
Concerning the Length of Time Slots for Efficient Gang Scheduling
�

B. B. Zhou and A. M. Goscinski
School of Computing & Mathematics

Deakin University
Geelong, VIC 3217, Australia

bbz,ang@deakin.edu.au

R. P. Brent
Oxford University Computing Laboratory

Wolfson Building, Parks Road
Oxford OX1 3QD, UK
rpb@comlab.ox.ac.uk

Abstract

Applying gang scheduling can alleviate the blockade
problem caused by exclusively used space-sharing strate-
gies for parallel processing. However, the original form of
gang scheduling is not practical as there are several fun-
damental problems associated with it. Recently many re-
searchers have developed new strategies to alleviate some
of these problems. Unfortunately, one important problem
has not been so far seriously addressed, that is, how to set
the length of time slot to obtain a good performance of gang
scheduling. With gang scheduling time is divided into time
slots of equal length, the number of time slots introduced
in the system forms a scheduling round and each new job
is first allocated to a particular time slot and then starts to
run in the following scheduling round. Ideally, the length
of time slot should be set long to avoid frequent context
switches and so to reduce the scheduling overhead. The
number of time slots in a scheduling round should also be
limited to avoid a large number of jobs competing for lim-
ited resources (CPU time and memory). Long time slots and
the limited number of time slots in each scheduling round
may cause jobs to wait for a long time before it can be ex-
ecuted after arrival, which can significantly affect the per-
formance of jobs, especially short jobs which are normally
expected to finish quickly. However, the performance of a
short job can also suffer if the length of time slot is not long
enough to let the short job complete in a single time slot. In
this paper we present a strategy to deal with this important
issue for efficient gang scheduling.

1 Introduction

Scheduling strategies for parallel processing can be clas-
sified into either space sharing or time sharing. Due to its

�
To appear in Proc. PDCAT 2002, 364–371.
Copyright c

�
2002, the authors. rpb209

simplicity, currently most commercial parallel systems only
adopt space sharing. With space sharing each partitioned
processor subset is dedicated to a single job and the job will
exclusively occupy that subset until completion. One major
drawback of space sharing is the blockade situation, that is,
small jobs can easily be blocked for a long time by large
ones. The backfilling technique can be applied to alleviate
this problem to a certain extent [9, 11]. However, the block-
ade can still be a serious problem under heavy workload. To
alleviate this problem, time sharing needs to be considered.

Because the processes of the same parallel job may need
to communicate with each other during the computation,
in a time-shared environment the execution of parallel jobs
should be coordinated to prevent jobs from interfering with
each other. Coordinated scheduling strategies can be classi-
fied into two different categories. The first is called implicit
coscheduling [3, 12]. This approach does not use a global
scheduler, but local schedulers on each processor to make
scheduling decisions mainly based on the communication
behavior of local processes. Implicit coscheduling is attrac-
tive for loosely coupled clusters without a central resource
management system.

The second type of coscheduling is called explicit
coscheduling [10] or gang scheduling [7]. With gang
scheduling time is divided into time slots of equal length,
the number of time slots introduced in the system forms a
scheduling round, and each new job is first allocated to a
particular time slot and then starts to run at the following
scheduling round. Controlled by a global scheduler, all par-
allel jobs in the system take turns to receive the service in
a coordinated manner. It gives the user an impression that
the job is not blocked, but executed on a dedicated slower
machine when the system workload is heavy.

Although many new strategies have been introduced to
enhance the performance of gang scheduling, one important
problem has not been so far seriously addressed, that is, how
to set the length of time slot to obtain a good system utili-
sation and job performance. Ideally, the length of time slot
should be set long to avoid frequent context switches and

364



so to reduce the scheduling overhead. The number of time
slots in a scheduling round should also be limited to avoid a
large number of jobs competing for limited resources (CPU
time and memory). Long time slots and the limited num-
ber of time slots in each scheduling round may cause jobs
to wait for a long time before they can be executed after ar-
rival, which can significantly affect the performance of jobs,
especially short jobs which are normally expected to finish
quickly. However, the performance of a short job can also
suffer if the length of time slot is not long enough to let
the short job complete in a single time slot. In this paper
we present a strategy to deal with this important issue for
efficient gang scheduling.

The paper is organised as follows. First we briefly dis-
cuss some related work in Section 2. In Section 3 the new
strategy is described. The experimental system and the
workloads used in our experiments are discussed in Sec-
tion 4. Experimental results are presented in Section 5. Fi-
nally the conclusions are given in Section 6.

