
MATHEMATICS OF COMPUTATION
Volume 72, Number 243, Pages 1443–1452
S 0025-5718(02)01478-3
Article electronically published on December 18, 2002

A FAST ALGORITHM FOR TESTING
REDUCIBILITY OF TRINOMIALS MOD 2

AND SOME NEW PRIMITIVE TRINOMIALS
OF DEGREE 3021377

RICHARD P. BRENT, SAMULI LARVALA, AND PAUL ZIMMERMANN

Abstract. The standard algorithm for testing reducibility of a trinomial of
prime degree r over GF(2) requires 2r + O(1) bits of memory. We describe a
new algorithm which requires only 3r/2+O(1) bits of memory and significantly
fewer memory references and bit-operations than the standard algorithm.

If 2r − 1 is a Mersenne prime, then an irreducible trinomial of degree r is
necessarily primitive. We give primitive trinomials for the Mersenne exponents
r = 756839, 859433, and 3021377. The results for r = 859433 extend and
correct some computations of Kumada et al. The two results for r = 3021377
are primitive trinomials of the highest known degree.

1. Introduction

Throughout this paper all polynomials are assumed to be in Z2[x]. A polynomial
P (x) is reducible if it has nontrivial factors; otherwise it is irreducible. A polynomial
P (x) of degree r > 1 is primitive if P (x) is irreducible and xj 6= 1 mod P (x) for
0 < j < 2r − 1. If P (x) is primitive, then x is a generator for the multiplicative
group of the field Z2[x]/(P (x)), giving a useful representation of GF(2r). See Lidl
and Niederreiter [16] or Menezes et al. [18] for background information.

There is an interest in discovering primitive polynomials of high degree r because
of their connection with fast, high-quality pseudorandom number generators of
period at least 2r−1: see [4] and the references given there. In such applications it
is desirable to use primitive polynomials with a small number of nonzero terms. In
particular, we are interested in trinomials of the form xr +xs+ 1, where r > s > 0.

If P (x) is irreducible and deg(P ) = r, then the order of x in Z2[x]/(P (x)) is
a divisor of 2r − 1. To test if P (x) is primitive, we must test if the order of x is
exactly 2r − 1. To do this efficiently it appears that we need to know the complete
prime factorization of 2r− 1. At the time of writing these factorizations are known
for r < 673 and certain larger r, see [6].

We say that r is a Mersenne exponent if 2r − 1 is prime. In this case the factor-
ization of 2r − 1 is trivial and an irreducible polynomial of degree r is necessarily

Received by the editor July 9, 2001.
2000 Mathematics Subject Classification. Primary 11B83, 11Y16; Secondary 11-04, 11K35,

11N35, 11R09, 11T06, 11Y55, 12-04, 65Y10, 68Q25.
Key words and phrases. Irreducible polynomials, irreducible trinomials, primitive polynomials,

primitive trinomials, Mersenne exponents, Mersenne numbers, random number generators.

c©2002 American Mathematical Society

1443



1444 R. P. BRENT, S. LARVALA, AND P. ZIMMERMANN

primitive. Large Mersenne exponents are known [8], so there is a possibility of find-
ing primitive trinomials of high degree if we have an efficient algorithm for testing
reducibility.

Zierler [26] gave all primitive trinomials of Mersenne exponent r ≤ 11213. Kurita
and Matsumoto [14] extended the search to r ≤ 86243, and Heringa et al. [10] to
r ≤ 216091. Kumada et al. [12] conducted an exhaustive search for r = 859433 and
found one primitive trinomial.

In this paper we describe a new algorithm for testing reducibility of trinomials
of odd degree, and give some results obtained by applying the algorithm to the
Mersenne exponents r ≤ 3021377. In particular, we have verified the published
results for r ≤ 216091, found three new primitive trinomials for r = 756839, found
a primitive trinomial for r = 859433 which was missed by Kumada et al. [12], and
found two new primitive trinomials for r = 3021377. The search for Mersenne
exponents r ≤ 3021377 is now complete.

