
Public Key Cryptography with a Group of Unknown Order

Richard P. Brent1

Oxford University

rpb@comlab.ox.ac.uk

Programming Research Group
Report PRG–TR–02–00

5 June 2000

Abstract

We present algorithms for digital signature generation and verification using public key
cryptography over an arbitrary group G. The algorithms are similar to those of ElGamal,
but do not require a knowledge of the group order. Forging signatures or determining the
secret key requires the solution of a discrete logarithm problem over G, or the solution of
other problems which appear at least as difficult. The algorithms can be modified to work
over arbitrary semigroups.

1 Introduction

As first shown by Koblitz [15] and Miller [22], the well-known El Gamal algorithms [7] for
encryption and digital signatures can be generalised to work over any group. However, a practical
annoyance is that the algorithm for generating signatures requires a knowledge of the order #G
of the group. This seems anomalous since the algorithms for encrypting and decrypting messages
do not require knowledge of #G. In the original El Gamal scheme, #G is not required in order
to verify a signature, although it is required for verification in the standard DSA and EC-DSA
schemes.

In the following we show that it is possible to create and verify signatures without a knowledge
of #G. The signatures are slightly longer, and the algorithms slightly slower, than in the case
that #G is known, but only by small constant factors (for details see §4.1).

Groups which might be used include the group of points on an elliptic curve over a large
finite field GF(q), the jacobian of a hyperelliptic curve over a finite field, and the class group
of an imaginary quadratic number field: see [21, §8.4.2]. Other groups may be proposed in the
future.

We emphasise that the security of the new algorithms seems comparable to that of the
standard ElGamal algorithms if the same group is used. An imposter can not sign a message or
find the secret key merely by determining #G.

On the assumption that an attacker can compute #G, the security of both our new algorithm
and the standard El Gamal algorithm depend on #G having a large prime factor (see §5.3), and
it is difficult to guarantee this without computing #G. Thus, our algorithm is likely be useful in
practice only if it is applied to groups whose order is very difficult to compute. This is not the
case for groups of elliptic curves over finite fields GF(q) (q = 2k or q a large prime), because of
the polynomial time algorithm of Schoof [32] and recent improvements by Atkins, Couveignes,
Elkies, Lercier and Morain [1, 4, 5, 8, 18, 19, 23]. The expected run-time of the best of these
algorithms is O((log q)6).

Our notation and assumptions are described in §2, and the new algorithms for determining a
cryptosystem, signing and verifying a message are given in §3. The new algorithms are compared
with the standard ElGamal algorithms and some of their variants in §4. The security of the new

1Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK
Copyright c©2000, R. P. Brent. rpb197tr

1

algorithms is considered in §5, and in §6 we consider applying the new algorithms with groups
drawn at random from a family of groups with certain statistical properties. A generalisation of
the algorithms to semigroups is mentioned in §7. Finally, some conclusions and open problems
are stated in §8.

2 Notation and Assumptions

We write lnx for the natural logarithm and lg x for log2 x.
Let G be an arbitrary group with group operation “+” and identity element 0. We write

elements of G as g0, g1, . . ., and integers as α0, α1, . . . , β, µ. It will always be the case that
gj = αjg0.

Let n be a parameter whose choice depends on the degree of security required. We assume
that any event which occurs with probability O(2−n/2) can safely be ignored, and that it is
infeasible to perform Ω(2n/2) operations. n = 128 is adequate for most current purposes, but in
the future it might be necessary to increase n to compensate for increases in computer power [30].
At present, n = 160 is a conservative choice.

Let Bk denote the set {0, 1, 2, . . . , 2k − 1} of (unsigned) k-bit binary numbers. We assume
that there is a mapping γ : Bn → G of n-bit binary numbers into G.

For encryption of messages it is necessary to split long messages into sufficiently short pieces
which are regarded as binary numbers and mapped into G using a mapping such as γ. For
signature generation and verification it is sufficient to work with the hash of a message rather
than the message itself.