2 Related Work

There are certain fundamental problems associated with
the original form of gang scheduling. The first problem is
initial allocation of resources to new arrivals to balance the
workload across the processors. Various methods of mem-
ory allocation, such as first fit, best fit and buddy, can be
used for processor and time slot allocation for parallel pro-
cessing. However, study [4] shows that the buddy system
approach performs best if two adjacent time slots are al-
lowed to be unified into a single one for the same job dur-
ing the computation (a kind of running jobs in multiple time
slots). A famous method for implementing the buddy sys-
tem and also taking the workload balance into consideration
is the distributed hierarchical control, or DHC for parallel
processing [5].

System workload changes in a random manner during
the computation due to job arrivals and departures. There
is a need for effective methods to reallocate resources to
balance the workload and to enhance the system utilisa-
tion. One important issue is how freed processors due to
job termination in one time slot could be effectively reallo-
cated to existing jobs running in other time slots if there are
no new jobs on arrival. One possible solution is to allow
jobs to run in multiple time slots whenever possible [4, 13].
However, our study [16] shows that simply running jobs in
multiple time slots may not be able to enhance the system
performance. This is because long jobs stay in the system
longer and thus are more likely to run in multiple time slots.
In consequence the performance of short jobs may be de-
graded as they can only obtain a small amount of CPU time
in each scheduling round. Job should be allowed to run in
multiple time slots. However, special care has to be taken

to prevent the above situation from happening. An effective
way of achieving this is to minimise whenever possible the
total number of time slots in each scheduling round, while
allowing jobs to run in multiple time slots [16].

Another method which can effectively handle both initial
allocation and reallocation during the computation is job re-
packing [16]. For initial allocation this method is similar to
DHC method, but enhanced by using a simplified procedure
to balance the workload across the processors. A big advan-
tage of this method is that the order of job execution in the
system is allowed to change during computation so that pro-
cessors in the system can be utilised more efficiently. With
job re-packing we are able to simplify the search procedure
for available processors, to balance the workload across the
processors and to quickly determine when a job can run in
multiple time slots and when a time slot can be eliminated to
minimise the number of time slots in each scheduling round.
Experimental results show that, using job re-packing, both
processor unilisation and job performance can be greatly
enhanced [16].

The computing power of a given system is limited. If
many jobs time-share the same set of processors, each job
can only obtain a very small portion of processor time and
no job can complete quickly. Thus the number of time slots
in a scheduling round should be limited. However, the sys-
tem may work just like a FCFS queuing system if we simply
limit the number of time slots in each scheduling round. The
question is if the performance can be enhanced by combin-
ing gang scheduling with good space sharing strategies. The
experimental results presented in [14] show that by adopting
the backfilling technique the performance of gang schedul-
ing can indeed be improved when the number of time slots
is limited.

To apply backfilling technique we need the information
about the length of each individual job. With such infor-
mation available we can further enhance the system perfor-
mance by dividing jobs into several classes based on their
required service times. Our experimental results show that
the improvement of system performance can be significant
if we limit the number of long jobs simultaneously running
on the same processors [17]. This is because the average
number of time slots in a scheduling round will be reduced
if less number of long jobs is running on the same proces-
sors at the same time, and then the average performance of
short jobs is improved as they have better chance to be ex-
ecuted immediately without waiting in a queue. Note the
average performance of long jobs can also be enhanced by
limiting the number of long jobs simultaneously running on
the same processors. This can be proved by comparing the
results of average turnaround time for the same set of long
jobs running under two different system: the FCFS and the
round robin.

365



3 The Strategy

Our strategy for setting time slots with a reasonable
length, but not seriously degrading the performance of short
jobs is described in this section.