Sieving is discussed in §2. In §3 we describe the standard algorithm for testing
reducibility, and in §4 we describe our new algorithm. Some performance figures
are given in §5. The computational results are summarised in §6 and Tables 3–4.

The reader may wish to refer to the preliminary report [5] for details which are
omitted here.

2. Sieving

The following theorem characterises the irreducible polynomials of given degree.
The proof is well-known, see for example [16].

Theorem 1. Let Φd,1,Φd,2, . . . be the irreducible polynomials of degree d in Z2[x].
Then, for n ≥ 1, ∏

d|n

∏
j

Φd,j(x) = x2n + x .

Testing a polynomial P (x) for irreducibility is analogous to testing a number N
for primality. We can save time by first checking if P (x) is divisible by an irreducible
polynomial of low degree, in the same way that we can save time by checking if N
is divisible by a small prime.

From Theorem 1, we can check if P (x) is divisible by some irreducible polyno-
mial Φd,j(x) of degree d|n by computing GCD(P (x), x2n + x). By analogy with
the process of sieving out small integer factors, this process will be called sieving,
although the sieve is performed by a GCD computation. We are interested in the
case that P (x) = xr + xs + 1 is a trinomial, r > s > 0.

Consider the computation of G = GCD(xr +xs+ 1, x2n +x). If k = 2n−1, then
G = GCD(xr + xs + 1, xk + 1). In practice, we distinguish two cases:

(1) If r ≥ k, we can use the fact that G = GCD(xr
′

+ xs
′

+ 1, xk + 1), where
r′ = r mod k, s′ = s mod k. Thus, for small k the computation of G is
trivial.

(2) If k > r, the standard Euclidean algorithm would take time O(k2) and
space Ω(k). We save time and space by first computing x2n mod P (x) by
squaring and reducing n times. Then we apply the Euclidean algorithm
to compute G = GCD((x2n mod P (x)) + x, P (x)). The overall time is
O(r(n + r)) and space Ω(r). In practice the GCD computation runs much



A FAST ALGORITHM FOR TESTING REDUCIBILITY OF TRINOMIALS 1445

faster than the worst-case bound, because x2n mod P (x) is sparse if 2n/r
is not too large.

Sieving is performed with n = 2, 3, 4, . . . until one of the following holds:
(1) We find a nontrivial GCD, in which case P (x) is reducible.
(2) The estimated time Ts(n) which would be required to perform another

sieving step satisfies nTs(n) ≥ Tf (r), where Tf(r) is the (estimated) time
required for the full reducibility test of §4.

(3) n > r/2, in which case P (x) is irreducible (in practice, it is unlikely that
we sieve this far).

For r = 3021377, in most cases we sieve for n ≤ 24, and sieving takes about 8%
of the overall time while eliminating about 93% of trinomials from consideration.
The remaining 7% of trinomials require the full reducibility test, which takes about
92% of the total computing time.

In §§3–4 we assume that a trinomial being tested for reducibility has already
survived the sieving phase.

3. The standard algorithm

The standard algorithm for testing reducibility of a polynomial P (x) uses the
following theorem, which is an easy consequence of Theorem 1.

Theorem 2. Let P (x) ∈ Z2[x], deg(P ) = r > 1. Then P (x) is irreducible iff

x2r = x mod P (x)

and, for all d, 1 ≤ d < r, if d|r then

GCD(x2d + x, P (x)) = 1 .

The second condition in Theorem 2 is trivial if the degree r is prime, which is
the case in our applications (see §6). Hence, from now on we avoid complications
by assuming that r is prime, although the algorithms described here and in §4 can
easily be extended to handle the more general case. When r is prime and P (x) is
a trinomial, Theorem 2 reduces to

Corollary 1. If r > s > 0, where r is prime, then P (x) = xr + xs + 1 ∈ Z2[x] is
irreducible iff

x2r = x mod P (x) .

The obvious implementation of Corollary 1 has a loop, executed r times, consist-
ing of a squaring step A(x)← A(x)2 and a reduction step A(x)← A(x) mod P (x).
Each of these steps can be implemented in Θ(r) bit-operations and Θ(r) space.

