
Recent Progress and Prospects for Integer

Factorisation Algorithms

Richard P. Brent

Oxford University Computing Laboratory,
Wolfson Building, Parks Road,

Oxford OX1 3QD, UK
rpb@comlab.ox.ac.uk

http://www.comlab.ox.ac.uk/

Abstract. The integer factorisation and discrete logarithm problems
are of practical importance because of the widespread use of public key
cryptosystems whose security depends on the presumed difficulty of solv-
ing these problems. This paper considers primarily the integer factorisa-
tion problem. In recent years the limits of the best integer factorisation
algorithms have been extended greatly, due in part to Moore’s law and in
part to algorithmic improvements. It is now routine to factor 100-decimal
digit numbers, and feasible to factor numbers of 155 decimal digits (512
bits). We outline several integer factorisation algorithms, consider their
suitability for implementation on parallel machines, and give examples
of their current capabilities. In particular, we consider the problem of
parallel solution of the large, sparse linear systems which arise with the
MPQS and NFS methods.

1 Introduction

There is no known deterministic or randomised polynomial-time1 algorithm for
finding a factor of a given composite integer N . This empirical fact is of great
interest because the most popular algorithm for public-key cryptography, the
RSA algorithm [54], would be insecure if a fast integer factorisation algorithm
could be implemented.

In this paper we survey some of the most successful integer factorisation
algorithms. Since there are already several excellent surveys emphasising the
number-theoretic basis of the algorithms, we concentrate on the computational
aspects.

This paper can be regarded as an update of [8], which was written just
before the factorisation of the 512-bit number RSA155. Thus, to avoid duplica-
tion, we refer to [8] for primality testing, multiple-precision arithmetic, the use
of factorisation and discrete logarithms in public-key cryptography, and some
factorisation algorithms of historical interest.

1 For a polynomial-time algorithm the expected running time should be a polynomial
in the length of the input, i.e. O((log N)c) for some constant c.

D.-Z. Du et al. (Eds.): COCOON 2000, LNCS 1858, pp. 3–22, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

4 Richard P. Brent

1.1 Randomised Algorithms

All but the most trivial algorithms discussed below are randomised algorithms,
i.e. at some point they involve pseudo-random choices. Thus, the running times
are expected rather than worst case. Also, in most cases the expected running
times are conjectured, not rigorously proved.

1.2 Parallel Algorithms

When designing parallel algorithms we hope that an algorithm which requires
time T1 on a computer with one processor can be implemented to run in time
TP ∼ T1/P on a computer with P independent processors. This is not always
the case, since it may be impossible to use all P processors effectively. However,
it is true for many integer factorisation algorithms, provided P is not too large.

The speedup of a parallel algorithm is S = T1/TP . We aim for a linear
speedup, i.e. S = Θ(P).

1.3 Quantum Algorithms

In 1994 Shor [57,58] showed that it is possible to factor in polynomial expected
time on a quantum computer [20,21]. However, despite the best efforts of several
research groups, such a computer has not yet been built, and it remains unclear
whether it will ever be feasible to build one. Thus, in this paper we restrict our
attention to algorithms which run on classical (serial or parallel) computers. The
reader interested in quantum computers could start by reading [50,60].

1.4 Moore’s Law

Moore’s “law” [44,56] predicts that circuit densities will double every 18 months
or so. Of course, Moore’s law is not a theorem, and must eventually fail, but it
has been surprisingly accurate for many years. As long as Moore’s law continues
to apply and results in correspondingly more powerful parallel computers, we ex-
pect to get a steady improvement in the capabilities of factorisation algorithms,
without any algorithmic improvements. Historically, improvements over the past
thirty years have been due both to Moore’s law and to the development of new
algorithms (e.g. ECM, MPQS, NFS).

2 Integer Factorisation Algorithms

There are many algorithms for finding a nontrivial factor f of a composite inte-
ger N . The most useful algorithms fall into one of two classes –

Recent Progress and Prospects for Integer Factorisation Algorithms 5

A. The run time depends mainly on the size of N, and is not strongly dependent
on the size of f . Examples are –

• Lehman’s algorithm [28], which has worst-case run time O(N1/3).
• The Continued Fraction algorithm [39] and the Multiple Polynomial

Quadratic Sieve (MPQS) algorithm [46,59], which under plausible as-
sumptions have expected run time O(exp(

√
c lnN ln lnN)), where c is a

constant (depending on details of the algorithm). For MPQS, c ≈ 1.
• The Number Field Sieve (NFS) algorithm [29,30], which under plausi-

ble assumptions has expected run time O(exp(c(lnN)1/3(ln lnN)2/3)),
where c is a constant (depending on details of the algorithm and on the
form of N).

B. The run time depends mainly on the size of f, the factor found. (We can
assume that f ≤ N1/2.) Examples are –

• The trial division algorithm, which has run time O(f · (log N)2).
• Pollard’s “rho” algorithm [45], which under plausible assumptions has

expected run time O(f1/2 · (log N)2).
• Lenstra’s Elliptic Curve (ECM) algorithm [34], which under plausible as-

sumptions has expected run time O(exp(
√

c ln f ln ln f)·(log N)2), where
c ≈ 2 is a constant.

In these examples, the time bounds are for a sequential machine, and the term
(log N)2 is a generous allowance for the cost of performing arithmetic operations
on numbers which are O(N2). If N is very large, then fast integer multiplication
algorithms [19,24] can be used to reduce the (log N)2 term.

Our survey of integer factorisation algorithms is necessarily cursory. For more
information the reader is referred to [8,35,48,53].

3 Lenstra’s Elliptic Curve Algorithm

Lenstra’s elliptic curve method/algorithm (abbreviated ECM) was discovered
by H. W. Lenstra, Jr. about 1985 (see [34]). It is the best known algorithm
in class B. To save space, we refer to [7,8,34] and the references there for a
description of ECM, and merely give some examples of its successes here.

