Gang Scheduling with a Queue for Large Jobs

B. B. Zhou

School of Computing & Mathematics
Deakin University
Geelong, VIC 3217, Australia

Abstract

Applying gang scheduling can alleviate the blockade
problem caused by exclusively space-sharing schedul-
ing. To simply allow jobs to run simultaneously on
the same processors as in conventional gang schedul-
ing, however, may introduce a large number of time
slots in the system. In consequence the cost of contert
switches will be greatly increased, and each running job
can only obtain a small portion of resources including
memory space and processor utilisation and so no jobs
can finish their computations quickly. Therefore, the
number of jobs allowed to run in the system should be
limited. In this paper we present some exrperimental
results to show that by limiting real large jobs time-
sharing the same processors and applying the backfill-
ing technique we can greatly reduce the average number
of time slots in the system and significantly improve
the performance of both small and large jobs.

1 Introduction

Many job scheduling strategies have been intro-
duced for parallel processing. (See a good survey
in [5].) These scheduling strategies can be classified
into either space sharing, or time sharing. Because
a time-shared environment is more difficult to estab-
lish for multiple processor systems, currently most
commercial parallel systems only adopt space sharing.
One major drawback of space sharing is the blockade
situation, that is, small jobs can easily be blocked for a
long time by large ones. The backfilling technique was
then introduced to alleviate this problem [7, 9]. With
backfilling one attempts to allocate idle processors to
small jobs which are behind in the queue of waiting
jobs if the allocation does not cause starvation of larger
jobs. As more parallel software packages are developed
for various kinds of applications and more and more
ordinary users are getting familiar with parallel sys-
tems, it is expected that the workload on such systems

R. P. Brent

Oxford University Computing Laboratory
Wolfson Building, Parks Road
Oxford OX1 3QD, UK

will become heavy in the near future. With exclusively
space-sharing scheduling, however, the blockade can
still be a serious problem under heavy workload. To
alleviate this problem, time sharing needs to be con-
sidered.

It is known that coordinated scheduling of paral-
lel jobs across the processors is a critical factor to
achieve efficient parallel execution in a time-shared
environment. Coordinated scheduling strategies can
be classified into two different categories. The first
is called implicit coscheduling. This approach does
not use a global scheduler, but local schedulers on
each processor to make scheduling decisions based on
the communication behavior of local processes. There
are two types of implicit coscheduling, that is, dy-
namic coscheduling with which scheduling decisions
are made based on message arrivals [10], and two-
phase blocking which uses more information such as
response time, message arrivals and the amount of
scheduling progress made by each local process [3].
Implicit coscheduling is attractive for loosely coupled
clusters without a central resource management sys-
tem.

The second type of coscheduling is called explicit
coscheduling [8], or gang scheduling [6]. With explicit
coscheduling processes of the same job will run si-
multaneously for a certain amount of time which is
called scheduling slot, or time slot. When a time slot is
ended, the processors will context-switch at the same
time to give the service to processes of another job.
Controlled by a global scheduler, all parallel jobs in
the system take turns to receive the service in a co-
ordinated manner. It gives the user an impression
that the job is not blocked, but executed on a ded-
icated slower machine when the system workload is
heavy. In this paper we shall only consider how to
improve the performance of explicit coscheduling, or
gang scheduling.

Although gang scheduling is currently the most
popular scheduling strategy for parallel processing in a

time-shared environment, there are still certain funda-
mental problems which remain to be solved. One ma-
jor problem is resource contention, that is, a number
of parallel jobs compete for limited resources in a sys-
tem. The first of this kind is called memory pressure,
that is, a number of jobs simultaneously running on
the same processors demands a memory space larger
than the actual memory a system provides. Using the
paging mechanism might alleviate the problem. How-
ever, research indicates that paging may cause a great
degradation of job performance [1]. The second con-
tention problem is associated with limited computing
power of a given system. If many jobs time-share the
same set of processors, each job can only obtain very
small portion of processor utilisation and no job can
complete quickly.

Recently several methods have been proposed to al-
leviate this kind of contention problem. For example,
the reported experimental results in [1] show that us-
ing a queue to delay job execution is more efficient
than running jobs all together with paging applied.
In [12], for another example, the authors first set a
multiprogramming level, or a limit for the maximum
number of jobs which are allowed to run simultane-
ously on the same processor. If the maximum level is
reached, the new arrivals have to be queued. The au-
thor then combines the gang scheduling and the back-
filling technique to achieve a good performance.

