proessors. The vetor lengths are proportional toN , and the number of arithmeti operations per normally distributed number isproportional to n. Typially we hoose n to be small, say 2 � n � 4, and N tobe large.Wallae implemented variants of his new method on a salar RISC worksta-tion, and found that its speed was omparable to that of a fast uniform generator,and muh faster than the \lassial" methods onsidered in x2. The same per-formane relative to a fast uniform generator is ahievable on a vetor proessor,although some are has to be taken with the implementation (see x3.6).In x3.1 we desribe Wallae's new methods in more detail. Some statistialquestions are onsidered in xx3.2{3.5. Aspets of implementation on a vetorproessor are disussed in x3.6, and details of an implementation on the VP2200and VPP300 are given in x3.7.3.1 Wallae's Normal GeneratorsThe idea of Wallae's new generators is to keep a pool of nN normally dis-tributed pseudo-random variates. As numbers in the pool are used, new normallydistributed variates are generated by forming appropriate ombinations of the



12 Rihard P. Brentnumbers whih have been used. On a vetor proessor N an be large and thewhole pool an be regenerated with only a small number of vetor operations1.The idea just outlined is the same as that of the generalised Fibonai gen-erators for uniformly distributed numbers { a pool of random numbers is trans-formed in an appropriate way to generate a new pool. As Wallae [40℄ observes,we an regard the uniform, normal and exponential distributions as maximum-entropy distributions subjet to the onstraints:0 � x � 1 (uniform)E(x2) = 1 (normal)E(x) = 1, x � 0 (exponential).We want to ombine n � 2 numbers in the pool so as to satisfy the relevantonstraint, but to onserve no other statistially relevant information. To simplifynotation, suppose that n = 2 (there is no problem in generalising to n > 2).Given two numbers x, y in the pool, we ould satisfy the \uniform" onstraintby forming x0  (x + y) mod 1;and this gives the family of generalised Fibonai generators [6℄.We ould satisfy the \normal" onstraint by forming�x0y0� A�xy� ;where A is an orthogonal matrix, for exampleA = 1p2 � 1 1�1 1�or A = 15 � 4 3�3 4� :Note that this generates two new pseudo-random normal variates x0 and y0 fromx and y, and the onstraint x02 + y02 = x2 + y2is satis�ed beause A is orthogonal.Suppose the pool of previously generated pseudo-random numbers ontainsx0; : : : ; xN�1 and y0; : : : ; yN�1. Let �; : : : ; Æ be integer onstants. These on-stants might be �xed throughout, or they might be varied (using a subsidiaryuniform random number generator) eah time the pool is regenerated.One variant of Wallae's method generates 2N new pseudo-random numbersx00; : : : ; x0N�1 and y00; : : : ; y0N�1 using the reurrene1 The proess of regenerating the pool will be alled a \pass".



Vetor/Parallel Random Number Generation 13�x0jy0j � = A�x�j+ mod Ny�j+Æ mod N � (1)for j = 0; 1; : : : ; N � 1. The vetors x0 and y0 an then overwrite x and y, andbe used as the next pool of 2N pseudo-random numbers. To avoid the opyingoverhead, a double-bu�ering sheme an be used.3.2 Desirable ConstraintsIn order that all numbers in the old pool (x; y) are used to generate the newpool (x0; y0), it is essential that the indies�j +  mod Nand �j + Æ mod Ngive permutations of f0; 1; : : : ; N � 1g as j runs through f0; 1; : : : ; N � 1g. Aneessary and suÆient ondition for this is thatGCD(�;N) = GCD(�;N) = 1 : (2)For example, if N is a power of 2, then any odd � and � may be hosen.The orthogonal matrix A must be hosen so eah of its rows has at leasttwo nonzero elements, to avoid repetition of the same pseudo-random numbers.Also, these nonzeros should not be too small.For implementation on a vetor proessor it would be eÆient to take � =� = 1 so vetor operations have unit strides. However, statistial onsiderationsindiate that unit strides should be avoided. To see why, suppose � = 1. Thus,from (1), x0j = a0;0xj+ mod N + a0;1y�j+Æ mod N ;where ja0;0j is not very small. The sequene (zj) of random numbers returnedto the user is x0; : : : ; xN�1; y0; : : : ; yN�1;x00; : : : ; x0N�1; y00; : : : ; y0N�1; : : :so we see that zn is strongly orrelated with zn+� for � = 2N � .Wallae [40℄ suggests a \vetor" sheme where � = � = 1 but  and Æ vary ateah pass. This is ertainly an improvement over keeping  and Æ �xed. However,there will still be orrelations over segments of length O(N) in the output, andthese orrelations an be deteted by suitable statistial tests. Thus, we do notreommend the sheme for a library routine, although it would be satisfatoryin many appliations.We reommend that � and � should be di�erent, greater than 1, and that and Æ should be seleted randomly at eah pass to redue any residual orrela-tions.