We shall show in Section 5 that to increase the length of
time slots can markedly decrease the performance of short
jobs. The reason can be explained as follows. With gang
scheduling using the simple round robin strategy, each job is
first allocated to a particular time slot and then starts to run
at the following scheduling round. If the limit of time slots
is reached and the job cannot be allocated in the existing
time slots, it has to be queued. Assume that the limit of time
slots in a scheduling round is � and the length of time slot is

�
. The maximum time for a scheduling round is thus � �

. If
�

is long, the time for a job to wait before being executed can
be long even if it can be executed in the following schedul-
ing round. The waiting time can be much longer if the job
has to wait in the waiting queue when the limit of time slots
in the scheduling round is reached. This amount of waiting
time can significantly affect the performance of short jobs.
However, we should not set the length of time slots short.
The reasons are as follows. First, short time slots do not
reduce the waiting time a job spends in the waiting queue.
Second, setting the length of time slot short dramatically in-
creases the frequency of context switches and so increases
the scheduling overhead. Third, the performance of short
jobs may greatly be degraded because the execution time
for a short job can be proportional to � �

if it cannot com-
plete in a single time slot. The question is thus whether we
can find a method which is able to set the length of time slot
reasonably long and at the same time guarantee the perfor-
mance of short jobs not to be degraded significantly.

In order to provide a special treatment to short jobs
we need to divide jobs into different classes. Convention-
ally, jobs are not distinguished according to their execu-
tion times when gang scheduling is considered. It should
be pointed out that the simple round robin scheme used in
gang scheduling works well only if the sizes of jobs are dis-
tributed in a wide range. Gang scheduling using the simple
round robin strategy may not perform as well as even a sim-
ple FCFS scheme in terms of average response time, or av-
erage slowdown, when all the incoming jobs are large. As
discussed in the previous section, the classification of jobs
based on job length is achievable because the backfilling
technique requires the information of service time of each
individual job. In our previous research [17] we demon-
strated that by limiting the number of long jobs simultane-
ously running on the same processors, the performance of
both long and short jobs are improved. (A similar result
using a different workload model will be presented in Sec-
tion 5).

It seems that setting the limit for the number of simulta-

neously running long jobs has nothing to do with the length
of time slots. However, the significance of this restriction is
that we can markedly decrease the average number of time
slots in a scheduling round. With a low average number of
time slots we are safe to keep time slots in each scheduling
round to a manageable number when letting short jobs run
immediately on their arrivals without being queued.

To summarise, our strategy includes the following:

1. Backfilling technique is incorporated with gang
scheduling, i.e., a limit is set for the maximum number
of time slots in each scheduling round and the backfill-
ing is applied to alleviate the blockade situation;

2. Jobs are divided into classes, for instance, short,
medium and long and jobs of different classes are
treated differently;

3. A limit (usually one) is set for large jobs to run simul-
taneously on the same processors to obtain an average
low number of time slots in a scheduling round;

4. No special treatment is given to medium sized jobs;

5. The normal length of time slots is set reasonable long
to minimise the scheduling overhead;

6. Let short jobs run immediately in the next time slot
(instead of next scheduling round) to minimise their
waiting time. If the required service time of a short job
is shorter than the normal length of time slot, the time
slot will be shortened as long as the short job can com-
plete in a single time slot to reduce the average amount
of idle time on each processor during the computation.
(In our experiment the normal length of time slot may
be set shorter than the service time of short jobs and
then we will increase the length of the time slot for
a short job such that the job can complete in a single
time slot. In this way the performance of short jobs
will not be affected greatly by changing the length of
time slots.)

4 The System and Workload

The gang scheduling system for our experiment is
mainly based on the job re-packing allocation strategy de-
scribed in Section 2. In this experimental system, how-
ever, jobs can be classified into three classes, that is, short,
medium and long, and in each experiment limits are set on
how many time slots are allowed to be in a scheduling round
and how many large jobs can run simultaneously on the
same processors.

With the limit of time slots in a scheduling round intro-
duced, we need to add a waiting queue to the system. If
the limit is reached and a new job cannot be allocated to

366



the existing time slots, it has to be queued. To alleviate the
blockade problem the backfilling technique is adopted.

In our experiment the workload used is a synthetic work-
load generated from the parameters directly extracted from
the actual ASCI Blue-Pacific workload [14]. We briefly de-
scribe this workload in the following paragraph and the de-
tailed description can be found in [14, 15].

The workload is generated by using a modeling proce-
dure proposed in [8]. It is assumed that parallel workload
is often over-dispersive and then the job interarrival time
distribution and job service time (or job length) distribution
can be fitted adequately with Hyper Erlang Distribution of
Common Order. The parameters used to generate a baseline
workload are directly extracted from the actual ASCI Blue-
Pacific workload. There are different workloads generated
with different interarrival rates and average job length. In
our experiment a set of 9 workloads is used. These work-
loads are generated by varying the model parameters so as
to increase average job service time. For a fixed interarrival
rate, increasing job service time increases the system work-
load. Each generated workload consists of 10,000 jobs and
each job requires a set of processors varying from 1 to 256
processors.