It seems that using a waiting queue to delay jobs
execution is a good way to alleviate the problem of
resource contention. The question is, however, which
jobs should be queued. Different answers to this ques-
tion will lead to different system and job performance.
We decide to apply a waiting queue for large jobs
based on three main reasons:

1. If the size of a job is large, the user normally
do not expect that the job will be completed in
a short time. However, the user will demand a
short response time when submitting a small job.
Queuing large jobs will enhance the performance
of small jobs.

2. Conventionally, jobs are not distinguished accord-
ing to their execution times when gang scheduling
is considered. It should be pointed out that the
simple round robin scheme used in gang schedul-
ing works well only if the sizes of jobs are dis-
tributed in a wide range. Gang scheduling using
the simple round robin may not perform as well
as even a simple FCFS scheme in terms of aver-
age response time, or average slowdown, when all
the incoming jobs are large. To limit the num-
ber of large jobs simultaneously running on the

same processors should improve the performance
of both large and small jobs.

3. A large job usually involves a large amount of
data set (with some exceptions). The memory
presure can be alleviated if the number of simul-
taneously running large jobs is limited.

In this paper we shall present some simulation re-
sults to show that, by limiting large jobs simultane-
ously running on the same processors, we can improve
the performance in terms of slowdown for all jobs, and
slowdown for large jobs as well if the backfilling tech-
nique is applied, and we can also decrease the average
number of time slots in the system.

The paper is organised as follows: In Section 2
we briefly describe the gang scheduling system imple-
mented for our experiments. A workload model used
in our experiments is discussed in Section 3. Exper-
imental results and discussions are presented in Sec-
tions 4, 5 and 6. Finally the conclusions are given in
Section 7.

2 Owur Gang Scheduling System

The gang scheduling system implemented for our
experiments is mainly based on a job re-packing allo-
cation strategy which is introduced for enhancing both
resource utilisation and job performance [13, 14].

Conventional resource allocation strategies for gang
scheduling only consider processor allocation within
the same time slot and the allocation in one time slot
is independent of the allocation in other time slots.
One major disadvantage of this kind of allocation is
the problem of fragmentation. Because processor al-
location is considered independently in different time
slots, freed processors due to job termination in one
time slot may remain idle for a long time even though
they are able to be re-allocated to existing jobs run-
ning in other time slots.

One way to alleviate the problem is to allow jobs
to run in multiple time slots [4, 11]. When jobs
are allowed to run in multiple time slots, the buddy
based allocation strategy will perform much better
than many other existing allocation schemes in terms
of average slowdown [4].

Another method to alleviate the problem of frag-
mentation is job re-packing. In this scheme we try
to rearrange the order of job execution on the origi-
nally allocated processors so that small fragments of
idle processors from different time slots can be com-
bined together to form a larger and more useful one in

a single time slot. Therefore, processors in the system
can be utilised more efficiently. When this scheme is
incorporated into the buddy based system, we can set
up a workload tree to record the workload conditions of
each subset of processors. With this workload tree we
are able to simplify the search procedure for available
processors, to balance the workload across the proces-
sors and to quickly determine when a job can run in
multiple time slots and when the number of time slots
in the system can be reduced.

With a combination of job re-packing, running jobs
in multiple time slots, minimising time slots in the
system, and applying buddy based scheme to allocate
processors in each time slot we are able to achieve high
efficiency in processor utilisation and a great improve-
ment in job performance [14].

To conduct our experiments we add a waiting queue
in the gang scheduling system described above. The
queue is used only to queue large jobs. Small jobs
can enter the system and be executed immediately on
their arrivals without any restrictions. In our first two
experiments we use a simple FCFS queue. However,
the backfilling technique is adopted to try to enhance
the performance of large jobs in our third experiment.

We introduce two parameters in our experimental
system. By varying these two parameters we are able
to see how the added queue affects the system perfor-
mance.