To consider an implementation in more detail, we assume that the polynomial
A(x) = a0 + a1x+ · · ·+ adx

d is represented as a bit-string a0a1 . . . ad. Because we
are working in Z2[x], the cross terms in A(x)2 vanish and we have simply

A(x)2 = a0 + a1x
2 + · · ·+ adx

2d ,

which is represented as a bit-string (with optional zero padding on the right):

a00a10a20 . . . ad−10ad .

In the following, for clarity we describe algorithms in terms of bit-operations, but
an efficient implementation will use word-operations so that several bit-operations
can be performed with one machine instruction.



1446 R. P. BRENT, S. LARVALA, AND P. ZIMMERMANN

3.1. Squaring. On a byte-addressable machine, the squaring operation can be
performed eight bits at a time using a table lookup. We precompute a table of
256 16-bit integers representing the “squares” of the 256 possible 8-bit sequences
(where the integers encode the coefficients of polynomials in Z2[x]). Thus, squaring
a polynomial of degree r − 1 can be done with dr/8e table lookups.

We have found that, on some machines, the table lookup method is not the
fastest, even if the table size is optimised to give the best results. An alternative
on a machine with wordlength w = 2k bits is to perform squaring by a sequence
of d2r/we log2(w/2) iterations of the logical operations “shift right”, “∨” and “∧”.
For details see [5].

3.2. Reduction mod P (x). Reduction of A(x) = a0 +a1x+ · · ·+adx
d mod P (x),

where P (x) = xr + xs + 1, is performed by a sequence of “exclusive or” operations
(written “⊕”). While d = deg(A) ≥ r, we set A(x)← A(x)− (xd +xd+s−r +xd−r),
since xd + xd+s−r + xd−r = 0 mod P (x). In terms of bit-operations:

for d← deg(A) downto r do
begin
ad−r ← ad−r ⊕ ad;
ad+s−r ← ad+s−r ⊕ ad;
ad ← 0; {This can be implicit}
end.

Although complete descriptions are not always given in the original papers, previ-
ous computations [9, 10, 12, 14, 20, 21, 24, 26] involving irreducible or primitive
trinomials seem to have used some variant of sieving combined with squaring and
reduction, much as described above. This is why we call it the standard algorithm.
In §4 we describe an improvement which, although mathematically trivial, gives a
significant reduction in computing time.

4. The new algorithm

The standard algorithm is inefficient because many of the bit-operations are
performed on bits which are necessarily zero. Our new algorithm avoids this. We
assume that both r and s are odd. This is not a serious restriction. We already
assumed that r is prime. If s is even, we simply replace s by r − s, because the
reciprocal trinomial xr + xr−s + 1 is reducible iff xr + xs + 1 is reducible.

Before giving the algorithm in the general case, we illustrate with the example
r = 7, s = 3.

We initialise A(x) ← x, i.e., a0 . . . a6 ← 0100000. The “squaring” operation is
implicit: we keep the bit-vector 0100000 and regard this as representing

a0a2a4a6a8a10a12

(the odd-numbered coefficients a1, a3, . . . in the square are necessarily zero, so need
not be computed). We now reduce mod P (x) = 1 + x3 + x7. Observe that
x12 = x5 + x8 mod P (x), so we replace a8 by a8 ⊕ a12. We should also replace
a5 by a5 ⊕ a12, but a5 is currently zero, so we can simply regard the rightmost bit
as representing a5 rather than a12. Thus, after the first step of the reduction we
have a bit-vector representing

a0a2a4a6a8a10a5 ,



A FAST ALGORITHM FOR TESTING REDUCIBILITY OF TRINOMIALS 1447

where the only bits which could have changed, because they depend on the results
of “⊕” operations, are underlined.

Proceeding in a similar fashion, we observe that x10 = x3 + x6 mod P (x), but
a3 = 0 , so we replace a6 by a6 ⊕ a10 and implicitly regard the second bit from
the right as representing a3 rather than a10. Thus, after the reduction we have a
bit-vector representing

a0a2a4a6a8a3a5 .