In the next section we present some experimental results.
We assume that there are 256 processors in the system. In
each experiment we measure the average slowdown and the
average number of time slots, which are defined as follows:

Assume the service time and the turnaround time for
job
�

are ���� and ���� , respectively. The slowdown for job
�

is � �	� � ���
 � �� . The average slowdown � is then defined as
� �������� � � 
�� for � being the total number of jobs.

If � � is the time when there are
�

time slots in the system,
the total computational time ��� will be �������� � � where

�
is

the largest number of time slots encountered in the system
during the computation. The average number of time slots
in the system during the operation can then be defined as

� ���������� � � � 
 � � .

5 Experimental Results

In our experiment we implemented three different strate-
gies for resource allocation and reallocation for gang
scheduling. They are named Strategy 1, 2 and 3 and briefly
described as follows.

In Strategy 1 the job re-packing technique described in
Section 2 is adopted and the limit of time slots in a schedul-
ing round is set to 5. When the limit is reached, the incom-
ing jobs have to be queued in a waiting queue. To alleviate
the problem of blockade, the backfilling technique is ap-
plied. Note the limit of time slots is able to change in our
experimental system and different limits will produce dif-
ferent simulation results. However, we are more interested
in the relative performance, that is, the results of comparing

different scheduling strategies. We have observed that this
relative performance does not vary much with the change of
the slot limit in a scheduling round. That is the reason we
only show the result obtained by setting the slot limit to 5.

Strategy 2 is a simple extension of Strategy 1. The only
difference is that the jobs are classified and long jobs are not
allowed to time-share the same processors, that is, at any
given time there is at most one long job running on each
processor when Strategy 2 is applied.

Our new strategy is Strategy 3. It is the same as Strat-
egy 2 except that a special treatment is also given to short
jobs. When a short job arrives, it is immediately executed
in the next time slot rather than the next scheduling round
and the length of time slot is adjusted or varied such that the
short job can complete in a single time slot.

In the following we present some results obtained from
our experiment to compare these three strategies. The nine
workloads are named c

�
for ��� � � � and the system work-

load becomes heavier when
�

increases. A job is considered
short if its length is shorter than 150 and long if the job
length is longer than 6000. With such setting, around !#"#$
of the total jobs will be short jobs, another approximately
!%"&$ be long jobs, and the rest are considered as medium
sized jobs.

We first compare Strategy 1 and Strategy 2. The experi-
mental results for the comparison are obtained by setting the
length of time slots to 1. As mentioned previously, the only
difference between these two strategies is that long jobs are
not allowed to run simultaneously on the same processors at
any given time when Strategy 2 is adopted. We can see from
Table 1 and Table 2 that by further limiting the number of
long jobs on each processor both average slowdown for all
jobs and average slowdown for short jobs are markedly de-
creased. This significant improvement in job performance
is also seen when using the workloads generated from a dif-
ferent workload modeling procedure [17].

As shown in Table 2, when Strategy 2 is adopted, the
average slowdown for short jobs decreases as the system
workload becomes heavier. This is caused by the way the
workloads are generated. As described in the previous sec-
tion, all other 8 workloads (from c1 to c8) are generated
from a baseline workload (c0) by increasing average job
service time. In our experiment, however, we consider short
jobs as those with a job length shorter than 150. When we
measure average slowdown for short jobs, c1 will have less
short jobs than c0 and c2 contains less short ones than c1,
and so on. Therefore, we cannot claim that average slow-
down for short jobs is decreased when the system workload
becomes heavier.

Let � � be the time when there are
�

time slots in the sys-
tem and � � be the total computational time. The values
shown in Table 3 are the ratios of � � and ��� for '(� � �)"
obtained by using different workloads. We can see from

367



this table that most of the time (99% of the total operational
time) the system is running with 5 time slots when Strategy
1 is adopted. When Strategy 2 is applied, however, we can
see from Table 4 that a great amount of time the system is
running with just 1 time slot (over 40% of the total time un-
der heavy system workload). As a result, the average num-
ber of time slots in a scheduling round can be significantly
reduced when Strategy 2 is adopted, as shown in Table 5.

Note that the average number of time slots decreases as
the system workload becomes heavier for Strategy 2. This is
because a job is considered long if its length is longer than
6000 in our experiment, and more long jobs will be pro-
duced due to the way the workloads are generated and thus
more jobs could be queued when the workload becomes
heavier.

