
1594
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.9 SEPTEMBER 2003

INVITED PAPER Special Issue on Parallel and Distributed Computing, Applications and Technologies

Concerning the Length of Time Slots for Efficient Gang

Scheduling

Bing Bing ZHOU†, Andrzej M. GOSCINSKI†, and Richard P. BRENT††, Nonmembers

SUMMARY Applying gang scheduling can alleviate the
blockade problem caused by exclusively used space-sharing
strategies for parallel processing. However, the original form of
gang scheduling is not practical as there are several fundamen-
tal problems associated with it. Recently many researchers have
developed new strategies to alleviate some of these problems. Un-
fortunately, one important problem has not been so far seriously
addressed, that is, how to set the length of time slots to obtain a
good performance of gang scheduling. In this paper we present
a strategy to deal with this important issue for efficient gang
scheduling.
key words: backfilling, gang scheduling, job allocation, resource
management

1. Introduction

Scheduling strategies for parallel processing can be clas-
sified into either space sharing or time sharing. Due to
its simplicity, currently most commercial parallel sys-
tems only adopt space sharing. With space sharing,
each partitioned processor subset is dedicated to a sin-
gle job and the job will exclusively occupy that subset
until completion. One major drawback of space sharing
is the blockade situation, that is, small jobs can easily
be blocked for a long time by large ones. The backfilling
technique can be applied to alleviate this problem to a
certain extent [9], [11]. However, the blockade can still
be a serious problem under heavy workload. To allevi-
ate this problem, time sharing needs to be considered.

Because the processes of the same parallel job may
need to communicate with each other during the com-
putation, in a time-shared environment the execution
of parallel jobs should be coordinated to prevent jobs
from interfering with each other. Coordinated schedul-
ing strategies can be classified into two different cate-
gories. The first is called implicit coscheduling [3], [12].
This approach does not use a global scheduler, but lo-
cal schedulers on each processor to make scheduling
decisions mainly based on the communication behavior
of local processes. Implicit coscheduling is attractive
for loosely coupled clusters without a central resource
management system.

Manuscript received December 16, 2002.
Manuscript revised February 15, 2003.

†The authors are with the School of Information Tech-
nology, Deakin University, Geelong, VIC 3217, Australia.

††The author is with Oxford University Computing Lab-
oratory, Wolfson Building, Parks Road, Oxford OX1 3QD,
UK.

The second type of coscheduling is called explicit
coscheduling [10], or gang scheduling [7]. With gang
scheduling using the simple round robin strategy, time
is divided into time slots of equal length. Each new job
is first allocated to a particular time slot and then starts
to run at the following scheduling round. Controlled by
a global scheduler, all parallel jobs in the system take
turns to receive the service in a coordinated manner. It
gives the user an impression that the job is not blocked,
but executed on a dedicated slower machine when the
system workload is heavy.

Although many new strategies have been intro-
duced to enhance the performance of gang scheduling,
one important problem has not been so far seriously ad-
dressed, that is, how to set the length of time slots to
obtain a good system utilization and job performance.
Ideally, the length of time slots should be set long to
avoid frequent context switches so that the scheduling
overhead can be kept low. The number of time slots
in a scheduling round should also be limited to avoid a
large number of jobs competing for limited resources
(CPU time and memory). Long time slots and the
limited number of time slots in each scheduling round
may cause jobs to wait for a long time before they can
be executed after arrival, which can significantly affect
the performance of jobs, especially short jobs which are
normally expected to finish quickly. However, the per-
formance of a short job can also suffer if the length of
time slots is not long enough to let the short job com-
plete in a single time slot. In this paper we present a
strategy to deal with this important issue for efficient
gang scheduling.

The paper is organized as follows. Firstly, we
briefly discuss some related work in Sect. 2. Our strat-
egy for setting time slots with a reasonable length, but
not seriously degrading the performance of short jobs
is described in Sect. 3. The experimental system and
the workloads used in our experiments are discussed in
Sect. 4. Experimental results are presented in Sect. 5.
Finally, the conclusions are given in Sect. 6.