One more step of reduction gives a bit-vector representing

a0a2a4a6a1a3a5 .

Observe that this bit-vector contains the coefficients of A(x)2 mod P (x), but in
a shuffled order. We need to apply an interleave permutation to get back to the
natural order

a0a1a2a3a4a5a6 .

Interleaving is closely related to the “squaring” operation described in §3.1. In
fact, if we square a0a2a4a6 giving a00a20a40a6, square and rightshift a1a3a50 giving
0a10a30a50, and apply a bitwise “∨” operation, we obtain a0a1a2a3a4a5a6. Thus,
interleaving can be implemented by squaring and a few additional operations. Two
squarings are necessary, but the bit-vectors are only half as long as in §3.1, so the
work involved is almost the same.

We now describe the new algorithm in terms of bit-operations. To avoid con-
fusion, we denote the working bit-array by b0b1 · · · br−1. This bit-array is used to
represent the coefficients a0a1 · · · ar−1 of the polynomial A(x), but not necessarily
in the natural order. In a program, only the b-array is required.

Let α = (r − 1)/2 and δ = (r − s)/2. Since r and s are odd, α and δ are
integers. Initially we set b1 ← 1 and the other bj ← 0 to represent A(x) = x.
The algorithm involves a sequence of r steps of (implicit) squaring and reduction
followed by interleaving.

4.1. Implicit squaring and reduction. In terms of bit-operations, each squaring
and reduction step is implemented by:

for j ← r − 1 downto α+ 1 do
bj−δ ← bj−δ ⊕ bj .

Note that there are only r/2 +O(1) “⊕” bit-operations in the loop, which is a 75%
reduction over the 2r +O(1) for the reduction step of the standard algorithm.

4.2. Interleaving. A straightforward implementation of the interleaving step re-
quires another bit-array (say c0c1 · · · cr−1) for the result. For example:

c0 ← b0;
for j ← 1 to α do

begin
c2j−1 ← bj+α;
c2j ← bj ;
end.

We call this a “forward interleave” because the loop index j increases (there is
an analogous “backward interleave” where the loop index j decreases). We avoid



1448 R. P. BRENT, S. LARVALA, AND P. ZIMMERMANN

Table 1. Time to test reducibility, c = time(nsec)/r2, r = 3021377.

processor algorithm compiler/assembler cache size c
300 Mhz Pentium II standard C code (gcc) 512KB 7.86

” ” assembler ” 6.31
” new C code (gcc) ” 3.54
” ” assembler ” 1.64

500 Mhz Pentium III ” ” ” 0.77
833 Mhz Pentium III ” ” 256KB 1.66
300 Mhz Ultrasparc 10 ” C code (gcc) large 2.90
300 Mhz SGI R12000 ” C code (cc) ” 1.16
667 Mhz Alpha ” C code (gcc) ” 0.60

copying the array c back to b by alternately using the array b and the array c (or
by interchanging pointers appropriately).

The arrays b and c can overlap, in fact bj can occupy the same memory as cj+α
(j = 0, 1, . . . ), if we alternate forward and backward interleaves. This reduces the
storage requirement from 2r + O(1) bits to 3r/2 + O(1) bits. For details see [5,
§4.3].

Partially overlapping the arrays b and c in this manner can improve performance
dramatically on machines with memory hierarchies and cache sizes of less than
2r bits, because the working set is reduced in size by 25%. It has little effect on
machines with much larger caches.

It is possible to perform interleaving using only r + O(1) bits, by splitting the
required permutation into a product of cycles. However, it seems difficult to imple-
ment such an algorithm efficiently using word-operations.

To summarise, the new algorithm has 75% fewer “⊕” operations than the stan-
dard algorithm. Perhaps more significant is the number of memory references,
which is reduced by 56%, from 8r/w + O(1) to 3.5r/w + O(1) loads/stores on a
machine with w-bit words. Also, the working set size is reduced by 25%, so memory
references are more likely to be in the cache. In practice the improvement provided
by the new algorithm is at least a factor of two (see Table 1).