14 Rihard P. BrentFor similar reasons, it is desirable to use a di�erent orthogonal matrix Aat eah pass. Wallae suggests randomly seleting from two prede�ned 4 � 4matries, but there is no reason to limit the hoie to two2. We prefer to hoose\random" 2 � 2 orthogonal matries with rotation angles not too lose to amultiple of �=2.3.3 The Sum of SquaresAs Wallae points out, an obvious defet of the shemes desribed in xx3.1{3.2is that the sum of squares of the numbers in the pool is �xed (apart from thee�et of rounding errors). For independent random normal variates the sum ofsquares should have the hi-squared distribution �2� , where � = nN is the poolsize.To overome this defet, Wallae suggests that one pseudo-random numberfrom eah pool should not be returned to the user, but should be used to ap-proximate a random sample S from the �2� distribution. A saling fator anbe introdued to ensure that the sum of squares of the � values in the pool (ofwhih � � 1 are returned to the user) is S. This only involves saling the matrixA, so the inner loops are essentially unhanged.There are several good approximations to the �2� distribution for large �. Forexample, 2�2� ' �x+p2� � 1�2 ; (3)where x is N(0; 1). More aurate approximations are known [1℄, but (3) shouldbe adequate if � is large.3.4 RestartingUnlike the ase of generalised Fibonai uniform random number generators [8℄,there is no well-developed theory to tell us what the period of the output se-quene of pseudo-random normal numbers is. Sine the size of the state-spae isat least 22wN , where w is the number of bits in a oating-point fration and 2Nis the pool size (assuming the worst ase n = 2), we would expet the period tobe at least of order 2wN (see Knuth [24℄), but it is diÆult to guarantee this.One solution is to restart after say 1000N numbers have been generated, using agood uniform random number generator with guaranteed long period ombinedwith the Box-Muller method to re�ll the pool.3.5 Disarding Some NumbersBeause eah pool of pseudo-random numbers is, stritly speaking, determinedby the previous pool, it is desirable not to return all the generated numbers to2 Caution: if a �nite set of prede�ned matries is used, the matries should be multi-pliatively independent over GL(n;R). (If n = 2, this means that the rotation angles(mod 2�) should be independent over the integers.) In partiular, no matrix shouldbe the inverse of any other matrix in the set.



Vetor/Parallel Random Number Generation 15the user3. If f � 1 is a onstant parameter4, we an return a fration 1=f of thegenerated numbers to the user and \disard" the remaining fration (1� 1=f).The disarded numbers are retained internally and used to generate the nextpool. There is a tradeo� between independene of the numbers generated andthe time required to generate eah number whih is returned to the user. Ourtests (desribed in x3.7) indiate that f � 3 is satisfatory.3.6 Vetorised ImplementationIf the reurrene (1) is implemented in the obvious way, the inner loop will involveindex omputations modulo N . It is possible to avoid these omputations. Thus2N pseudo-random numbers an be generated by �+ � � 1 iterations of a loopof the form do j = low, highxp(j) = A00*x(alpha*j + jx) + A01*y(beta*j + jy)yp(j) = A10*x(alpha*j + jx) + A11*y(beta*j + jy)enddowhere low, high, jx, and jy are integers whih are onstant within the loopbut vary between iterations of the loop. Thus, the loop vetorises. To generateeah pseudo-random number requires one load (non-unit stride), one oating-point add, two oating-point multiplies, one store, and of order�+ �Nstartup osts. The average ost should is only a few mahine yles per randomnumber if N is large and �+ � is small.On a vetor proessor with interleaved memory banks, it is desirable for thestrides � and � to be odd so that the maximum possible memory bandwidth anbe ahieved. For statistial reasons we want � and � to be distint and greaterthan 1 (see x3.2). For example, we ould hoose� = 3; � = 5;provided GCD(��;N) = 1 (true if N is a power of 2). Sine �+ � � 1 = 7, theaverage vetor length in vetor operations is about N=7.Counting operations in the inner loop above, we see that generation of eahpseudo-randomN(0; 1) number requires about two oating-point multipliationsand one oating-point addition, plus one (non-unit stride) load and one (unit-stride) store. To transform the N(0; 1) numbers to N(�; �2) numbers with givenmean and variane requires an additional multiply and add (plus a unit-strideload and store) 5. Thus, if f is the throw-away fator (see x3.5), eah pseudo-random N(�; �2) number returned to the user requires about 2f + 1 multipliesand f + 1 additions, plus f + 1 loads and f + 1 stores.3 Similar remarks apply to some uniform pseudo-random number generators [24, 27℄.4 We shall all f the \throw-away" fator.5 Obviously some optimisations are possible if it is known that � = 0 and � = 1.