We shall be working in a cyclic subgroup H = <g0> of G generated by a certain element
g0 ∈ G. Since H is cyclic it is necessarily abelian, even if G is nonabelian. In cryptographic
applications H should be finite (so that group elements can be represented in a fixed number of
bits), but the algorithms work over countably infinite cyclic groups. Assuming that H is finite,
we write Q0 = #H. Since all computations are performed in H, it is H and Q0 rather than G
and #G which are of interest in the following.

We assume that the discrete logarithm problem (DLP) in H is computationally difficult. A
Pollard rho algorithm [25] may be able to solve it in expected time of order Q

1/2
0 ; in general

no better algorithms are known. Better algorithms are known in special cases, e.g. if G is the
multiplicative group of a finite field [9]. For more on the DLP, see §5.3.

Let h :M∪ G → Bn be a good n-bit cryptographic hash function, e.g. SHA-1. Here M is
the space of possible messages. For simplicity we assume that the same hash function can be
applied both to messages and to group elements. We define m = h(M), where M is the message
of interest and m is its n-bit hash. In the following we assume m 6= 0 (if m = 0, just set m← 1).

In §3 we present algorithms for signing and verifying messages, and also (in §3.5) for en-
crypting and decrypting messages. The signer/receiver is Alice, the verifier/sender is Bob, and
the eavesdropper or potential forger of signatures is Eve.

Alice and Bob do not know #G, although Eve may. (In the case that G is the group of an
elliptic curve over a finite field, Eve could compute #G using Schoof’s algorithm.)

Alice and Bob have access to a strong, cryptographically secure random number generator R
which they can use to select unpredictable and (approximately) uniformly distributed numbers
from Bn. We write R(Bn) for a random selection from the set Bn (not the same choice each
time).

G is public information. It is assumed that Alice and Bob have agreed on a representation
of group elements and can perform the group operation, i.e. given f, g ∈ G they can compute
f + g and f − g. (In §7 we show that the computation of f − g can be avoided.)

2

3 The Algorithms

In this section we describe the algorithms for determining the parameters of a cryptosystem,
signing a message, and verifying a signature. The security of the system is considered in §5.

3.1 Public and secret information

To determine the cryptosystem, Alice performs the following algorithm.

Algorithm I

1. Choose a random group element g0 ← γ(R(Bn)).

2. Choose a random n-bit number α1 ← R(Bn).

3. Repeat step 2 until α1 passes a probabilistic primality test. [This is optional – see §5.2.]

4. Compute g1 ← α1g0 in G.

5. Repeat steps 1–4 until g1 6= 0.

6. The secret key is α1. [This is only known to Alice]

7. The public key is (g0, g1). [This is known to Alice, Bob and Eve]

3.2 Signing a message

Let M be a message which Alice wishes to sign. She performs the following algorithm.

Algorithm S

1. Compute m← h(M).

2. Choose a random (2n + 2)-bit α2 ← R(B2n+2).

3. Compute g2 ← α2g0 and h(g2).

4. Repeat steps 2–3 until g2 6= 0 in G.

5. Compute µ← α2 + (m + h(g2))α1 . (1)

6. If µ ∈ B2n+2\B2n+1 then accept µ; otherwise reject µ and return to step 2.

7. The signature of M is (µ, g2).

Comment

The test at step 4 could be omitted, since g2 = 0 with probability 1/Q0, which we assume is
negligible. The reason for the test at step 6 is explained in §5.2. Step 2 will be executed twice
(on average). This number can be reduced to 2k/(2k − 2) by increasing the number of bits in
α2 to 2n + k (k ≥ 2) and changing the acceptance criterion at step 6 to µ ∈ B2n+k\B2n+1.

3.3 Verification

To verify the signature (µ, g2) on message M , Bob computes m = h(M) and checks if the
verification condition

g2 + (m + h(g2))g1 = µg0 (2)

holds in G. The signature is verified iff (2) holds.