The first parameter iS jiez, the maximum num-
ber of large jobs which are allowed to run simultane-
ously on the same processors. When j,,,, = 1, large
jobs are not allowed to time-share the same proces-
sors. However, it is just a conventional gang scheduler
when j,,,4, becomes very large because a large number
of large jobs will be allowed to run simultaneously on
the same processors and no job will be queued before
being executed.

Assume the execution time of the largest job is ¢°.
A job will be considered “large” in each test if its
execution time is greater than at® for 0.0 < a < 1.0.
These “large” jobs will first enter the queue before
being executed.

3 The Workload Model

In our experiment we adopted one workload model
proposed in [2]. Both job runtimes and sizes (the
number of processors required) in this model are dis-
tributed uniformly in log space (or uniform-log dis-
tributed), while the interarrival times are exponen-
tially distributed. This model was constructed based

on observations from the Intel Paragon at the San
Diego Supercomputer Center and the IBM SP2 at the
Cornell Theory Center and has been used by many
researchers to evaluate their parallel job scheduling
algorithms.

Since the model was originally built to evaluate
batch scheduling policies, we made a few minor mod-
ifications in our simulation for gang scheduling. In
many real systems jobs are classified into two classes,
that is, interactive and batch jobs. A batch job is one
which tends to run much longer and often requires
a larger number of processors than interactive ones.
Usually batch queues are enabled for execution only
during the night. In our experiments we only consider
interactive jobs. Job runtimes will have a reasonably
wide distribution, with many short jobs but a few rel-
atively large ones and they are rounded to the number
of time slots within a range between 1 and 240.

In following sections we present some experimental
results. We assume that there are 128 processors in
the system. In each experiment we measure the av-
erage slowdown and the average number of time slots
which are defined as follows:

Assume the execution time and the turnaround
time for job ¢ are t{ and t], respectively. The slow-
down for job i is s; = t7/t¢. The average slowdown s
is then s = 31" s;/m for m being the total number
of jobs.

If ¢; is the total time when there are i time slots
in the system, the average number of time slots in
the system during the operation can be defined as
n=3"'_yiti/ S_, t; where [is the largest number of
time slots encountered in the system during the com-
putation.

For each estimated system workload, 10 different
sets of 20000 jobs were generated using the workload
model described above and the final result is the av-
erage of these 10 runs.

4 Experiment One

In our first experiment a FCFS queue is adopted for
queuing large jobs. The number of “large” jobs which
can be simultaneously executed on the same proces-
sors is set to two, that is, j.e = 2. By varying the
second parameter o we are able to determine which
job will be queued before being executed.

There are two extreme cases for determining
“large” jobs. When o = 0.0, every job will be consid-
ered “large” and have to enter the system before being
executed. In this case the scheduling system acts very

100 S B |
80
60
40 -
20 -

0 25 i i . i\
01 02 03 0.4 05 06 070809 1

workload

Nt O—w O F

100
80 -
60 -
40 -
20 -

() el o it
01 0.2 0.3 04 0.5 06 0.7 0.8 09 1

workload

(b)

sfoado—un

Figure 1: (a) average number of slots and (b) average
slowdown when je0 = 2.

much like a simple FCFS system except the number
of time slots can reach two during the computation
(because jmae = 2). When a = 1.0, at the other ex-
treme, no job will be considered “large” and every job
will be executed immediately on the arrival. This is
exactly the same as the conventional gang scheduling
system. In our experiment we start from a = 0.0,
slowly increase a and by comparing other cases with
these two extreme ones we are interested to see if the
performance can be improved by queuing real large
jobs. Some experimental results are given in Fig. 1.

When a = 0.0, every job has to be queued before
being executed and the number of time slots encoun-
tered during the computation will not exceed two no
matter how busy the system is. As «a increases, more
jobs are allowed to run without first entering the wait-
ing queue. This means more jobs will time-share the
same processors and then the average number of time
slots will increase, especially when the system work-
load is heavy. It should be noted that the increase
in average number of time slots is not significant at
the beginning. However, this increase becomes dra-
matic after a > 0.6, especially when a becomes close
to 1.0. This is a clear indication that to limit the num-
ber of large jobs time-sharing the same processors will
greatly decrease the number of time slots in the sys-
tem.