2. Related Work

There are certain fundamental problems associated
with the original form of gang scheduling. The first
problem is initial allocation of resources to new arrivals
to balance the workload across the processors. Various



ZHOU et al.: CONCERNING THE LENGTH OF TIME SLOTS FOR EFFICIENT GANG SCHEDULING
1595

methods of memory allocation, such as first fit, best
fit and buddy, can be used for processor and time slot
allocation for parallel processing. However, study [4]
shows that the buddy system approach performs best
if jobs are allowed to run in multiple time slots and two
time slots can be unified into a single one when pos-
sible during the computation. A famous method for
implementing the buddy system and also taking the
workload balance into consideration is the distributed
hierarchical control, or DHC for parallel processing [5].

System workload changes in a random manner dur-
ing the computation due to job arrivals and departures.
One important issue is how freed processors due to job
termination in one time slot could be effectively real-
located to existing jobs running in other time slots if
there are no new jobs on arrival. A possible solution is
to allow jobs to run in multiple time slots whenever pos-
sible [4], [13]. However, our study [16] shows that sim-
ply running jobs in multiple time slots may not be able
to enhance the system performance. This is because
long jobs stay in the system longer and thus are more
likely to run in multiple time slots. In consequence,
the performance of short jobs may be degraded as they
can only obtain a small amount of CPU time in each
scheduling round. Jobs should be allowed to run in mul-
tiple time slots; however, special care has to be taken
to prevent the above situation from happening.

Another method which can effectively handle both
initial allocation and reallocation during the computa-
tion is job re-packing [16]. For initial allocation this
method is similar to DHC method, but enhanced by
using a simplified procedure to balance the workload
across the processors. A big advantage of this method
is that the order of job execution on each processor is
allowed to change during computation so that wasted
small idle times of neighboring processors can be com-
bined into the same time slot and then reallocated to
new and/or existing jobs. With job re-packing we are
able to simplify the search procedure for available pro-
cessors, to balance the workload across the processors
and to quickly determine when a job can run in multi-
ple time slots and when a time slot can be eliminated
to minimize the number of time slots in each schedul-
ing round. Experimental results show that using job
re-packing, both processor utilization and job perfor-
mance can be greatly enhanced [16].

The computing power of a given system is lim-
ited. If many jobs time-share the same set of proces-
sors, each job can only obtain a very small portion of
processor time and no job can complete quickly. Thus
the number of time slots in a scheduling round should
be limited. However, the system may work just like a
FCFS queuing system if we simply limit the number of
time slots in each scheduling round. The question is
whether the performance can be enhanced by combin-
ing gang scheduling with good space sharing strategies.
The experimental results presented in [14] show that

by adopting the backfilling technique the performance
of gang scheduling can indeed be improved when the
number of time slots is limited.

To apply the backfilling technique we need the in-
formation about the length of each individual job. With
such information available we can further enhance the
system performance by dividing jobs into several classes
based on their required service times. Our experimen-
tal results show that the improvement of system per-
formance can be significant if we limit the number of
long jobs simultaneously running on the same proces-
sors [17]. This is because the average number of time
slots in a scheduling round will be reduced if less num-
ber of long jobs is running on the same processors at the
same time, and then the average performance of short
jobs is improved as they have better chance to be ex-
ecuted immediately without waiting in a queue. Note
the average performance of long jobs can also be en-
hanced by limiting the number of long jobs simultane-
ously running on the same processors. This is because
the round robin is more efficient than the simple FCFS
only if the job sizes are distributed in a wide range.

3. The Strategy

We shall show in Sect. 5 that to increase the length of
time slots can markedly decrease the performance of
short jobs. The reason can be explained as follows.
With gang scheduling using the simple round robin
strategy, each job is first allocated to a particular time
slot and then starts to run at the following scheduling
round. If the limit of time slots is reached and the job
cannot be allocated in the existing time slots, it has to
be queued. Assume that the limit of time slots in a
scheduling round is n and the length of time slots is l.
The maximum time for a scheduling round is thus nl. If
l is long, the time for a job to wait before being executed
can be long even if it can be executed immediately in
the next scheduling round. The waiting time can be
much longer if the job has to wait in the waiting queue
when the limit of time slots in the scheduling round is
reached. Such waiting time can significantly affect the
performance of short jobs. However, we should not set
the length of time slots short. The reasons are as fol-
lows. Firstly, short time slots do not reduce the waiting
time a job spends in the waiting queue. Secondly, set-
ting the length of time slot short dramatically increases
the frequency of context switches and so increases the
scheduling overhead. Thirdly, the performance of short
jobs may greatly be degraded because the execution
time for a short job can be proportional to nl if it can-
not complete in a single time slot. The question is thus
whether we can find a method which is able to set the
length of time slot reasonably long and at the same
time guarantee the performance of short jobs not to be
degraded significantly.