3

3.4 Explanation

Suppose (1) holds. We have

[α2 + (m + h(g2))α1]g0 = µg0 ,

but α2g0 = g2, α1g0 = g1, so (2) holds. Thus, (1) implies (2).
Conversely, if (2) holds with g1 = α1g0, we see that g2 is in the subgroup H generated by g0.

If g2 = α′
2g0 say, then we see that α′

2 = α2 mod Q0, where Q0 = #H.
The probability that a random message will pass the verification condition is 1/Q1, where

Q1 is the order of g1.

3.5 Encryption, decryption and key agreement

We give the ElGamal algorithms for encryption and decryption in our notation. These do not
require knowledge of Q0, so we do not need to modify them. We assume that γ is invertible on
its range (this assumption can be avoided – see §7).

For encryption of a message M (assumed short enough and encoded in Bn), Bob computes
random α2 = R(Bn), g2 = α2g0, g3 = α2g1 + γ(M), and the ciphertext is (g2, g3).

For decryption, Alice computes M = γ−1(g3 − α1g2). This works because α2g1 = α1g2, so

g3 − α1g2 = γ(M) .

Only Alice can decrypt the ciphertext in this way, because only Alice knows the secret key α1.
For completeness, we observe that the Diffie-Hellman key agreement protocol and related

protocols can easily be expressed in terms of addition in an arbitrary group. They do not require
knowledge of the group order [21, Remark 12.49]. In fact, the essential component of El Gamal
encryption/decryption is agreement between Alice and Bob on a group element α2g1 = α1g2

using the same idea as Diffie-Hellman.

4 Comparison with ElGamal

We express the standard ElGamal algorithms for signatures in our notation to show the sim-
ilarities and differences. In the standard ElGamal algorithm for signing h(M), Alice does the
following:

1. Choose a random α2 ← R(Bn) mod Q0.

2. Repeat step 1 until GCD(α2, Q0) = 1.

3. Compute g2 = α2g0 and h(g2).

4. Use the extended Euclidean algorithm to find β < Q0 such that

m = α1h(g2) + α2β mod Q0 . (3)

5. The signature is (β, g2).

To verify a signature, Bob checks the verification condition:

0 ≤ β < Q0 and βg2 + h(g2)g1 = mg0 . (4)

The range check on β avoids a known attack [21, Note 11.66(iv)]. The condition (4) should be
compared with (2).

4

4.1 Signature size and efficiency comparisons

The signature (µ, g2) generated by Algorithm S is longer than the signature (β, g2) generated
by the standard ElGamal algorithm, because µ has 2n + 2 bits versus n bits for β. If the
group elements can be represented with about n bits, our signature is about 50% longer than a
standard ElGamal signature.

Performing the group operations to generate a signature with Algorithm S could take up to
four times as long as for the standard ElGamal algorithm, a factor of two because α2 has about
twice as many bits as β, and a factor of two because of the possibility of repeating steps 2–6 of
the algorithm. As mentioned above, the expected number of repeats can be reduced by slightly
increasing the length of α2. Thus, a practical implementation would probably take about twice
as long as the standard ElGamal algorithm.

Verification of (2) should not be significantly slower than verification of (4). However, in the
standard ElGamal algorithm, verification can be speeded up (by about one third) by computing
an inverse mod Q0, and this option is not available to us.

We conclude that the space and time requirements for our algorithms are greater than for
the standard algorithms, but only by moderate factors (in the range 1.5 to 2), if the same group
is used.

4.2 Variants of ElGamal signatures

There are many variants of the ElGamal signature scheme: see [21, Table 11.5] and [31, §20.4].
However, so far as we know, none of those in the literature give an acceptable signature without
knowledge of Q0.