3.1 ECM Examples

1. In 1995 we completed the factorisation of the 309-decimal digit (1025-bit)
Fermat number F10 = 2210

+ 1. In fact

F10 = 45592577 · 6487031809 ·
4659775785220018543264560743076778192897 · p252

where 46597 · · ·92897 is a 40-digit prime and p252 = 13043 · · ·24577 is a
252-digit prime. The computation, which is described in detail in [7], took

6 Richard P. Brent

about 240 Mips-years. (A Mips-year is the computation performed by a
hypothetical machine performing 106 instructions per second for one year,
i.e. about 3.15×1013 instructions. Is is a convenient measure but should not
be taken too seriously.)

2. The largest factor known to have been found by ECM is the 54-digit factor

484061254276878368125726870789180231995964870094916937

of (643 − 1)42 + 1, found by Nik Lygeros and Michel Mizony with Paul
Zimmermann’s GMP-ECM program [63] in December 1999 (for more details
see [9]).

3.2 Parallel/Distributed Implementation of ECM

ECM consists of a number of independent pseudo-random trials, each of which
can be performed on a separate processor. So long as the expected number of
trials is much larger than the number P of processors available, linear speedup
is possible by performing P trials in parallel. In fact, if T1 is the expected run
time on one processor, then the expected run time on a MIMD parallel machine
with P processors is

TP = T1/P + O(T 1/2+ε
1) (1)

3.3 ECM Factoring Records

1990 1992 1994 1996 1998 2000 2002

38

40

42

44

46

48

50

52

54 D

Figure 1: Size of factor found by ECM versus year

Recent Progress and Prospects for Integer Factorisation Algorithms 7

Figure 1 shows the size D (in decimal digits) of the largest factor found by
ECM against the year it was done, from 1991 (40D) to 1999 (54D) (historical
data from [9]).

3.4 Extrapolation of ECM Records

1990 1992 1994 1996 1998 2000 2002

6.0

6.2

6.4

6.6

6.8

7.0

7.2

7.4

7.6
√

D

Figure 2:
√

D versus year Y for ECM

Let D be the number of decimal digits in the largest factor found by ECM up
to a given date. From the theoretical time bound for ECM, assuming Moore’s
law, we expect

√
D to be roughly a linear function of calendar year (in fact√

D lnD should be linear, but given the other uncertainties we have assumed for
simplicity that

√
lnD is roughly a constant). Figure 2 shows

√
D versus year Y .

The straight line shown in the Figure 2 is

√
D =

Y − 1932.3
9.3

or equivalently Y = 9.3
√

D + 1932.3 ,

and extrapolation gives D = 60 in the year Y = 2004 and D = 70 in the year
Y = 2010.

8 Richard P. Brent

4 Quadratic Sieve Algorithms

Quadratic sieve algorithms belong to a wide class of algorithms which try to find
two integers x and y such that x 6= ±y (mod N) but

x2 = y2 (mod N) . (2)

Once such x and y are found, then GCD (x− y, N) is a nontrivial factor of N .
One way to find x and y satisfying (2) is to find a set of relations of the form

u2
i = v2

i wi (mod N), (3)

where the wi have all their prime factors in a moderately small set of primes
(called the factor base). Each relation (3) gives a colunm in a matrix R whose
rows correspond to the primes in the factor base. Once enough columns have been
generated, we can use Gaussian elimination in GF(2) to find a linear dependency
(mod 2) between a set of columns of R. Multiplying the corresponding relations
now gives an expression of the form (2). With probability at least 1/2, we have
x 6= ±y mod N so a nontrivial factor of N will be found. If not, we need to
obtain a different linear dependency and try again.

In quadratic sieve algorithms the numbers wi are the values of one (or more)
quadratic polynomials with integer coefficients. This makes it easy to factor the
wi by sieving. For details of the process, we refer to [11,32,35,46,49,52,59].

The best quadratic sieve algorithm (MPQS) can, under plausible assump-
tions, factor a number N in time Θ(exp(c(lnN ln lnN)1/2)), where c ∼ 1. The
constants involved are such that MPQS is usually faster than ECM if N is the
product of two primes which both exceed N1/3. This is because the inner loop
of MPQS involves only single-precision operations.

Use of “partial relations”, i.e. incompletely factored wi, in MPQS gives a
significant performance improvement [2]. In the “one large prime” (P-MPQS)
variation wi is allowed to have one prime factor exceeding m (but not too much
larger than m). In the “two large prime” (PP-MPQS) variation wi can have two
prime factors exceeding m – this gives a further performance improvement at
the expense of higher storage requirements [33].

4.1 Parallel/Distributed Implementation of MPQS

The sieving stage of MPQS is ideally suited to parallel implementation. Different
processors may use different polynomials, or sieve over different intervals with
the same polynomial. Thus, there is a linear speedup so long as the number of
processors is not much larger than the size of the factor base. The computa-
tion requires very little communication between processors. Each processor can
generate relations and forward them to some central collection point. This was
demonstrated by A. K. Lenstra and M. S. Manasse [32], who distributed their
program and collected relations via electronic mail. The processors were scat-
tered around the world – anyone with access to electronic mail and a C compiler

Recent Progress and Prospects for Integer Factorisation Algorithms 9

could volunteer to contribute2. The final stage of MPQS – Gaussian elimination
to combine the relations – is not so easily distributed. We discuss this in §7
below.