5. Performance

We expect the running time of our program (excluding sieving) to be T = 10−9cr2

seconds for a full reducibility test, where c is machine-dependent and approximately
constant. In practice, because of cache effects, c is not independent of r. In Table 1
we give c for r = 3021377 on various machines. For IBM PCs (Intel Pentium II and
Pentium III) we give the size of the L2 cache (here and below 1KB = 1024 bytes).
If the cache size is given as “large” this means that it is significantly larger than the
working set size (3r/2 bits). Since 3r/2 bits is 553KB, the program performs much
better on PCs with a 512KB cache than a 256KB cache. The programs run on
PCs had inner loops written in assembler, unless otherwise noted. The NASM [23]
assembler routines use MMX instructions, which operate on 64-bit registers [11].
The speedup over pure C code is approximately a factor of two. For other machines
the possibilities for improving performance by using assembler were minimal, so the
program was written purely in C (the times quoted are for the best compiler options,



A FAST ALGORITHM FOR TESTING REDUCIBILITY OF TRINOMIALS 1449

Table 2. Time to test reducibility on 300 Mhz Pentium II.

r time T (sec) c = 109T/r2

19937 0.42 1.06
110503 14.4 1.18
859433 1027 1.39
3021377 15010 1.64
6972593 199300 4.10

discovered by experiment, using 64-bit integers for SGI and Alpha processors). In
Table 1:

(1) We compare the standard and new algorithms (both C and assembler im-
plementations) on the same processor.

(2) We compare the new algorithm on different Pentium processors. Note the
dramatic influence of the cache size on performance – an 833 Mhz Pen-
tium III with 256KB cache runs slower than a 300 Mhz Pentium II with a
512KB cache.

(3) Finally, we compare the C implementation on some other processors.
In Table 2 we show the time for a full reducibility test with our new algorithm

and various r on a machine (300 Mhz Pentium II) with 512KB L2 cache. The
times given in the table do not include sieving, but this is relatively insignificant
(e.g. sieving to n = 24 for r = 3021377 takes about 1200 seconds, or 7.4% of the
total time).

6. Computational results

In Table 3 we give a table of primitive trinomials xr+xs+1, where r is a Mersenne
exponent. We assume that 0 < 2s ≤ r (the reciprocal trinomial xr + xr−s + 1 is
not listed). To save space we have omitted the entries for r ≤ 11213, which are
given by Zierler [26], (see also [5, Table 5] and [18, Table 4.9]). Entries with
r = ±3 mod 8 are unlikely, since s = 2 (or r − 2) is then the only possibility, by
Swan’s theorem.1 In particular, there are no primitive trinomials2 whose degree is
the Mersenne exponent r = 21701, 86243, 216091, 1257787, 1398629, 2976221 or
13466917.

The computations for r < 3021377 have been checked by running at least two
different programs on different machines. During this checking process, which con-
firmed the published results for r < 756839, the entry with r = 859433, s = 170340
was found. This was a surprise, because Kumada et al. [12] claimed to have searched
the whole range for r = 859433 without finding this entry. In fact Kumada et al.
missed the entry because of a bug in their sieving routine [13, 17].

1Swan’s Theorem 1 is a rediscovery of a result of Stickelberger (1897); see Swan [22, p. 1099].
An elementary proof is given by Berlekamp [1, p. 159]. For a generalisation, see Blake [2]. We
only need Swan’s Corollary 5.

2Following a suggestion of Blake et al. [3], in all the cases of Mersenne exponent r = ±3 mod 8

with 5 < r ≤ 1257787, we have found trinomials (of degree slightly greater than r) which have a
primitive polynomial factor of exact degree r. The cases r < 500 were considered in [3, Table 4].
In many applications such trinomials are as useful as primitive trinomials of degree r. Details will
appear elsewhere.