For example, in [21, Table 11.5] there are six variants of (3), two of which do not require
computation of an inverse mod Q0. In our notation these two are:

β = α1h(g2) + α2m mod Q0 (5)

and
β = α1m + α2h(g2) mod Q0 . (6)

Consider using (5) without any reduction mod Q0. Eve knows h(g2), m and β, so she knows a
relation of the form

aα1 = b mod m (7)

If Eve observes several messages M (i) she can obtain several relations of the form

a(i)α1 = b(i) mod m(i) . (8)

Using the Chinese remainder theorem, Eve can deduce the secret key α1. Similarly for equa-
tion (6). Thus, reduction of β mod Q0 is essential when using (5) or (6) as a signing equation.

Our proposed (1) is not susceptible to this form of attack. This is because the random
integer α2 in (1) is not multiplied by any large constant known to Eve, so Eve can not construct
a useful set of modular equations.

5 Security Considerations

5.1 Forging a signature

It seems difficult for Eve to forge a signature (µ, g2) which satisfies (2) without knowing the
secret key α1. If h(g) behaves like a random function and µ is fixed, then choosing g at random
in H will give a solution of

g + (m + h(g))g1 = µg0 (9)

5

with probability about 1/Q0. If g is chosen then the left side of (9) is determined, so finding µ

involves the solution of a DLP in H. This takes an expected time of order Q
1/2
0 by a Pollard

rho method.

5.2 Finding the secret key

If Eve observes many different messages M (i) and associated signatures (µ(i), g
(i)
2), she may be

able to deduce some information about the secret key α1 from the distribution of µ(i) or the
joint distribution of (µ(i), h(g(i)

2)). To avoid this possibility, we introduced the “rejection” step 6
in Algorithm S. It is easy to see that the rejection step results in (µ(i), h(g(i)

2)) being uniformly
distributed in (B2n+2\B2n+1)×Bn (assuming as usual a perfect random number generator and
hash function). Thus, the joint distribution of µ(i) and h(g(i)

2) gives away no useful information
to Eve. Without the rejection step Eve could deduce the leading bits of α1 after a sufficiently
large number of observations.

If Eve happens to observe two signatures (µ(1), g
(1)
2) and (µ(2), g

(2)
2) with g

(1)
2 = g

(2)
2 , she can

find the secret key. There are Q0 possible values of g2, so a coincidence is unlikely until Eve has
observed about Q

1/2
0 signatures.

If Eve finds Q0 and Q1 by an algorithm for determining group orders, she can obtain some
information about the secret key α1. In fact she can compute

GCD(Q0, α1) = Q0/Q1 .

Although there is only a small probability that the GCD is large, Alice can defend against this
attack by choosing α1 to be a (probable) prime (see the optional step 3 of Algorithm I). Since
α1 is an n-bit number, this ensures that GCD(Q0, α1) = 1, and hence Q0 = Q1, with probability
1−O(2−n).

5.3 The discrete logarithm problem

The security of the system depends on the difficulty of solving the DLP in H. Pohlig and
Hellman [24] pointed out that the DLP can be reduced to solving DLPs in groups whose orders
are the prime power factors p

βj

j of #H. In fact, Blake et al [1, §V.1] observe that it is sufficient
to solve DLPs in groups whose orders are the prime factors pj of #H. Since we assume that
Eve can find #H and its prime factors, the security of the system depends on the difficulty of
solving the DLP in a group of order p, where p is the largest prime factor of #H (most likely p
is also the largest prime factor of #G).

For security we would like p > 2n with probability 1 − O(2−n/2), but this is difficult to
guarantee without computing #G. Thus, although Alice does not need #G to apply Algorithm S,
she does appear to need #G to be assured of its security [11]. If she is willing to compute #G
then she may as well use the standard ElGamal algorithm, since it is faster.

It is conceivable that there are families of groups whose orders are not easy to compute, but
can be guaranteed to have at least one large prime factor (at least with very high probability).