4.2 MPQS Examples

MPQS has been used to obtain many impressive factorisations [10,32,52,59].
At the time of writing (April 2000), the largest number factored by MPQS is
the 129-digit “RSA Challenge” [54] number RSA129. It was factored in 1994
by Atkins et al [1]. The relations formed a sparse matrix with 569466 columns,
which was reduced to a dense matrix with 188614 columns; a dependency was
then found on a MasPar MP-1. It is certainly feasible to factor larger numbers
by MPQS, but for numbers of more than about 110 decimal digits GNFS is
faster [22]. For example, it is estimated in [16] that to factor RSA129 by MPQS
required 5000 Mips-years, but to factor the slightly larger number RSA130 by
GNFS required only 1000 Mips-years [18].

5 The Special Number Field Sieve (SNFS)

The number field sieve (NFS) algorithm was developed from the special number
field sieve (SNFS), which we describe in this section. The general number field
sieve (GNFS or simply NFS) is described in §6.

Most of our numerical examples have involved numbers of the form

ae ± b , (4)

for small a and b, although the ECM and MPQS factorisation algorithms do not
take advantage of this special form.

The special number field sieve (SNFS) is a relatively new algorithm which
does take advantage of the special form (4). In concept it is similar to the
quadratic sieve algorithm, but it works over an algebraic number field defined
by a, e and b. We refer the interested reader to Lenstra et al [29,30] for details,
and merely give an example to show the power of the algorithm.

5.1 SNFS Examples

Consider the 155-decimal digit number

F9 = N = 229
+ 1

as a candidate for factoring by SNFS. Note that 8N = m5 + 8, where m = 2103.
We may work in the number field Q(α), where α satisfies

α5 + 8 = 0,

2 This idea of using machines on the Internet as a “free” supercomputer has been
adopted by several other computation-intensive projects

10 Richard P. Brent

and in the ring of integers of Q(α). Because

m5 + 8 = 0 (mod N),

the mapping φ : α 7→ m mod N is a ring homomorphism from Z[α] to Z/NZ.
The idea is to search for pairs of small coprime integers u and v such that both

the algebraic integer u + αv and the (rational) integer u + mv can be factored.
(The factor base now includes prime ideals and units as well as rational primes.)
Because

φ(u + αv) = (u + mv) (mod N),

each such pair gives a relation analogous to (3).
The prime ideal factorisation of u+αv can be obtained from the factorisation

of the norm u5−8v5 of u+αv. Thus, we have to factor simultaneously two integers
u + mv and |u5− 8v5|. Note that, for moderate u and v, both these integers are
much smaller than N , in fact they are O(N1/d), where d = 5 is the degree of
the algebraic number field. (The optimal choice of d is discussed in §6.)

Using these and related ideas, Lenstra et al [31] factored F9 in June 1990,
obtaining

F9 = 2424833 · 7455602825647884208337395736200454918783366342657 · p99,

where p99 is an 99-digit prime, and the 7-digit factor was already known
(although SNFS was unable to take advantage of this). The collection of re-
lations took less than two months on a network of several hundred workstations.
A sparse system of about 200,000 relations was reduced to a dense matrix with
about 72,000 rows. Using Gaussian elimination, dependencies (mod 2) between
the columns were found in three hours on a Connection Machine. These depen-
dencies implied equations of the form x2 = y2 mod F9. The second such equation
was nontrivial and gave the desired factorisation of F9.

More recently, considerably larger numbers have been factored by SNFS,
for example, the 211-digit number 10211 − 1 was factored early in 1999 by a
collaboration called “The Cabal” [13].

6 The General Number Field Sieve (GNFS)

The general number field sieve (GNFS or just NFS) is a logical extension of the
special number field sieve (SNFS). When using SNFS to factor an integer N , we
require two polynomials f(x) and g(x) with a common root m mod N but no
common root over the field of complex numbers. If N has the special form (4)
then it is usually easy to write down suitable polynomials with small coefficients,
as illustrated by the two examples given in §5. If N has no special form, but is
just some given composite number, we can also find f(x) and g(x), but they no
longer have small coefficients.

Suppose that g(x) has degree d > 1 and f(x) is linear3. d is chosen empir-
ically, but it is known from theoretical considerations that the optimum value
3 This is not necessary. For example, Montgomery found a clever way of choosing two

quadratic polynomials.

Recent Progress and Prospects for Integer Factorisation Algorithms 11

is

d ∼
(

3 lnN

ln lnN

)1/3

.

We choose m = bN1/(d+1)c and write

N =
d∑

j=0

ajm
j

where the aj are “base m digits”. Then, defining

f(x) = x−m, g(x) =
d∑

j=0

ajx
j ,

it is clear that f(x) and g(x) have a common root m mod N . This method of
polynomial selection is called the “base m” method.

In principle, we can proceed as in SNFS, but many difficulties arise because of
the large coefficients of g(x). For details, we refer the reader to [36,37,41,47,48,62].
Suffice it to say that the difficulties can be overcome and the method works! Due
to the constant factors involved it is slower than MPQS for numbers of less than
about 110 decimal digits, but faster than MPQS for sufficiently large numbers,
as anticipated from the theoretical run times given in §2.

Some of the difficulties which had to be overcome to turn GNFS into a
practical algorithm are:

1. Polynomial selection. The “base m” method is not very good. Peter Mont-
gomery and Brian Murphy [40,41,42] have shown how a very considerable
improvement (by a factor of more than ten for number of 140–155 digits)
can be obtained.

2. Linear algebra. After sieving a very large, sparse linear system over GF(2)
is obtained, and we want to find dependencies amongst the columns. It is
not practical to do this by structured Gaussian elimination [25, §5] because
the “fill in” is too large. Odlyzko [43,17] and Montgomery [37] showed that
the Lanczos method [26] could be adapted for this purpose. (This is non-
trivial because a nonzero vector x over GF(2) can be orthogonal to itself,
i.e. xT x = 0.) To take advantage of bit-parallel operations, Montgomery’s
program works with blocks of size dependent on the wordlength (e.g. 64).