In order to provide a special treatment to short



1596
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.9 SEPTEMBER 2003

jobs we need to divide jobs into different classes. Con-
ventionally, jobs are not distinguished according to
their execution times when gang scheduling is consid-
ered. It should be pointed out that the simple round
robin scheme used in gang scheduling works well only if
the sizes of jobs are distributed in a wide range. Gang
scheduling using the simple round robin strategy may
not perform as well as even a simple FCFS scheme in
terms of average response time, or average slowdown,
when all the incoming jobs are large. As discussed in
the previous section, the classification of jobs based on
job length is achievable because the backfilling tech-
nique requires the information on the service time of
each individual job. In our previous research [17] we
demonstrated that by limiting the number of long jobs
simultaneously running on the same processors, the
performance of both long and short jobs is improved.
(A similar result using a different workload model will
be presented in Sect. 5).

It seems that setting the limit for the number of si-
multaneously running long jobs has nothing to do with
the length of time slots. However, the significance of
this restriction is that we can markedly decrease the
average number of time slots in a scheduling round and
then keep time slots in each scheduling round to a man-
ageable number even by letting short jobs run immedi-
ately on their arrivals without being queued.

To summarize, our proposed strategy is as follows:

1. Backfilling technique is incorporated with gang
scheduling, i.e., a limit is set for the maximum
number of time slots in each scheduling round and
the backfilling is applied to alleviate the blockade
situation;

2. The normal length of time slots is set reasonably
long to minimize the scheduling overhead;

3. Jobs are divided into classes, that is, short,
medium and long. They are treated differently;

4. A limit (usually one) is set for the number of large
jobs to run simultaneously on the same processors
to obtain an average low number of time slots in a
scheduling round;

5. No special treatment is given to medium sized jobs;
6. Let short jobs run immediately in the next time

slot (instead of next scheduling round) to mini-
mize their waiting time. If the required service
time of a short job is shorter than the length of a
normal time slot, the time slot will be shortened
as long as the short job can complete in a single
time slot to reduce the average amount of idle time
on each processor during the computation. (In our
experiment the normal length of time slots may
sometimes be set shorter than the service time of
short jobs. We will then increase the length of the
time slot such that the short job can complete in
a single time slot. In this way the performance of
short jobs will not be affected greatly by changing

the length of time slots in our experiment.)

4. The System and Workload

The gang scheduling system for our experiment is
mainly based on the job re-packing technique described
in [16]. However, jobs are classified into three classes,
that is, short, medium and long and treated differently.
Furthermore, in each experiment limits are set on how
many time slots are allowed in a scheduling round and
how many long jobs can run simultaneously on the same
processors.

With the limit of time slots in a scheduling round
introduced, we need to add a waiting queue to the sys-
tem. If the limit is reached and a new job cannot be
allocated to the existing time slots, it has to be queued.
To alleviate the blockade problem the backfilling tech-
nique is adopted.

In our experiment the workload used is a syn-
thetic workload generated from the parameters directly
extracted from the actual ASCI Blue-Pacific work-
load [14]. We briefly describe this workload in the fol-
lowing paragraph and the detailed description can be
found in [14], [15].

The workload is generated by using a modeling
procedure proposed in [8]. It is assumed that parallel
workload is often over-dispersive and then the job in-
terarrival time distribution and job service time (or job
length) distribution can be fitted adequately with Hy-
per Erlang Distribution of Common Order. The param-
eters used to generate a baseline workload are directly
extracted from the actual ASCI Blue-Pacific workload.
There are different workloads generated with different
interarrival rates and average job length. In our exper-
iment a set of 9 workloads is used. These workloads
are generated by varying the model parameters so as
to increase average job service time. For a fixed inter-
arrival rate, increasing job service time will increase the
system workload. Each generated workload consists of
10,000 jobs and each job requires a set of processors
varying from 1 to 256 processors.