1450 R. P. BRENT, S. LARVALA, AND P. ZIMMERMANN

Table 3. Primitive trinomials with degree a Mersenne exponent.

r s Notes
19937 881, 7083, 9842 Kurita and Matsumoto [14]
23209 1530, 6619, 9739 Kurita and Matsumoto [14]
44497 8575, 21034 Kurita and Matsumoto [14]
110503 25230, 53719 Heringa et al. [10]
132049 7000, 33912, 41469, 52549, 54454 Heringa et al. [10]
756839 215747, 267428, 279695 Brent et al. [5]
859433 170340, 288477 See text, §6
3021377 361604, 1010202 Brent et al. [5]

The three entries for r = 756839 are new (Kumada et al. did not search for
this r), as are the two entries for r = 3021377. The search for r = 3021377
is complete, but has not been verified by an independent computation, so there
is a possibility that a primitive trinomial has been missed due to a machine or
programming error.3

Since the average time for a single reducibility test is O(r2), the time required
to test all trinomials of degree r is O(r3). Thus, ignoring the variability of c and
the effect of different sieving cutoffs,4 we expect a search for r = 3021377 to take
about 43 times as long as that for 859433, and a search for r = 6972593 to take
about 12 times as long as that for r = 3021377.

By a theorem of Ore [19], if P (x) = xr + xs + 1 is primitive, then the trinomial
P [2](x) = x2r−1 + x2s−1 + 1 of degree 2r − 1 is irreducible.5 Thus, from the entries
in Table 3 we can obtain irreducible trinomials of Mersenne prime degree as high
as 23021377 − 1.

There is a large gap between some of the Mersenne exponents r for which prim-
itive trinomials exist, e.g., none exist in the interval 132049 < r < 756839. In
Table 4 we give some irreducible trinomials to fill this gap. As usual, we only list
s ≤ r/2. The exponents r were chosen to be close to the arithmetic progression
105, 2 × 105, 3 × 105, . . . with the constraints that r is prime, 2r − 1 is composite,
and no prime factors of 2r − 1 are known. Such factors are certainly larger than
256: see [8]. The trinomials listed in Table 4 are extremely likely to be primitive,6

but we are unable to prove primitivity without knowing the factorizations of 2r−1.
There is an interest in finding irreducible trinomials xr + xs + 1 with s ≤ 2.

Heuristic arguments suggest that the number with r ≤ n is Θ(logn), and that
the number with prime r ≤ n is Θ(log logn). Zierler [27] searched for irreducible
trinomials xr+x+1 with r ≤ 30000, and Fredricksen and Wisniewski [7] searched for

3The search for r = 3021377 was completed in April 2001. In February 2001 we
commenced a search with the next known Mersenne exponent r = 6972593; by Febru-
ary 2002 the search was 26% complete. For information on current status and results, see

http://www.comlab.ox.ac.uk/oucl/work/richard.brent/trinom.html .
4If the sieving cutoff is Θ(log r), then it is plausible that the overall time is Θ(r3/ log r).
5Ore’s theorem was rediscovered by Gleason and Marsh, and generalised by Zierler – see

Golomb [9, §5.4], Lidl [16, Theorem 3.63], and Zierler [25].
6There are (2r−2)/r irreducible polynomials of degree r, and of these φ(2r−1)/r are primitive,

so the probability ρ that a randomly chosen irreducible polynomial of degree r is also primitive is
φ(2r − 1)/(2r − 2); this is close to 1 as 2r − 1 has no small prime factors. In Table 4, r ≤ 1000121

and the prime factors of 2r − 1 are at least 256, so ρ ≥ (1 − 2−56)r/56 ≥ 1− 10−12.



A FAST ALGORITHM FOR TESTING REDUCIBILITY OF TRINOMIALS 1451

Table 4. Some irreducible trinomials with prime degree r.

r s Search status
100151 4764, 15503 complete
200033 10175, 55224, 95397, 96236, 97575, 98763 ”
300073 — ”
300151 49950, 87430 ”
400033 17865, 103623 ”
500231 4862, 10101, 203207, 205310 ”
600071 111503 ”
700057 24829, 121384 ”
800057 92487, 140565, 161777, 192416, 249828 ”
900217 82555, 437251 65% complete
1000121 39528, 144815, 154157 45% complete

irreducible trinomials xr + x2 + 1 with r ≤ 60000. We have searched for s ≤ 2, odd
prime r < 2.0× 106. By Swan’s theorem, we have s = 1 if r = ±1 mod 8, and s = 2
if r = ±3 mod 8. In addition to the known odd prime values r = 3, 5, 7, 11, 29, 127
(see for example [18, Table 4.6]), we found just one new example: r = 80141, s = 2.
One further (large) example, r = 2127 − 1, is a consequence of Ore’s theorem [19]
and is discussed by Lenstra and Schoof [15, Lemma 4.1].