3. Square roots. The final stage of GNFS involves finding the square root of
a (very large) product of algebraic numbers4. Once again, Montgomery [36]
found a way to do this.

4 An idea of Adleman, using quadratic characters, is essential to ensure that the desired
square root exists with high probability.

12 Richard P. Brent

6.1 RSA155

At the time of writing, the largest number factored by GNFS is the 155-digit
RSA Challenge number RSA155. It was split into the product of two 78-digit
primes on 22 August, 1999, by a team coordinated from CWI, Amsterdam. For
details see [51]. To summarise: the amount of computer time required to find the
factors was about 8000 Mips-years. The two polynomials used were

f(x) = x− 39123079721168000771313449081

and

g(x) = +119377138320x5

−80168937284997582x4

−66269852234118574445x3

+11816848430079521880356852x2

+7459661580071786443919743056x
−40679843542362159361913708405064 .

The polynomial g(x) was chosen to have a good combination of two proper-
ties: being unusually small over the sieving region and having unusually many
roots modulo small primes (and prime powers). The effect of the second prop-
erty alone makes g(x) as effective at generating relations as a polynomial chosen
at random for an integer of 137 decimal digits (so in effect we have removed
at least 18 digits from RSA155 by judicious polynomial selection). The polyno-
mial selection took approximately 100 Mips-years or about 1.25% of the total
factorisation time. For details of the polynomial selection, see Brian Murphy’s
thesis [41].

The total amount of CPU time spent on sieving was 8000 Mips-years on
assorted machines (calendar time 3.7 months). The resulting matrix had about
6.7 × 106 rows and weight (number of nonzeros) about 4.2 × 108 (about 62
nonzeros per row). Using Montgomery’s block Lanczos program, it took almost
224 CPU-hours and 2 GB of memory on a Cray C916 to find 64 dependencies.
Calendar time for this was 9.5 days.

Table 1. RSA130, RSA140 and RSA155 factorisations

RSA130 RSA140 RSA155

Total CPU time in Mips-years 1000 2000 8000
Matrix rows 3.5 × 106 4.7× 106 6.7× 106

Total nonzeros 1.4 × 108 1.5× 108 4.2× 108

Nonzeros per row 39 32 62
Matrix solution time (on Cray C90/C916) 68 hours 100 hours 224 hours

Recent Progress and Prospects for Integer Factorisation Algorithms 13

Table 1 gives some statistics on the RSA130, RSA140 and RSA155 factori-
sations. The Mips-year times given are only rough estimates. Extrapolation of
these figures is risky, since various algorithmic improvements were incorporated
in the later factorisations and the scope for further improvements is unclear.

7 Parallel Linear Algebra

At present, the main obstacle to a fully parallel and scalable implementation
of GNFS (and, to a lesser extent, MPQS) is the linear algebra. Montgomery’s
block Lanczos program runs on a single processor and requires enough memory
to store the sparse matrix (about five bytes per nonzero element). It is possible
to distribute the block Lanczos solution over several processors of a parallel
machine, but the communication/computation ratio is high [38].

Similar remarks apply to some of the best algorithms for the integer discrete
logarithm problem. The main difference is that the linear algebra has to be
performed over a (possibly large) finite field rather than over GF(2).

In this Section we present some preliminary ideas on how to implement the
linear algebra phase of GNFS (and MPQS) in parallel on a network of relatively
small machines. This work is still in progress and it is too early to give definitive
results.

7.1 Assumptions

Suppose that a collection of P machines is available. It will be convenient to
assume that P = q2 is a perfect square. For example, the machines might be
400 Mhz PCs with 256 MByte of memory each, and P = 16 or P = 64.

We assume that the machines are connected on a reasonably high-speed
network. For example, this might be multiple 100Mb/sec Ethernets or some
higher-speed proprietary network. Although not essential, it is desirable for the
physical network topology to be a q × q grid or torus. Thus, we assume that
a processor Pi,j in row i can communicate with another processor Pi,j′ in the
same row or broadcast to all processors Pi,∗ in the same row without interference
from communication being performed in other rows. (Similarly for columns.)
The reason why this topology is desirable is that it matches the communication
patterns necessary in the linear algebra: see for example [4,5,6].

To simplify the description, we assume that the standard Lanczos algorithm
is used. In practice, a block version of Lanczos [37] would be used, both to take
advantage of word-length Boolean operations and to overcome the technical
problem that uT u can vanish for u 6= 0 when we are working over a finite field.
The overall communication costs are nearly the same for blocked and unblocked
Lanczos, although blocking reduces startup costs.

If R is the matrix of relations, with one relation per column, then R is a large,
sparse matrix over GF(2) with slightly more columns than rows. (Warning: in
the literature, the transposed matrix is often considered, i.e. rows and columns
are often interchanged.) We aim to find a nontrivial dependency, i.e. a nonzero

14 Richard P. Brent

vector x such that Rx = 0. If we choose b = Ry for some random y, and solve
Rx = b, then x − y is a dependency (possibly trivial, if x = y). Thus, in the
description below we consider solving a linear system Rx = b.

The Lanczos algorithm over the real field works for a positive-definite sym-
metric matrix. In our case, R is not symmetric (or even square). Hence we apply
Lanczos to the normal equations

RT Rx = RT b

rather than directly to Rx = b. We do not need to compute the matrix A = RT R,
because we can compute Ax as RT (Rx). To compute RT z, it is best to think
of computing (zT R)T because the elements of R will be scattered across the
processors and we do not want to double the storage requirements by storing
RT as well as R.

The details of the Lanczos iteration are not important for the description
below. It is sufficient to know that the Lanczos recurrence has the form

wi+1 = Awi − ci,iwi − ci,i−1wi−1

where the multipliers ci,i and ci,i−1 can be computed using inner products of
known vectors. Thus, the main work involved in one iteration is the computation
of Awi = RT (Rwi). In general, if R has n columns, then wi is a dense n-vector.
The Lanczos process terminates with a solution after n + O(1) iterations [37].