The experimental results presented in the above tables
are obtained by setting the length of time slot to 1. Table 6
and Table 7 show some results obtained by setting different
slot length when Strategy 2 is applied. It can be seen from
Table 6 that the overall average slowdown will increase as
the length of time slot becomes longer. However, it is short
jobs that suffer the most. As shown in Table 7, the average
slowdown for short jobs can increase by a factor of more
than 10 when the length is increased from 1 to 200.

It is not desirable to have over 20 minutes to finish the
computation of a job having only 1 minute service time.
Our third strategy is thus introduced to alleviate this unde-
sirable situation. Our experimental results in Table 8 and
Table 9 show that applying Strategy 3 can significantly en-
hance the performance of short jobs without greatly degrad-
ing the performance of others. The comparison of Table 8
with Table 6 shows that Strategy 3 performs a bit better in
terms of the average slowdown for all jobs though not much.
When comparing Table 9 with Table 7, however, we can see
a big improvement for short jobs. Using Strategy 3 short
jobs are not queued and are executed as soon as possible
without considering if the limit of time slots in the system
is exceeded. However, the average number of time slots
in a scheduling round is not significantly increased, which
can be seen by comparing the results obtain by setting the
length of time slot to 200 and using Strategy 3 in Table 10
and those obtained by setting the length of time slot to 1 and
using Strategy 2 in Tables 4 and 5.

6 Conclusions

It is known that space-sharing scheduling can cause the
problem of blockade under heavy workload and that this
problem can be alleviated by applying the gang schedul-
ing strategy. Although there have been many new strategies
introduced to improve the performance of gang schedul-
ing and to make it more practical, the problem on how to
set length of time slots has not been so far seriously ad-

dressed. This problem is very important and can seriously
affect the performance of gang scheduling. In practice the
length of time slot should be set relatively long as a short
length of time slot can greatly increase the scheduling over-
head. However, setting the length too long will degrade both
efficiency of system utilisation and performance of job exe-
cution, especially short jobs.

In this paper we proposed a new strategy for alleviating
the problem on how to set slot length. In this strategy short
jobs are given special treatments, that is, short jobs will not
be queued and are able to run as soon as possible on their
arrival to minimise their waiting time, and the length of time
slot may be temporarily adjusted as long as each short job
can complete its execution in just a single time slot to min-
imise the average idle time on each processor. Therefore,
the performance of short jobs will not be affected much by
the length of time slot.

It should be stressed that limiting long jobs to run si-
multaneously on the same processors has played a very im-
portant role for the success of our new strategy. This is
because to limit long jobs running simultaneously on the
same processors can significantly reduce the average num-
ber of time slots in a scheduling round and thus there are
more free places for short jobs to fit in without adding too
many extra time slots to exceed the limit of a manageable
number of time slots in the system.

In the paper we also presented some experimental results
to demonstrate the effectiveness of our new strategy.

References

[1] A. Batat and D. G. Feitelson, Gang scheduling with
memory considerations, Proceedings of 14th Inter-
national Parallel and Distributed Processing Sympo-
sium, Cancun, May 2000, pp.109-114.

[2] A. B. Downey, A parallel workload model and its im-
plications for processor allocation, Proceedings of 6th
International Symposium on High Performance Dis-
tributed omputing, Aug 1997.

[3] A. C. Dusseau, R. H. Arpaci and D. E. Culler, Ef-
fective distributed scheduling of parallel workloads,
Proceedings of ACM SIGMETRICS’96 International
Conference, 1996.

[4] D. G. Feitelson, Packing schemes for gang scheduling,
In Job Scheduling Strategies for Parallel Processing,
D. G. Feitelson and L. Rudolph (eds.), Lecture Notes
Computer Science, Vol. 1162, Springer-Verlag, 1996,
pp.89-110.

[5] D. G. Feitelson and L. Rudolph, Distributed hierar-
chical control for parallel processing, Computer 23, 5,
May 1990, pp.65-77.

368



[6] D. G. Feitelson and L. Rudolph, Job scheduling for
parallel supercomputers, in Encyclopedia of Com-
puter Science and Technology, Vol. 38, Marcel
Dekker, Inc, New York, 1998.

[7] D. G. Feitelson and L. Rudolph, Gang scheduling
performance benefits for fine-grained synchronisation,
Journal of Parallel and Distributed Computing, 16(4),
Dec. 1992, pp.306-318.