Acknowledgments. We thank the users of several workstations at INRIA Lor-
raine and Oxford University Computing Laboratory for making their idle time avail-
able. The Oxford Supercomputing Centre provided time to run the first author’s
programs on Oscar, an SGI Origin 2000, and Tosca, a PC cluster. Barry Mead and
Mark Rodenkirch contributed some CPU cycles. Robert Hedges supplied a copy
of [2], and Shuhong Gao kindly provided a preprint of his paper [3]. Mike Yoder
drew our attention to [7], and verified our new results with his independently-
written Ada program. Finally, we thank an anonymous referee for his comments
on an earlier version of this paper.

References

[1] E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968. MR 38:6873
[2] I. F. Blake, S. Gao and R. J. Lambert, Constructive problems for irreducible polynomials

over finite fields, in Information Theory and Applications, Lecture Notes in Computer Science
793, Springer-Verlag, Berlin, 1994, 1–23. MR 95c:94007

[3] I. F. Blake, S. Gao and R. J. Lambert, Construction and distribution problems for irreducible
trinomials over finite fields, Applications of Finite Fields, Oxford Univ. Press, New York,
1996, pp. 19–32. MR 98a:11170

[4] R. P. Brent, Random number generation and simulation on vector and par-
allel computers (extended abstract), Proc. Fourth Euro-Par Conference, Lec-
ture Notes in Computer Science 1470, Springer-Verlag, Berlin, 1998, 1–20.
http://www.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub185.html

[5] R. P. Brent, S. Larvala and P. Zimmermann, A Fast Algorithm for Test-
ing Irreducibility of Trinomials mod 2 (preliminary report), Report PRG-
TR-13-00, Oxford University Computing Laboratory, 30 December 2000. See
http://www.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub199.html

http://www.ams.org/mathscinet-getitem?mr=38:6873
http://www.ams.org/mathscinet-getitem?mr=95c:94007
http://www.ams.org/mathscinet-getitem?mr=98a:11170


1452 R. P. BRENT, S. LARVALA, AND P. ZIMMERMANN

[6] J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff, Jr., Factoriza-
tions of bn± 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers, 2nd ed., Amer. Math. Soc., Prov-
idence, RI, 1988. Updates available from http://www.cerias.purdue.edu/homes/ssw/cun/.
MR 90d:11009

[7] H. Fredricksen and R. Wisniewski, “On trinomials xn+x2 + 1 and x8l±3 +xk+ 1 irreducible
over GF(2)”, Inform. and Control 50 (1981), 58–63. MR 84i:12013

[8] GIMPS, The Great Internet Mersenne Prime Search, http://www.mersenne.org/
[9] S. W. Golomb, Shift register sequences, Holden-Day, San Francisco, 1967. MR 39:3906

Revised edition, Aegean Park Press, 1982, ISBN 0-89412-048-4
[10] J. R. Heringa, H. W. J. Blöte and A. Compagner. New primitive trinomials of Mersenne-

exponent degrees for random-number generation, International J. of Modern Physics C 3
(1992), 561–564. MR 94a:11118

[11] Intel Corporation, MMX Technology Programmer’s Reference Manual. Available from
http://developer.intel.com.