7.2 Sparse Matrix-Vector Multiplication

The matrix of relations R is sparse and almost square. Suppose that R has n
columns, m ≈ n rows, and ρn nonzeros, i.e. ρ nonzeros per column. Consider
the computation of Rw, where w is a dense n-vector. The number of multiplica-
tions involved in the computation of Rw is ρn. (Thus, the number of operations
involved in the complete Lanczos process is of order ρn2 � n3.)

For simplicity assume that q =
√

P divides n, and the matrix R is distributed
across the q × q array of processors using a “scattered” data distribution to
balance the load and storage requirements [5]. Within each processor Pi,j a
sparse matrix representation will be used to store the relevant part Ri,j of R.
Thus the local storage of requirement is O(ρn/q2 + n/q).

After each processor computes its local matrix-vector product with about
ρn/q2 multiplications, it is necessary to sum the partial results (n/q-vectors) in
each row to obtain n/q components of the product Rw. This can be done in
several ways, e.g. by a systolic computation, by using a binary tree, or by each
processor broadcasting its n/q-vector to other processors in its row and summing
the vectors received from them to obtain n/q components of the product Rw.
If broadcasting is used then the results are in place to start the computation of
RT (Rw). If an inner product is required then communication along columns of
the processor array is necessary to transpose the dense n-vector (each diagonal
processor Pi,i broadcasts its n/q elements along its column).

Recent Progress and Prospects for Integer Factorisation Algorithms 15

We see that, overall, each Lanczos iteration requires computation
O(ρn/q2 + n) on each processor, and communication of O(n) bits along each
row/column of the processor array. Depending on details of the communication
hardware, the time for communication might be O((n/q) log q) (if the binary tree
method is used) or even O(n/q+q) (if a systolic method is used with pipelining).
In the following discussion we assume that the communication time is propor-
tional to the number of bits communicated along each row or column, i.e. O(n)
per iteration (not the total number of bits communicated per iteration, which is
O(nq)).

The overall time for n iterations is

TP ≈ αρn2/P + βn2 , (5)

where the constants α and β depend on the computation and communication
speeds respectively. (We have omitted the communication “startup” cost since
this is typically much less than βn2.)

Since the time on a single processor is T1 ≈ αρn2, the efficiency EP is

EP =
T1

PTP
≈ αρ

αρ + βP

and the condition for EP ≥ 1/2 is

αρ ≥ βP .

Typically β/α is large (50 to several hundred) because communication be-
tween processors is much slower than computation on a processor. The number
of nonzeros per column, ρ, is typically in the range 30 to 100. Thus, we can not
expect high efficiency.

Fortunately, high efficiency is not crucial. The essential requirements are
that the (distributed) matrix R fits in the local memories of the processors, and
that the time for the linear algebra does not dominate the overall factorisation
time. Because sieving typically takes much longer than linear algebra on a single
processor, we have considerable leeway.

For example, consider the factorisation of RSA155 (see Table 1 above). We
have n ≈ 6.7× 106, ρ ≈ 62. Thus n2 ≈ 4.5× 1013. If the communications speed
along each row/column is a few hundred Mb/sec then we expect β to be a small
multiple of 10−8 seconds. Thus βn2 might be (very roughly) 106 seconds or say 12
days. The sieving takes 8000 Mips-years or 20 processor-years if each processor
runs at 400 Mips. With P processors this is 20/P years, to be compared with
12/365 years for communication. Thus,

sieving time
communication time

≈ 600
P

and the sieving time dominates unless P > 600. For larger problems we expect
the sieving time to grow at least as fast as n2.

16 Richard P. Brent

For more typical factorisations performed by MPQS rather than GNFS, the
situation is better. For example, using Arjen Lenstra’s implementation of PP-
MPQS in the Magma package, we factored a 102-decimal digit composite c102 (a
factor of 14213 − 1) on a 4× 250 Mhz Sun multiprocessor. The sieving time was
11.5 days or about 32 Mips-years. After combining partial relations the matrix R
had about n = 73000 columns. Thus n2 ≈ 5.3× 109. At 100 Mb/sec it takes less
than one minute to communicate n2 bits. Thus, although the current Magma
implementation performs the block Lanczos method on only one processor, there
is no reason why it could not be performed on a network of small machines (e.g. a
“Beowulf” cluster) and the communication time on such a network would only
be a few minutes.

7.3 Reducing Communication Time

If our assumption of a grid/torus topology is not satisfied, then the communi-
cation times estimated above may have to be multiplied by a factor of order
q =

√
P . In order to reduce the communication time (without buying better

hardware) it may be worthwhile to perform some steps of Gaussian elimination
before switching to Lanczos.

If there are k relations whose largest prime is p, we can perform Gaussian
elimination to eliminate this large prime and one of the k relations. (The work
can be done on a single processor if the relations are hashed and stored on pro-
cessors according to the largest prime occurring in them.) Before the elimination
we expect each of the k relations to contain about ρ nonzeros; after the elim-
ination each of the remaining k − 1 relations will have about ρ − 1 additional
nonzeros (assuming no “cancellation”).

From (5), the time for Lanczos is about

T = n(αz/P + βn) ,

where z = ρn is the weight (number of nonzeros) of the matrix R. The effect of
eliminating one relation is n → n′ = n − 1, z → z′ = z + (ρ − 1)(k − 1) − ρ,
T → T ′ = n′(αz′/P + βn′) . After some algebra we see that T ′ < T if

k <
2βP

αρ
+ 3 .

For typical values of β/α ≈ 100 and ρ ≈ 50 this gives the condition k < 4P + 3.
The disadvantage of this strategy is that the total weight z of the matrix

(and hence storage requirements) increases. In fact, if we go too far, the matrix
becomes full (see the RSA129 example in §4.2).