16 Rihard P. BrentIf performane is limited by the multiply pipelines, it might be desirable toredue the number of multipliations in the inner loop by using fast Givens trans-formations (i.e. diagonal saling). The saling ould be undone when the resultswere opied to the aller's bu�er. To avoid problems of over/underow, expliitsaling ould be performed oasionally (e.g. one every 50-th pass through thepool should be suÆient).The implementation desribed in x3.7 does not inlude fast Givens transfor-mations or any partiular optimisations for the ase � = 0, � = 1.3.7 RANN4We have implemented the method desribed in xx3.5{3.6 in Fortran on theVP2200 and VPP300. The urrent implementation is alled RANN4. The imple-mentation uses RANU4 [6℄ to generate uniform pseudo-random numbers for initial-isation and generation of the parameters �; : : : ; Æ (see (1)) and pseudo-randomorthogonal matries (see below). Some desirable properties of the uniform ran-dom number generator are inherited by RANN4. For example, the proessor id isappended to the seed, so it is ertain that di�erent pseudo-random sequeneswill be generated on di�erent proessors, even if the user alls the generator withthe same seed on several proessors of the VPP300.The user provides RANN4 with a work area whih must be preserved betweenalls. RANN4 hooses a pool size of 2N , where N � 256 is the largest power of 2possible so that the pool �ts within part (about half) of the work area. Theremainder of the work area is used for the uniform generator and to preserve es-sential information between alls. RANN4 returns an array of normally distributedpseudo-random numbers on eah all. The size of this array, and the mean andvariane of the normal distribution, an vary from all to all.The parameters �; : : : ; Æ (see (1)) are hosen in a pseudo-random manner,one for eah pool, with � 2 f3; 5g and � 2 f7; 11g. The parameters  and Æ arehosen uniformly from f0; 1; : : : ; N � 1g. The orthogonal matrix A is hosen ina pseudo-random manner as A = � os � sin �� sin � os �� ;where �=6 � j�j � �=3 or 2�=3 � � � 5�=6. The onstraints on � ensure thatmin(j sin �j; j os �j) � 1=2. We do not need to ompute trigonometri funtions:a uniform generator is used to selet t = tan(�=2) in the appropriate range, andthen sin � and os � are obtained using a few arithmeti operations. The matrix Ais �xed in eah inner loop (though not in eah omplete pass) so multipliationsby os � and sin � are fast.For safety we adopt the onservative hoie of throw-away fator f = 3(see x3.5), although in most appliations the hoie f = 2 (or even f = 1) issatisfatory and signi�antly faster.Beause of our use of RANU4 to generate the parameters �; : : : ; Æ et, it is mostunlikely that the period of the sequene returned by RANN4 will be shorter than