6 Using Random Groups

Suppose we have a family G of groups Gj,k with the property P that 2k−1 ≤ #Gj,k < 2k and
#Gj,k behaves, at least so far as its largest prime factor is concerned, approximately like a
random number drawn from the interval [2k−1, 2k). Since the analysis is not rigorous, we shall
not try to be precise about the meaning of “approximately”.

A possible example is a family of groups of elliptic curves over finite fields GF(qk), where qk is
a k-bit prime power. There is good evidence, both theoretical [12, Ch. 13][17] and empirical [2],

6

that such groups satisfy property P if qk is prime. There is less evidence in the case that qk is
a power of two2.

Suppose we randomly select a group Gj,k ∈ G. Using property P, we can estimate the
probability P that a cryptosystem based on Gj,k and the algorithms of §3 is insecure, in the
sense that it could be broken by solving the discrete logarithm problem (using the Pohlig-Hellman
and Pollard rho algorithms) in O(2n/2) group operations. From §5.3, P is the probability that
the largest prime factor p of #H is O(2n), and this is essentially the same as the probability
that the largest prime factor of a random k-bit integer is O(2n). Thus,

P ≈ ρ(u) ,

where u = k/n can be regarded as an expansion factor, and ρ(u) is Dickman’s function [14,
§4.5.4]. For example, with an expansion factor of seven, P ≈ ρ(7) < 10−6. Table 1 gives a small
table of values of ρ(u) for 4 ≤ u ≤ 10.

Table 1: Dickman’s function ρ(u)

u ρ(u)
4 4.9× 10−3

5 3.5× 10−4

6 2.0× 10−5

7 8.7× 10−7

8 3.2× 10−8

9 1.0× 10−9

10 2.8× 10−11

By our definition of n in §2, a probability of 2−n/2 is negligible. To ensure that P is negligible
we need ρ(u) ≈ 2−n/2. Asymptotically ln ρ(u) ∼ −u lnu, so we need

k ∼ n2

2 lg n
, (10)

which is too large to be competitive with the RSA system [28] for n ≈ 160.
Our analysis is conservative, because an attacker has to find the orders of about

1/ρ(k/n) ≈ 2n/2 groups, with each group order computation taking at least k6 operations
with the best currently-known algorithms, before even finding a group whose discrete logarithm
problem is feasible in O(2n/2) group operations. Also, each group operation probably requires
many arithmetic operations [26].

If the asymptotic analysis of the number field sieve (NFS) factorisation algorithm [16] is used
to estimate the equivalent keysize kRSA for RSA [28], much as in [1, §I.3], then we see that

kRSA ∼
n3

128(lg n)2
,

so k � kRSA as n→ +∞.
2It may be desirable to insist that qk− 1 has a prime factor p1 which is “large” in the sense that p1 >

√
qk +1,

since this implies that the group G has a large cyclic subgroup: see Lemma 1 in the Appendix.

7

7 Generalisation to Semigroups

Observe that the algorithms of §§3.1–3.3 do not require the existence of inverses in G. All
that is required is that + is an associative operation on G. Thus, it is sufficient for G to be a
semigroup [3].

We can modify the algorithms of §3.5 to work if G is a semigroup. Instead of taking
g3 = α2g1 + γ(M), Bob takes λ = h(α2g1) ⊕ M , where ⊕ is bitwise exclusive or. The ci-
phertext is (g2, λ). Alice can use the relation α2g1 = α1g2 to decrypt the ciphertext and obtain
M = h(α1g2)⊕ λ.

More generally, instead of using exclusive or, M can be encrypted using an arbitrary sym-
metric encryption algorithm with key h(α2g1), say M 7→ E = E(h(α2g1), M), and the ciphertext
is (g2, E). Alice can decrypt using M = D(h(α1g2), E). This shows that the essential ingredient
is a Diffie-Hellman key agreement between Alice and Bob [21, §12.6.1].