We have seen from Fig. 1(a) that all other curves
are bounded by the two curves, one associated with
a = 0.0 being the lower bound and the other with
a = 1.0 being the upper bound. However, this is
not the case for average job slowdown, as depicted
in Fig. 1(b). The average slowdown for @ = 0.0 is
very high even when the workload is light. As a
increases, more jobs are allowed to run without be-
ing queued and the performance is improved. After
a passes a certain value, however, the performance
starts degrading and the degradation of performance
becomes significant when « is close to 1.0. This situ-
ation may be explained as follows: When « is small,
some jobs being queued are not large jobs. Queuing
small jobs will degrade the performance in terms of
slowdown. When a reaches a certain value, jobs being
queued are real large ones. Thus the system can effec-
tively prevent these large jobs from time-sharing pro-
cessors and the performance is significantly improved.
Increasing a after that point, more jobs are allowed to
time-share processors. These jobs will compete with
each other for resources and each job can only obtain
a very small portion of processor utilisation in each
scheduling round. In consequence no jobs (even small
ones requiring an execution time of only a few time

100

sfoafdo—un
S
[an)

20
0E 4‘ e R
0.1 0.2 03040506070809 1
workload
(a)
100
s 80
1
0
w 60 -
d
o 40
w
n 20
oM i Rl
010203040506070809 1
workload
(b)

Figure 2: (a) average slowdown when jg., = 1 and
(b) average slowdown when j;q00 = 3.

slots) will be completed quickly. This will markedly
degrade the overall system performance.

We observed similar results using different j,,,4, in
our experiment. Fig. 2 shows some experimental re-
sults obtained when j,,.; is set to one and three re-
spectively.

5 Experiment Two

In our first experiment we see that to queue large
jobs or to limit the number of large jobs simultane-
ously running on the same processors can improve
the job performance in terms of average slowdown. It
should be noted that the resources of a given system
are limited and thus the performance gain is actually
obtained by giving priority to short jobs and penal-
ising the large ones. This may be reasonable because
we normally do not expect a quick response time when
submitting a large job. However, the problem is how
hard the large jobs are penalised when such a waiting
queue is introduced. In our second experiment we set
a = 0.8 and allow j,;4 to vary from 1 to co. When the
number is set t0 jnmaz = 1, large jobs are not allowed
to time-share the same processors. When the number
Jmaz becomes very large, however, no large jobs will
be queued and it is just a simple gang scheduling sys-
tem. By varying jme. we are interested to see how
the performance of large jobs is affected by the simple
FCFS queue.

Some results of our second experiment are depicted
in Fig. 3. It can be seen that, by limiting the number
of large jobs running simultaneously on the same pro-
cessors the average number of slots in the system will
decrease. We see from Fig. 3(b) that the performance
continues to improve as j,q, decreases starting from
Jmaz = 00. However, there is one exceptional case,
that is, the performance for j,,,, = 1 is not as good
as that for jmez = 2, Or jmez = 3. This may be
because a simple FCFS waiting queue is used in the
system when j,.. = 1 and the blockade problem is
thus significant. Consider a simple example in which
the first job in the queue requires 64 processors, but
currently there are only 32 processors available. This
job will then block all the following jobs in the queue
from being executed even though some of them require
less than 32 processors.

We have seen that the performance in terms of av-
erage number of slots and slowdown for all jobs can
be improved by limiting the number of large jobs run-
ning simultaneously on the same processors. Unfortu-
nately, the performance for large jobs is significantly
degraded after the introduction of this simple waiting

| I I I

#80— jmaw:]-_e_ _*—
070— .Zmaw:2"+" —
f60_ .Zma:c:3_g_ T
550_ .Zmaw:5"><"' . -
1 40 - _JmawZS_A_ . —
030— Jmaz = OO = * - —
t

S

el it
0.1 0.2 0.3 04 0.5 06 07 08 09 1
workload

sfoago—un

01 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1
workload

100

sdoafo—uw
S
o

20
(0 A——E— i
0.1 0.2 0.3 04 0.5 06 07 0.8 09 1
workload
(c)

Figure 3: (a) Average number of time slots, (b) av-
erage slowdown for all jobs and (c) average slowdown
for large jobs when a simple FCFS queue is applied.

queue. It can be seen from Fig. 3(c) that slowdown for
large jobs is significantly increased as jpnq, decreased,
especially when the system workload is heavy. The
main reason we believe is still the blockade problem
caused by the simple FCFS queue.