Vetor/Parallel Random Number Generation 17the period of the uniformly distributed sequene generated by RANU4. Thus,it was not onsidered neessary to restart the generator as desribed in x3.4.However, our implementation monitors the sum of squares and orrets for any\drift" aused by aumulation of rounding errors.On the VP2200/10, the time per normally distributed number is approxi-mately (6:8f + 3:2) nse, i.e. (1:8f + 1:0) yles. With our hoie of f = 3 thisis 23.6 nse or 6.4 yles. The fastest version, with f = 1, takes 10 nse or 2.8yles. For omparison, the fastest method of those onsidered in [7℄ (the Polarmethod) takes 21.9 yles. Thus, we have obtained a speedup by a fator ofabout 3.2 in the ase f = 3.Times on a single proessor of the VPP300 are typially faster by a fator ofabout two, whih is to be expeted sine the peak speed of a proessor on theVPP300 is 2.285 GFlop (versus 1.25 Gop on the VP2200/10). On the VPP300with P proessors, the time per normally distributed number is 11:4=P nse iff = 3 and 5:4=P nse if f = 1.Various statistial tests were performed on RANN4 with several values of thethrow-away fator f . For example:{ If (x; y) is a pair of pseudo-random numbers with (supposed) normal N(0; 1)distributions, then u = exp(�(x2 + y2)=2) should be uniform in [0; 1℄, andv = artan(x=y) should be uniform in [��=2;+�=2℄. Thus, standard tests foruniform pseudo-random numbers an be applied. For example, we generatedbathes of (up to) 107 pairs of numbers, transformed them to (u; v) pairs,and tested uniformity of u (and similarly for v) by ounting the number ofvalues ourring in 1; 000 equal size bins and omputing the �2999 statisti.This test was repeated several times with di�erent initial seeds et. The �2values were not signi�antly large or small for any f � 1.{ We generated a bath of up to 107 pseudo-random numbers, omputed thesample mean, seond and fourth moments, repeated a number of times, andompare the observed and expeted distributions of sample moments. Theobserved moments were not signi�antly large or small for any f � 3. Thefourth moment was sometimes signi�antly small (at the 5% on�dene level)for f = 1.A possible explanation for the behaviour of the fourth moment when f = 1is as follows. Let the maximum absolute value of numbers in the pool at onepass be M , and at the following pass be M 0. By onsidering the e�et of theorthogonal transformations applied to pairs of numbers in the pool, we see that(assuming n = 2), M=p2 �M 0 � p2M :Thus, there is a orrelation in the size of outliers at suessive passes. Theorrelation for the subset of values returned to the user is redued (although notompletely eliminated) by hoosing f > 1.



18 Rihard P. Brent4 Summary and Conlusions for Normal RNGWe showed that both the Box-Muller and Polar methods for normally distributedrandom numbers vetorise well, and that it is possible to avoid and/or speed upthe evaluation of the funtions (sin, os, ln, sqrt) whih appear neessary. Onthe VP2200/10 our best implementation of the Polar method takes 21.9 mahineyles per normal random number, slightly faster than our best implementationof the Box-Muller method (26.3 yles).We onsidered the vetorisation of some other popular methods for generat-ing normally distributed random numbers, and showed why suh methods areunlikely to be faster than the Polar method on a vetor proessor.We showed that normal pseudo-random number generators based on Wal-lae's ideas vetorise well, and that their speed on a vetor proessor is lose tothat of the generalised Fibonai uniform generators, i.e. only a small numberof mahine yles per random number.Beause Wallae's methods are new, there is little knowledge of their sta-tistial properties. However, a areful implementation should have satisfatorystatistial properties provided distint non-unit strides �, � satisfying (2) areused, the sums of squares are varied as desribed in x3.3, and the throw-awayfator f is hosen appropriately. The pool size should be fairly large (subjet tostorage onstraints), both for statistial reasons and to improve performane ofthe inner loops. Wallae uses 4�4 orthogonal transformations, but a satisfatorygenerator is possible with 2� 2 orthogonal transformations.It may appear that we have onentrated on vetor rather than parallel im-plementations. If this is true, it is beause vetorisation is the more interestingand hallenging topi. Parallelisation of random number generators is in a teh-nial sense \easy" sine no ommuniation is required after the initialisation ondi�erent proessors. However, are has to be taken with this initialisation toensure independene (see x1), and testing of parallel RNGs should not ignorethis important requirement.AknowledgementsThanks are due to:{ Don Knuth for disussions regarding the properties of generalised Fibonaimethods and for bringing some referenes to my attention.{ Wes Petersen for his omments and helpful information on implementationsof random number generators on Cray and NEC omputers [34, 35℄.{ Chris Wallae for sending me a preprint of his paper [40℄ and ommentingon my attempts to vetorise his method.{ Andy Cleary, Bob Gingold, Markus Hegland and Peter Prie for their assis-tane on the Vetor/Parallel Sienti� Subroutine Library (\area 4") projet.This work was supported in part by a Fujitsu-ANU researh agreement. TheANU Superomputer Faility provided omputer time for development and test-ing on Fujitsu VP2200 and VPP300 omputers at the Australian National Uni-versity.
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