As an example, consider the c102 factorisation mentioned at the end of §7.2.
The initial matrix R had n ≈ 73000; we were able to reduce this to n ≈ 32000,
and thus reduce the communication requirements by 81%, at the expense of
increasing the weight by 76%. Our (limited) experience indicates that this be-
haviour is typical – we can usually reduce the communication requirements by a
factor of five at the expense of at most doubling the weight. However, if we try

Recent Progress and Prospects for Integer Factorisation Algorithms 17

to go much further, there is an “explosion”, the matrix becomes dense, and the
advantage of the Lanczos method over Gaussian elimination is lost. (It would be
nice to have a theoretical explanation of this behaviour.)

8 Historical Factoring Records

1960 1970 1980 1990 2000 2010

0

20

40

60

80

100

120

140

160 D

Figure 3: Size of “general” number factored versus year

Figure 3 shows the size D (in decimal digits) of the largest “general” number
factored against the year it was done, from 1964 (20D) to April 2000 (155D)
(historical data from [41,44,55]).

8.1 Curve Fitting and Extrapolation

Let D be the number of decimal digits in the largest “general” number fac-
tored by a given date. From the theoretical time bound for GNFS, assuming
Moore’s law, we expect D1/3 to be roughly a linear function of calendar year (in
fact D1/3(lnD)2/3 should be linear, but given the other uncertainties we have
assumed for simplicity that (ln D)2/3 is roughly a constant). Figure 4 shows D1/3

versus year Y .
The straight line shown in the Figure 4 is

D1/3 =
Y − 1928.6

13.24
or equivalently Y = 13.24D1/3 + 1928.6 ,

and extrapolation, for what it is worth, gives D = 309 (i.e. 1024 bits) in the year
Y = 2018.

18 Richard P. Brent

1960 1970 1980 1990 2000 2010

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5 D1/3

Figure 4: D1/3 versus year Y

9 Summary and Conclusions

We have sketched some algorithms for integer factorisation. The most important
are ECM, MPQS and NFS. As well as their inherent interest and applicability
to other areas of mathematics, advances in public key cryptography have lent
them practical importance.

Despite much progress in the development of efficient algorithms, our knowl-
edge of the complexity of factorisation is inadequate. We would like to find a
polynomial time factorisation algorithm or else prove that one does not exist.
Until a polynomial time algorithm is found or a quantum computer capable
of running Shor’s algorithm [57,58] is built, large factorisations will remain an
interesting challenge.

A survey similar to this one was written in 1990 (see [3]). Comparing the
examples there we see that significant progress has been made. This is partly
due to Moore’s law, partly due to the use of many machines on the Internet,
and partly due to improvements in algorithms (especially GNFS). The largest
number factored by MPQS at the time of writing [3] had 111 decimal digits.
According to [16], RSA110 was factored in 1992 (by MPQS). In 1996 GNFS was
used to factor RSA130; in August 1999, RSA155 also fell to GNFS. Progress
seems to be accelerating. This is due in large part to algorithmic improvements
which seem unlikely to be repeated. On the other hand, it is very hard to antic-
ipate algorithmic improvements!

Recent Progress and Prospects for Integer Factorisation Algorithms 19

From the predicted run time for GNFS, we would expect RSA155 to take
6.5 times as long as RSA1405. On the other hand, Moore’s law predicts that
circuit densities will double every 18 months or so. Thus, as long as Moore’s law
continues to apply and results in correspondingly more powerful parallel com-
puters, we expect to get three to four decimal digits per year improvement in the
capabilities of GNFS, without any algorithmic improvements. The extrapolation
from historical figures is more optimistic: it predicts 6–7 decimal digits per year
in the near future.

Similar arguments apply to ECM, for which we expect slightly more than
one decimal digit per year in the size of factor found [9].

Although we did not discuss them here, the best algorithms for the inte-
ger discrete logarithm problem are analogous to NFS, requiring the solution of
large, sparse linear systems over finite fields, and similar remarks apply to such
algorithms.

Regarding cryptographic consequences, we can say that 512-bit RSA keys
are already insecure. 1024-bit RSA keys should remain secure for at least fifteen
years, barring the unexpected (but unpredictable) discovery of a completely
new algorithm which is better than GNFS, or the development of a practical
quantum computer. In the long term, public key algorithms based on the discrete
logarithm problem for elliptic curves appear to be a promising alternative to RSA
or algorithms based on the integer discrete logarithm problem.

Acknowledgements

Thanks are due to Peter Montgomery, Brian Murphy, Andrew Odlyzko, John
Pollard, Herman te Riele, Sam Wagstaff, Jr. and Paul Zimmermann for their
assistance.

References

1. D. Atkins, M. Graff, A. K. Lenstra and P. C. Leyland, The magic words are
squeamish ossifrage, Advances in Cryptology: Proc. Asiacrypt’94, LNCS 917,
Springer-Verlag, Berlin, 1995, 263–277.

2. H. Boender and H. J. J. te Riele, Factoring integers with large prime variations of
the quadratic sieve, Experimental Mathematics, 5 (1996), 257–273.

3. R. P. Brent, Vector and parallel algorithms for integer factorisation, Proceed-
ings Third Australian Supercomputer Conference University of Melbourne, Decem-
ber 1990, 12 pp. http://www.comlab.ox.ac.uk/oucl/work/richard.brent/pub/
pub122.html .