A good way to alleviate the blockade problem is to
use backfilling. However, the question is if we can im-
prove the performance of large jobs and at the same
time still keep a similar performance for average num-
ber of slots as shown in Fig. 3(a) and a similar per-
formance for slowdown for all jobs in Fig. 3(b) after
adopting the backfilling technique.

6 Experiment Three

The backfilling technique is adopted in our third ex-
periment. Using the backfilling technique we need to
calculate job turnaround time. With gang schedul-
ing, however, it is difficult to accurately measure
turnaround time because jobs can run in multiple time
slots and the number of time slots in the system may
also vary during the computation. As experimental
results show, however, inaccuracy in estimation of job
turnaround time has little impact on average system
performance [12]. Thus in our experiment we compute
the turnaround time as a product of the required ex-
ecution time and the maximum number of time slots
currently encountered, and each time when the system
working condition changes, i.e., when a large job is ter-
minated, we first check to see if the first large job in
the queue can be executed to make sure that the first
queued job will not be delayed for too long because of
the inaccuracy in measuring turnaround time.

Some experimental results are depicted in Fig. 4.
The average number of slots is shown in Fig. 4(a).
Comparing this figure with that in Fig. 3(a) we can
see that they are about the same. Thus adopting back-
filling technique will not greatly increase the average
number of time slots in the system.

The performance for large jobs is depicted in
Fig 4(c). From this figure we can see that initially the
performance is improved by increasing jn,q..- However,
the slowdown will increase if j,,,4, is further increased
after a certain point. It can be seen from the figure
that the slowdown for j,4. = oo (simple gang schedul-
ing) is greater than that for j,,. > 3. This result is
expected and can be explained as follows: When j,,,44
is small, the problem of blockade is more significant
and increasing jn,q, will alleviate the problem. When
Jmaz Teaches a certain value (which is 8 for using the
particular workload model in our experiment), how-
ever, the problem of limited computing power in a

] | T T

#80— jmaw:]-_e_ _*—
070— .Zmaw:2"+" 7
f 60 - .Zma:c:3_g_ T
550_ Jmaw:5>< « _
1 40 - _Jmawzs_é_ . -
le) 30 _ Jmaz = O - * - .x—
s

el it
0.1 0.2 0.3 04 0.5 06 07 08 09 1
workload

sfoago—un

01 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1
workload

100

sdoafo—uw
S
o

20
0 B——— el
0102030405 06 0708 09 1
workload
()

Figure 4: (a) Average number of time slots, (b) aver-
age slowdown for all jobs and (c) average slowdown for
large jobs when the backfilling technique is applied.

given system will become more significant, that is, if
more large jobs are allowed to time-share the same
processors, each job can only obtain a very small por-
tion of processor utilisation and then the system per-
formance will be degraded.

Other two points can be made about slowdown by
comparing Fig. 4 with Fig. 3. First we have the best
average performance for all jobs when j,.. = 1 and
with the same j,,4, we have smaller slowdown in our
third experiment. Second when backfilling is applied
the slowdown for large jobs is greatly decreased. Com-
bining these two facts, we conclude that using the
backfilling technique to improve the performance for
large jobs does not heavily penalise smaller ones.

7 Conclusions

It is known that exclusively space-sharing schedul-
ing can cause blockade problem under heavy workload
and that this problem can be alleviated by applying
the gang scheduling strategy. Using gang scheduling
to simply allow jobs to run simultaneously on the same
processors, however, may introduce a large number of
time slots in the system. In consequence the cost of
context switches will be greatly increased, and each
running job can only obtain a small portion of re-
sources including memory space and processor utili-
sation and so no jobs can complete quickly. There-
fore, the number of jobs allowed to run in the system
should be limited. The question is which job should
be queued so that the overall performance can be im-
proved, or at least will not be significantly degraded
in comparison with conventional gang scheduling. In
this paper we presented some results obtained from
our experiments to show that by limiting real large
jobs time-sharing the same processors and applying
the backfilling technique we can greatly reduce the
average number of time slots in the system and sig-
nificantly improve the performance of both small and
large jobs.