[8] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira and
J. Riordan, Modeling of workload in MPPs, Proceed-
ings of the 3rd Annual Workshop on Job Scheduling
Strategies for Parallel Processing, April 1997, pp.95-
116.

[9] D. Lifka, The ANL/IBM SP scheduling system, In
Job Scheduling Strategies for Parallel Processing, D.
G. Feitelson and L. Rudolph (Eds.), Lecture Notes
Computer Science, Vol. 949, Springer-Verlag, 1995,
pp.295-303.

[10] J. K. Ousterhout, Scheduling techniques for concur-
rent systems, Proceedings of Third International Con-
ference on Distributed Computing Systems, May 1982,
pp.20-30.

[11] J. Skovira, W. Chan, H. Zhou and D. Lifka, The
EASY - LoadLeveler API project, In Job Scheduling
Strategies for Parallel Processing, D. G. Feitelson and
L. Rudolph (Eds.), Lecture Notes Computer Science,
Vol. 1162, Springer-Verlag, 1996.

[12] P. G. Sobalvarro and W. E. Weihl, Demand-based
coscheduling of parallel jobs on multiprogrammed
multiprocessors, In Job Scheduling Strategies for Par-
allel Processing, D. G. Feitelson and L. Rudolph
(Eds.), Lecture Notes Computer Science, Vol. 949,
Springer-Verlag, 1995.

[13] K. Suzaki, H. Tanuma, S. Hirano, Y. Ichisugi and M.
Tukamoto, Time sharing systems that use a partition-
ing algorithm on mesh-connected parallel computers,
Proceedings of the Ninth International Conference on
Distributed Computing Systems, 1996, pp.268-275.

[14] Y. Zhang, H. Franke, J. E. Moreira and A. Sivasubra-
maniam, Improving parallel job scheduling by com-
bining gang scheduling and backfilling techniques,
Proceedings of 14th International Parallel and Dis-
tributed Processing Symposium, Cancun, May 2000,
pp.133-142.

[15] Y. Zhang, H. Franke, J. E. Moreira and A. Sivasubra-
maniam, An integrated approach to parallel schedul-
ing using gang-scheduling, backfilling and migration,

Proceedings of 7th Annual Workshop on Job Schedul-
ing Strategies for Parallel Processing, Boston, June
2001, pp.109-127.

[16] B. B. Zhou, R. P. Brent, C. W. Johnson and D.
Walsh, Job re-packing for enhancing the performance
of gang scheduling, Proceedings of 5th Workshop on
Job Scheduling Strategies for Parallel Processing, San
Juan, April 1999, pp.129-143.

[17] B. B. Zhou and R. P. Brent, Gang scheduling with
a queue for large jobs, In Proceedings of 15th Inter-
national Parallel and Distributed Processing Sympo-
sium, San Francisco, April 2001.

369



c0 c1 c2 c3 c4 c5 c6 c7 c8
Strategy 1 29.6 89.2 156 179 252 307 368 357 405
Strategy 2 9.62 15.4 19.5 24.6 29.6 34.6 39.7 44.2 49.8

Table 1. Average slowdown for all jobs obtained by using Strategy 1 and Strategy 2.

c0 c1 c2 c3 c4 c5 c6 c7 c8
Strategy 1 67.4 223 236 368 548 686 852 765 919
Strategy 2 4.02 4.34 3.68 3.42 2.76 2.61 2.52 2.41 2.37

Table 2. Average slowdown for short jobs obtained by using Strategy 1 and Strategy 2.

slots c0 c1 c2 c3 c4 c5 c6 c7 c8
1 0.029 0.000 0.002 0.001 0.001 0.001 0.002 0.001 0.000
2 0.035 0.002 0.001 0.003 0.001 0.001 0.001 0.001 0.001
3 0.061 0.003 0.002 0.003 0.002 0.002 0.002 0.002 0.003
4 0.095 0.004 0.005 0.002 0.001 0.001 0.002 0.001 0.001
5 0.781 0.990 0.990 0.991 0.994 0.995 0.994 0.994 0.995

Table 3. The time ratio for different time slots obtained by using Strategy 1.

slots c0 c1 c2 c3 c4 c5 c6 c7 c8
1 0.139 0.214 0.267 0.322 0.371 0.406 0.444 0.478 0.503
2 0.283 0.253 0.295 0.260 0.270 0.272 0.280 0.286 0.277
3 0.271 0.266 0.245 0.243 0.231 0.210 0.191 0.162 0.157
4 0.170 0.152 0.111 0.104 0.080 0.075 0.062 0.051 0.047
5 0.137 0.155 0.082 0.071 0.049 0.038 0.023 0.022 0.016