Why use a semigroup? It may be more difficult to solve the discrete logarithm problem in a
suitable semigroup than in a group which is representable in the same number of bits, because
the Pohlig-Hellman algorithm depends on the group structure. In particular, it depends on
Lagrange’s theorem [21, §2.171], which implies that the order of g0 is a divisor of #G.

For a system using semigroups to be practical, we need to be able to compute kg0 in O(lg k)
operations, which severely restricts the semigroups which can be used. One example is a semi-
group of (possibly singular) r × r matrices over a ring.

8 Conclusions and Open Problems

It is not essential to compute the group order in order to implement public key cryptography
using an arbitrary group. Our algorithms apply to any group (or semigroup) and are potentially
useful provided computation of discrete logarithms in the group (or semigroup) is difficult.
However, in practice it seems hard to guarantee the difficulty of the discrete logarithm problem
over a group without computing the group order.

We suggest some open problems:

1. Are there families of groups which would give better performance with the same level of
security as the family of groups of elliptic curves considered in §6?

2. Our algorithms only make use of an (abelian) cyclic subgroup of G. Algorithms exist for
finding abelian “hidden subgroups” in polynomial time on quantum computers [33]. Thus,
it is of interest to ask if there are algorithms for public key cryptography which make use
of nonabelian groups G in a nontrivial way?

3. Are there suitable semigroups which would make the generalisation of §7 attractive?

8.1 Acknowledgements

Thanks to Peter Montgomery, John Pollard and Nigel Smart for their advice and assistance.

8

9 Appendix – a Lemma on Elliptic Curves

The following Lemma gives a simple condition under which the group of an elliptic curve over
a finite field can be guaranteed to have a large cyclic subgroup. This is a necessary, but not
sufficient, condition for the group order to have a large prime factor.

Lemma 1 Let G be the group of an elliptic curve over GF(q), where q = pk is a prime power
and q − 1 = cp1, where p1 is prime and p1 >

√
q + 1. Then G has a cyclic subgroup of order at

least #G/c.

Proof. By Mordell’s Theorem [27, Theorem A7.3], G can be written as

G ≈ T1 ⊕ T2 ,

where, writing ti = #Ti, we have t1|t2 and t1|q − 1. If p1|t1 then

#G = t1t2 ≥ t21 ≥ p2
1 .

By Hasse’s Theorem [10],
#G ≤ q + 1 + 2

√
q = (

√
q + 1)2 ,

so
p1 ≤

√
q + 1 ,

contradicting the condition p1 >
√

q + 1. Thus t1|c and #G = t1t2 ≤ ct2, so

t2 ≥ #G/c .

ut

References

[1] I. F. Blake, G. Seroussi and N. P. Smart, Elliptic Curves in Cryptography, London Mathe-
matical Society Lecture Note Series, Vol. 265, Cambridge University Press, 1999.

[2] R. P. Brent, Factorization of the tenth Fermat number, Math. Comp. 68 (1999), 429–451.

[3] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. 1, second edi-
tion, Mathematical Surveys Number 7, Americal Mathematical Society, Providence, Rhode
Island, 1964.

[4] J. M. Couveignes, Quelques calculs en théorie des nombres, thèse, Université de Bordeaux I,
1994.

[5] J. M. Couveignes, Computing l-isogenies with the p-torsion, in Proc. ANTS-II, Lecture
Notes in Computer Science 1122, Springer-Verlage, 1996, 59–65.

[6] W. Diffie and M. Hellman, New directions in cryptography, IEEE Trans. on Information
Theory 22 (1976), 644–654.

[7] T. ElGamal, A public key cryptosystem and a signature scheme based on discrete loga-
rithms, IEEE Trans. on Information Theory 31 (1985), 469–472.

[8] N. D. Elkies, Elliptic and modular curves over finite fields and related computational issues,
in Advances in Cryptology, Proc. ASIACRYPT’98, Lecture Notes in Computer Science
1514, 1998, 21–76.