In our experiments we only used one queue for large
jobs. To better deal with the problem of resource con-
tention we may need multiple queues, for example, one
for large jobs, one for medium-sized jobs and one for
small jobs. One question is how to dispatch jobs from
these queues to balance the performance of different
types of jobs and to achieve the best possible overall
performance. This problem will be considered in our
future research.

To limit the number of large jobs simultaneously
running on the same processors may alleviate mem-
ory pressure. This is because in practice a large job

usually requires a large memory space. However, sim-
ply limiting the job number can only be considered as
an indirect method for the problem because it does not
directly take memory requirements into consideration.
In the future we shall combine memory management
with scheduling to solve the problem of memory pres-

sure.

References

[1]

[4]

A. Batat and D. G. Feitelson, Gang scheduling
with memory considerations, Proceedings of 14th
International Parallel and Distributed Processing
Symposium, Cancun, May 2000, pp.109-114.

A. B. Downey, A parallel workload model and its
implications for processor allocation, Proceedings
of 6th International Symposium on High Perfor-
mance Distributed Computing, Aug 1997.

A. C. Dusseau, R. H. Arpaci and D. E. Culler,
Effective distributed scheduling of parallel work-
loads, Proceedings of ACM SIGMETRICS’96 In-
ternational Conference, 1996.

D. G. Feitelson, Packing schemes for gang
scheduling, In Job Scheduling Strategies for Par-
allel Processing, D. G. Feitelson and L. Rudolph
(eds.), Lecture Notes Computer Science, Vol.
1162, Springer-Verlag, 1996, pp.89-110.

D. G. Feitelson and L. Rudolph, Job scheduling
for parallel supercomputers, in Encyclopedia of
Computer Science and Technology, Vol. 38, Mar-
cel Dekker, Inc, New York, 1998.

D. G. Feitelson and L. Rudolph, Gang scheduling
performance benefits for fine-grained synchroni-
sation, Journal of Parallel and Distributed Com-
puting, 16(4), Dec. 1992, pp.306-318.

D. Lifka, The ANL/IBM SP scheduling system,
In Job Scheduling Strategies for Parallel Process-
ing, D. G. Feitelson and L. Rudolph (Eds.), Lec-
ture Notes Computer Science, Vol. 949, Springer-
Verlag, 1995, pp.295-303.

J. K. Ousterhout, Scheduling techniques for con-
current systems, Proceedings of Third Interna-
tional Conference on Distributed Computing Sys-
tems, May 1982, pp.20-30.

[9]

[10]

[11]

[13]

J. Skovira, W. Chan, H. Zhou and D. Lifka, The
EASY - LoadLeveler API project, In Job Schedul-
ing Strategies for Parallel Processing, D. G. Feit-
elson and L. Rudolph (Eds.), Lecture Notes Com-
puter Science, Vol. 1162, Springer-Verlag, 1996.

P. G. Sobalvarro and W. E. Weihl, Demand-
based coscheduling of parallel jobs on multi-
programmed multiprocessors, In Job Scheduling
Strategies for Parallel Processing, D. G. Feitelson
and L. Rudolph (Eds.), Lecture Notes Computer
Science, Vol. 949, Springer-Verlag, 1995.

K. Suzaki, H. Tanuma, S. Hirano, Y. Ichisugi and
M. Tukamoto, Time sharing systems that use a
partitioning algorithm on mesh-connected paral-
lel computers, Proceedings of the Ninth Interna-
tional Conference on Distributed Computing Sys-
tems, 1996, pp.268-275.

Y. Zhang, H. Franke, J. E. Moreira and A. Siva-
subramaniam, Improving parallel job schedul-
ing by combining gang scheduling and backfill-
ing techniques, Proceedings of 14th International
Parallel and Distributed Processing Symposium,
Cancun, May 2000, pp.133-142.

B. B. Zhou, R. P. Brent, C. W. Johnson and
D. Walsh, Job re-packing for enhancing the per-
formance of gang scheduling, Proceedings of 5th
Workshop on Job Scheduling Strategies for Paral-
lel Processing, San Juan, April 1999, pp.129-143.

B. B. Zhou, D. Walsh and R. P. Brent, Resource
allocation schemes for gang scheduling, Proceed-
ings of 6th Workshop on Job Scheduling Strate-
gies for Parallel Processing, Cancun, May 2000,
pp-45-53.