[12] T. Kumada, H. Leeb, Y. Kurita and M. Matsumoto, New primitive t-nomials (t = 3, 5)
over GF(2) whose degree is a Mersenne exponent, Math. Comp. 69 (2000), 811–814. MR
2000i:11183

[13] T. Kumada, Y. Kurita and M. Matsumoto, Corrigenda to “New primitive t-nomials (t = 3,
5) over GF(2) whose degree is a Mersenne exponent, and some new primitive pentanomials”,

Math. Comp. 71 (2002), 1337–1338.
[14] Y. Kurita and M. Matsumoto, Primitive t-nomials (t = 3, 5) over GF(2) whose degree is a

Mersenne exponent ≤ 44497, Math. Comp. 56 (1991), 817–821. MR 91h:11138
[15] H. W. Lenstra and R. J. Schoof, Primitive normal bases for finite fields, Math. Comp. 48

(1987), 217–231. MR 88c:11076
[16] R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications, Cambridge

Univ. Press, Cambridge, second edition, 1994. MR 95f:11098
[17] M. Matsumoto, Private communication by email, 17 July 2000.
[18] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography,

CRC Press, New York, 1997. http://cacr.math.uwaterloo.ca/hac/ . MR 99g:94015
[19] O. Ore, “Contributions to the theory of finite fields”, Trans. Amer. Math. Soc. 36 (1934),

243–274.
[20] E. R. Rodemich and H. Rumsey, Jr., Primitive trinomials of high degree, Math. Comp. 22

(1968), 863–865. MR 39:177
[21] W. Stahnke, Primitive binary polynomials, Math. Comp. 27 (1973), 977–980. MR 48:6064
[22] R. G. Swan, Factorization of polynomials over finite fields, Pacific J. Math. 12 (1962), 1099–

1106. MR 26:2432
[23] S. Tatham and J. Hall, NASM v0.98, the Netwide Assembler, available from

http://www.web-sites.co.uk/nasm/docs/ .
[24] E. J. Watson, Primitive polynomials (mod 2), Math. Comp. 16 (1962), 368–369. MR 26:5764
[25] N. Zierler, “On the theorem of Gleason and Marsh”, Proc. Amer. Math. Soc. 9 (1958),

236–237. MR 20:851
[26] N. Zierler, Primitive trinomials whose degree is a Mersenne exponent, Inform. and Control

15 (1969), 67–69. MR 39:5522
[27] N. Zierler, On xn + x+ 1 over GF(2), Inform. and Control 16 (1970), 502–505. MR 42:5955

Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford,

OX1 3QD, England

E-mail address: Richard.Brent@comlab.ox.ac.uk

Helsinki University of Technology, Espoo, Finland

E-mail address: slarvala@cc.hut.fi

LORIA/INRIA Lorraine, 615 rue du jardin botanique, BP 101, F-54602 Villers-lès-

Nancy, France

E-mail address: Paul.Zimmermann@loria.fr

http://www.ams.org/mathscinet-getitem?mr=90d:11009
http://www.ams.org/mathscinet-getitem?mr=84i:12013
http://www.ams.org/mathscinet-getitem?mr=39:3906
http://www.ams.org/mathscinet-getitem?mr=94a:11118
http://www.ams.org/mathscinet-getitem?mr=2000i:11183
http://www.ams.org/mathscinet-getitem?mr=91h:11138
http://www.ams.org/mathscinet-getitem?mr=88c:11076
http://www.ams.org/mathscinet-getitem?mr=95f:11098
http://www.ams.org/mathscinet-getitem?mr=99g:94015
http://www.ams.org/mathscinet-getitem?mr=39:177
http://www.ams.org/mathscinet-getitem?mr=48:6064
http://www.ams.org/mathscinet-getitem?mr=26:2432
http://www.ams.org/mathscinet-getitem?mr=26:5764
http://www.ams.org/mathscinet-getitem?mr=20:851
http://www.ams.org/mathscinet-getitem?mr=39:5522
http://www.ams.org/mathscinet-getitem?mr=42:5955

	1. Introduction
	2. Sieving
	3. The standard algorithm
	3.1. Squaring
	3.2. Reduction mod P(x)

	4. The new algorithm
	4.1. Implicit squaring and reduction
	4.2. Interleaving

	5. Performance
	6. Computational results
	Acknowledgments

	References