4. R. P. Brent, The LINPACK benchmark on the AP 1000, Proceedings of Fron-
tiers ’92 (McLean, Virginia, October 1992), IEEE Press, 1992, 128-135. http://
www.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub130.html

5 It actually took only about 4.0 times as long, thanks to algorithmic improvements
such as better polynomial selection.

20 Richard P. Brent

5. R. P. Brent, Parallel algorithms in linear algebra, Algorithms and Architec-
tures: Proc. Second NEC Research Symposium held at Tsukuba, Japan, Au-
gust 1991 (edited by T. Ishiguro), SIAM, Philadelphia, 1993, 54-72. http://

www.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub128.html

6. R. P. Brent and P. E. Strazdins, Implementation of the BLAS level 3 and Lin-
pack benchmark on the AP 1000, Fujitsu Scientific and Technical Journal 29, 1
(March 1993), 61-70. http://www.comlab.ox.ac.uk/oucl/work/richard.brent/
pub/pub136.html

7. R. P. Brent, Factorization of the tenth Fermat number, Math. Comp. 68 (1999),
429-451. Preliminary version available as Factorization of the tenth and eleventh
Fermat numbers, Technical Report TR-CS-96-02, CSL, ANU, Feb. 1996, 25pp.
http://www.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub161.html .

8. R. P. Brent, Some parallel algorithms for integer factorisation Proc. Europar’99,
Toulouse, Sept. 1999. LNCS 1685, Springer-Verlag, Berlin, 1–22.

9. R. P. Brent, Large factors found by ECM, Oxford University Computing Lab-
oratory, March 2000. ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapers/
Richard.Brent/champs.txt .

10. J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman and S. S. Wagstaff, Jr.,
Factorisations of bn ± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers, American
Mathematical Society, Providence, Rhode Island, second edition, 1988. Updates
available from http://www/cs/purdue.edu/homes/ssw/cun/index.html .

11. T. R. Caron and R. D. Silverman, Parallel implementation of the quadratic sieve,
J. Supercomputing 1 (1988), 273–290.

12. S. Cavallar, B. Dodson, A. K. Lenstra, P. Leyland, W. Lioen, P. L. Montgomery,
B. Murphy, H. te Riele and P. Zimmermann, Factorization of RSA-140 using the
number field sieve, announced 4 February 1999. Available from ftp://ftp.cwi.nl/

pub/herman/NFSrecords/RSA-140 .

13. S. Cavallar, B. Dodson, A. K. Lenstra, P. Leyland, W. Lioen, P. L. Montgomery,
H. te Riele and P. Zimmermann, 211-digit SNFS factorization, announced 25 April
1999. Available from ftp://ftp.cwi.nl/pub/herman/NFSrecords/SNFS-211 .

14. D. V. and G. V. Chudnovsky, Sequences of numbers generated by addition in
formal groups and new primality and factorization tests, Adv. in Appl. Math. 7
(1986), 385–434.

15. H. Cohen, A Course in Computational Algebraic Number Theory, Springer-Verlag,
Berlin, 1993.

16. S. Contini, The factorization of RSA-140, RSA Laboratories Bulletin 10, 8 (March
1999). Available from http://www.rsa.com/rsalabs/html/bulletins.html .

17. D. Coppersmith, A. Odlyzko and R. Schroeppel, Discrete logarithms in GF(p),
Algorithmica 1 (1986), 1–15.

18. J. Cowie, B. Dodson, R. M. Elkenbracht-Huizing, A. K. Lenstra, P. L. Montgomery
and J. Zayer, A world wide number field sieve factoring record: on to 512 bits,
Advances in Cryptology: Proc. Asiacrypt’96, LNCS 1163, Springer-Verlag, Berlin,
1996, 382–394.

19. R. Crandall and B. Fagin, Discrete weighted transforms and large-integer arith-
metic, Math. Comp. 62 (1994), 305–324.

20. D. Deutsch, Quantum theory, the Church-Turing principle and the universal quan-
tum computer, Proc. Roy. Soc. London, Ser. A 400 (1985), 97–117.

21. D. Deutsch, Quantum computational networks, Proc. Roy. Soc. London, Ser. A
425 (1989), 73–90.

Recent Progress and Prospects for Integer Factorisation Algorithms 21

22. M. Elkenbracht-Huizing, A multiple polynomial general number field sieve Algo-
rithmic Number Theory – ANTS III, LNCS 1443, Springer-Verlag, Berlin, 1998,
99–114.

23. K. F. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory,
Springer-Verlag, Berlin, 1982.

24. D. E. Knuth, The Art of Computer Programming, Vol. 2, Addison Wesley, third
edition, 1997.

25. B. A. LaMacchia and A. M. Odlyzko, Solving large sparse systems over finite fields,
Advances in Cryptology, CRYPTO ’90 (A. J. Menezes and S. A. Vanstone, eds.),
LNCS 537, Springer-Verlag, Berlin, 109–133.

26. C. Lanczos, Solution of systems of linear equations by minimized iterations, J. Res.
Nat. Bureau of Standards 49 (1952), 33–53.

27. S. Lang, Elliptic Curves – Diophantine Analysis, Springer-Verlag, Berlin, 1978.
28. R. S. Lehman, Factoring large integers, Math. Comp. 28 (1974), 637–646.
29. A. K. Lenstra and H. W. Lenstra, Jr. (editors), The development of the number

field sieve, Lecture Notes in Mathematics 1554, Springer-Verlag, Berlin, 1993.
30. A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse and J. M. Pollard, The number

field sieve, Proc. 22nd Annual ACM Conference on Theory of Computing, Balti-
more, Maryland, May 1990, 564–572.

31. A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard, The factor-
ization of the ninth Fermat number, Math. Comp. 61 (1993), 319–349.

32. A. K. Lenstra and M. S. Manasse, Factoring by electronic mail, Proc. Eurocrypt
’89, LNCS 434, Springer-Verlag, Berlin, 1990, 355–371.