Table 4. The time ratio for different time slots obtained by using Strategy 2.

c0 c1 c2 c3 c4 c5 c6 c7 c8
Strategy 1 4.57 4.98 4.98 4.98 4.99 4.99 4.99 4.99 4.99
Strategy 2 2.88 2.70 2.45 2.34 2.17 2.07 1.94 1.85 1.80

Table 5. The average number of time slots obtained by using Strategy1 and Strategy 2.

slot length c0 c1 c2 c3 c4 c5 c6 c7 c8
1 9.62 15.4 19.5 24.6 29.6 34.6 39.7 44.2 49.8

10 10.0 14.7 20.5 25.2 29.6 35.3 39.5 44.5 49.8
50 11.7 16.7 21.1 27.5 31.3 36.7 40.6 46.3 50.1
100 14.1 19.4 23.4 26.9 34.2 38.2 44.5 49.1 52.3
150 17.4 22.4 26.2 30.9 35.7 41.1 45.4 49.9 55.3
200 20.2 24.9 29.1 34.8 39.0 43.6 47.6 53.0 56.3

Table 6. Average slowdown for all jobs obtained by varying the length of time slots, using Strategy 2.

370



slot length c0 c1 c2 c3 c4 c5 c6 c7 c8
1 4.02 4.34 3.68 3.42 2.76 2.61 2.52 2.41 2.37

10 4.61 4.12 3.88 3.57 3.01 3.02 2.76 2.70 2.66
50 8.63 8.50 7.74 7.92 6.94 6.66 6.35 6.19 5.84
100 14.5 14.7 13.3 13.5 12.9 11.9 11.3 11.2 11.1
150 21.4 21.2 19.3 19.0 18.1 17.1 16.3 15.9 16.1
200 28.1 28.3 27.0 26.5 24.6 23.3 22.0 21.6 21.1

Table 7. Average slowdown for short jobs obtained by varying the length of time slots, using Strat-
egy 2.

slot length c0 c1 c2 c3 c4 c5 c6 c7 c8
1 8.40 13.4 19.1 23.9 28.9 34.9 40.3 43.5 48.8

10 8.66 13.7 19.8 24.8 29.9 34.2 39.7 44.2 49.0
50 9.11 14.0 19.6 24.3 30.1 35.2 40.7 44.4 49.0
100 8.97 14.6 19.8 25.0 30.8 34.2 41.1 44.8 50.0
150 9.93 15.7 20.7 25.4 30.9 36.5 40.6 46.3 50.6
200 11.3 16.5 21.7 26.1 31.2 37.6 42.1 47.8 52.0

Table 8. Average slowdown for all jobs obtained by varying the length of time slots, using Strategy 3.

slot length c0 c1 c2 c3 c4 c5 c6 c7 c8
1 1.10 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05

10 1.06 1.05 1.05 1.06 1.06 1.06 1.06 1.06 1.06
50 1.26 1.28 1.25 1.22 1.24 1.23 1.23 1.21 1.20
100 2.06 2.10 2.03 1.97 1.94 1.84 1.75 1.67 1.72
150 3.28 3.40 3.22 3.12 2.86 2.88 2.77 2.77 2.45
200 5.03 4.74 4.87 4.64 4.36 4.34 4.00 3.81 3.69

Table 9. Average slowdown for short jobs obtained by by varying the length of time slots, using
Strategy 3.

slots c0 c1 c2 c3 c4 c5 c6 c7 c8
1 0.154 0.216 0.275 0.320 0.372 0.409 0.445 0.481 0.510
2 0.245 0.239 0.251 0.244 0.234 0.251 0.253 0.244 0.262
3 0.263 0.249 0.247 0.240 0.234 0.215 0.198 0.183 0.156
4 0.175 0.152 0.116 0.122 0.101 0.088 0.069 0.066 0.051
5 0.163 0.143 0.111 0.075 0.058 0.037 0.036 0.026 0.021
6 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

average 2.95 2.77 2.54 2.39 2.24 2.09 2.00 1.91 1.81

Table 10. The time ratio and the average number of time slots (the last row) obtained by setting the
slot length to 200 and using Strategy 3.

371