9

[9] D. Gordon, Discrete logarithms in GF(p) using the number field sieve, SIAM J. on Discrete
Mathematics 6 (1993), 124–138.

[10] H. Hasse, Beweis des Analogons der Riemannschen Vermutung für die Artinschen u. F.
K. Schmidtschen Kongruenzzetafunktionen in gewissen elliptischen Fällen, Nachr. Gesell.
Wissen. Göttingen I 42 (1933), 253–262.

[11] J. Heller, Catch–22, Doubleday, 1961.

[12] D. Husemöller, Elliptic Curves, Springer-Verlag, New York, 1987.

[13] D. B. Johnson and A. J. Menezes, Elliptic curve DSA (ECDSA): an enhanced DSA, ECC
Whitepapers, available from http://www.certicom.com .

[14] D. E. Knuth, The Art of Computer Programming, vol. 2, third edition, Addison Wesley,
1998.

[15] N. Koblitz, Elliptic curve cryptosystems, Math. Comp. 48 (1987), 203-209.

[16] A. K. Lenstra and H. W. Lenstra, Jr. (editors), The Development of the Number Field
Sieve, Lecture Notes in Mathematics 1554, Springer-Verlag, 1993.

[17] H. W. Lenstra, Jr., Factoring integers with elliptic curves, Annals of Mathematics (2) 126
(1987), 649–673.

[18] R. Lercier, Algorithmique des courbes elliptiques dans les corps finis, thèse, École Poly-
technique, Paris, 1997. Available from http://ultralix.polytechnique.fr/~lercier/
french/pub.html.

[19] R. Lercier and F. Morain, Counting the number of points on elliptic curves over finite
fields: strategies and performances, Advances in Cryptology, Proc. EUROCRYPT’95, Lec-
ture Notes in Computer Science 921, Springer-Verlag, 1995, 79–94.

[20] A. J. Menezes, Elliptic Curve Public Key Cryptosystems, Kluwer Academic Publishers,
1993.

[21] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography,
CRC Press, New York, 1997.

[22] V. Miller, Uses of elliptic curves in cryptography, Advances in Cryptology, Proc.
CRYPTO’85, Lecture Notes in Computer Science 218, Springer-Verlag, 1986, 417–426.

[23] F. Morain, Isogeny computations and point counting on elliptic curves, 1998, available from
ftp://lix.polytechnique.fr/pub/submissions/morain/Preprints/ecc98.ps.gz

[24] G. C. Pohlig and M. E. Hellman, An improved algorithm for computing logarithms over
GF(q) and its cryptographic significance, IEEE Trans. on Information Theory 24 (1978),
106-110.

[25] J. Pollard, Monte Carlo methods for index computation mod p, Math. Comp. 32 (1978),
918-924.

[26] M. Rosing, Implementing Elliptic Curve Cryptography, Manning Publications, Greenwich,
CT 06830, USA.

[27] H. Riesel, Prime Numbers and Computer Methods for Factorization, second edition,
Birkhäuser, Boston, 1994.

10

[28] R. L. Rivest, A. Shamir and L. M. Adleman, A method for obtaining digital signatures and
public key cryptosystems, Comm. ACM 21 (1978), 120–126.

[29] A. Salomaa, Public-Key Cryptography, second edition, Springer-Verlag, Berlin, 1996.

[30] R. S. Schaller, Moore’s law: past, present and future, IEEE Spectrum 34, 6 (June 1997),
52–59.

[31] B. Schneier, Applied Cryptography, second edition, John Wiley and Sons, New York, 1996.

[32] R. Schoof, Elliptic curves over finite fields and the computation of square roots mod p,
Math. Comp. 44 (1985), 483–494.

[33] P. W. Shor, Polynomial time algorithms for factorization and discrete logarithms on a
quantum computer, SIAM J. Computing 26 (1997), 1484–1509.

[34] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics,
Vol. 106, Springer-Verlag, New York, 1986.

11