33. A. K. Lenstra and M. S. Manasse, Factoring with two large primes, Math. Comp.
63 (1994), 785–798.

34. H. W. Lenstra, Jr., Factoring integers with elliptic curves, Annals of Mathematics
(2) 126 (1987), 649–673.

35. P. L. Montgomery, A survey of modern integer factorization algorithms, CWI Quar-
terly 7 (1994), 337–366. ftp://ftp.cwi.nl/pub/pmontgom/cwisurvey.psl.Z .

36. P. L. Montgomery, Square roots of products of algebraic numbers, Mathematics of
Computation 1943 – 1993, Proc. Symp. Appl. Math. 48 (1994), 567–571.

37. P. L. Montgomery, A block Lanczos algorithm for finding dependencies over GF(2),
Advances in Cryptology: Proc. Eurocrypt’95, LNCS 921, Springer-Verlag, Berlin,
1995, 106–120. ftp://ftp.cwi.nl/pub/pmontgom/BlockLanczos.psa4.gz .

38. P. L. Montgomery, Parallel block Lanczos, Microsoft Research, Redmond, USA,
17 January 2000 (transparencies of a talk presented at RSA 2000).

39. M. A. Morrison and J. Brillhart, A method of factorisation and the factorisation
of F7, Math. Comp. 29 (1975), 183–205.

40. B. A. Murphy, Modelling the yield of number field sieve polynomials, Algorithmic
Number Theory – ANTS III, LNCS 1443, Springer-Verlag, Berlin, 1998, 137–150.

41. B. A. Murphy, Polynomial selection for the number field sieve integer factorisation
algorithm, Ph. D. thesis, Australian National University, July 1999.

42. B. A. Murphy and R. P. Brent, On quadratic polynomials for the number field
sieve, Australian Computer Science Communications 20 (1998), 199–213. http://
www.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub178.html .

43. A. M. Odlyzko, Discrete logarithms in finite fields and their cryptographic signif-
icance, Advances in Cryptology: Proc. Eurocrypt ’84, LNCS 209, Springer-Verlag,
Berlin, 1985, 224–314.

44. A. M. Odlyzko, The future of integer factorization, CryptoBytes 1, 2 (1995), 5–12.
Available from http://www.rsa.com/rsalabs/pubs/cryptobytes .

22 Richard P. Brent

45. J. M. Pollard, A Monte Carlo method for factorisation, BIT 15 (1975), 331–334.
46. C. Pomerance, The quadratic sieve factoring algorithm, Advances in Cryptology,

Proc. Eurocrypt ’84, LNCS 209, Springer-Verlag, Berlin, 1985, 169–182.
47. C. Pomerance, The number field sieve, Proceedings of Symposia in Applied Math-

ematics 48, Amer. Math. Soc., Providence, Rhode Island, 1994, 465–480.
48. C. Pomerance, A tale of two sieves, Notices Amer. Math. Soc. 43 (1996), 1473–

1485.
49. C. Pomerance, J. W. Smith and R. Tuler, A pipeline architecture for factoring large

integers with the quadratic sieve algorithm, SIAM J. on Computing 17 (1988),
387–403.

50. J. Preskill, Lecture Notes for Physics 229: Quantum Information and Com-
putation, California Institute of Technology, Los Angeles, Sept. 1998. http://

www.theory.caltech.edu/people/preskill/ph229/ .
51. H. te Riele et al, Factorization of a 512-bits RSA key using the number field sieve,

announcement of 26 August 1999, http://www.loria.fr/~zimmerma/records/

RSA155 .
52. H. J. J. te Riele, W. Lioen and D. Winter, Factoring with the quadratic sieve on

large vector computers, Belgian J. Comp. Appl. Math. 27 (1989), 267–278.
53. H. Riesel, Prime numbers and computer methods for factorization, 2nd edition,

Birkhäuser, Boston, 1994.
54. R. L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures

and public-key cryptosystems, Comm. ACM 21 (1978), 120–126.
55. RSA Laboratories, Information on the RSA challenge, http://www.rsa.com/

rsalabs/html/challenges.html .
56. R. S. Schaller, Moore’s law: past, present and future, IEEE Spectrum 34, 6 (June

1997), 52–59.
57. P. W. Shor, Algorithms for quantum computation: discrete logarithms and factor-

ing, Proc. 35th Annual Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, California, 1994, 124–134. CMP 98:06

58. P. W. Shor, Polynomial time algorithms for prime factorization and discrete loga-
rithms on a quantum computer, SIAM J. Computing 26 (1997), 1484–1509.

59. R. D. Silverman, The multiple polynomial quadratic sieve, Math. Comp. 48 (1987),
329–339.

60. U. Vazirani, Introduction to special section on quantum computation, SIAM J.
Computing 26 (1997), 1409–1410.

61. D. H. Wiedemann, Solving sparse linear equations over finite fields, IEEE Trans.
Inform. Theory 32 (1986), 54–62.

62. J. Zayer, Faktorisieren mit dem Number Field Sieve, Ph. D. thesis, Universität des
Saarlandes, 1995.

63. P. Zimmermann, The ECMNET Project, http://www.loria.fr/~zimmerma/

records/ecmnet.html.

	Introduction
	Randomised Algorithms
	Parallel Algorithms
	Quantum Algorithms
	Moore's Law

	Integer Factorisation Algorithms
	Lenstra's Elliptic Curve Algorithm
	ECM Examples
	Parallel/Distributed Implementation of ECM
	ECM Factoring Records
	Extrapolation of ECM Records

	Quadratic Sieve Algorithms
	Parallel/Distributed Implementation of MPQS
	MPQS Examples

	The Special Number Field Sieve (SNFS)
	SNFS Examples

	The General Number Field Sieve (GNFS)
	RSA155

	Parallel Linear Algebra
	Assumptions
	Sparse Matrix-Vector Multiplication
	Reducing Communication Time

	Historical Factoring Records
	Curve Fitting and Extrapolation

	Summary and Conclusions