In the next section we present some experimental
results. We assume that there are 256 processors in the
system. In each experiment we measure the average
slowdown and the average number of time slots, which
are defined as follows.

Assume the service time and the turnaround time
for job i are tei and tri , respectively. The slowdown
for job i is si = tri /tei . The average slowdown s is then
defined as s =

∑m
i=0 si/m for m being the total number

of jobs.
If ti is the time when there are i time slots in

the system, the total computational time ts is
∑l

i=0 ti
where l is the largest number of time slots encountered
in the system during the computation. The average
number of time slots in the system during the opera-



ZHOU et al.: CONCERNING THE LENGTH OF TIME SLOTS FOR EFFICIENT GANG SCHEDULING
1597

tion can then be defined as n =
∑l

i=0 iti/ts.

5. Experimental Results

In our experiment we implemented three different
strategies for resource allocation and reallocation for
gang scheduling. They are named Strategy 1, 2 and 3.

In Strategy 1 the job re-packing technique is
adopted and the limit of time slots in a scheduling
round is set to 5. When the limit is reached, the in-
coming jobs have to be queued in a waiting queue. To
alleviate the problem of blockade, the backfilling tech-
nique is applied. Note the limit of time slots is able to
change in our experimental system and different limits
will produce different simulation results. However, we
are more interested in the results of comparing differ-
ent scheduling strategies. We observed that the relative
performance does not vary much with the change of the
slot limit in a scheduling round. That is the reason we
only show the result obtained by setting the slot limit
to 5.

Strategy 2 is a simple extension of Strategy 1. The
only difference is that the jobs are classified and long
jobs are not allowed to time-share the same processors.
When Strategy 2 is applied, therefore, there is at most
one long job running on each processor at any given
time.

Our new strategy is Strategy 3. It is the same
as Strategy 2 except that a special treatment is also
given to short jobs. When a short job arrives, it is
immediately executed in the next time slot rather than
the next scheduling round and the length of time slot is
adjusted or varied such that the short job can complete
in a single time slot.

In the following paragraphs we present some re-
sults obtained from our experiment. The nine work-
loads are named wi for 0 ≤ i ≤ 8 and the system

Table 1 Average slowdown for all jobs.

w0 w1 w2 w3 w4 w5 w6 w7 w8

Strategy 1 29.6 89.2 156 179 252 307 368 357 405
Strategy 2 9.62 15.4 19.5 24.6 29.6 34.6 39.7 44.2 49.8

Table 2 Average slowdown for short jobs.

w0 w1 w2 w3 w4 w5 w6 w7 w8

Strategy 1 67.4 223 236 368 548 686 852 765 919
Strategy 2 4.02 4.34 3.68 3.42 2.76 2.61 2.52 2.41 2.37

Table 3 The percentage of time the system is running with different time slots when
adopting Strategy 1.

slots w0 w1 w2 w3 w4 w5 w6 w7 w8

1 2.9 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.0
2 3.5 0.2 0.1 0.3 0.1 0.1 0.1 0.1 0.1
3 6.1 0.3 0.2 0.3 0.2 0.2 0.2 0.2 0.3
4 9.5 0.4 0.5 0.2 0.2 0.1 0.1 0.2 0.1
5 78.0 99.0 99.0 99.1 99.4 99.5 99.4 99.4 0.995

workload becomes heavier when i increases. A job is
considered short if its length is shorter than 150 and
long if the length is longer than 6000. With such set-
ting, around 25% of the total jobs will be short jobs,
another approximately 25% be long jobs, and the rest
are considered as medium sized jobs.

We first compare Strategy 1 and Strategy 2. The
experimental results are obtained by setting the length
of each time slot to 1. As mentioned previously, the
only difference between these two strategies is that
long jobs are not allowed to run simultaneously on the
same processors at any given time when Strategy 2 is
adopted. We can see from Table 1 and Table 2 that
when Strategy 2 is adopted, both average slowdown
for all jobs and average slowdown for short jobs are
markedly decreased. This significant improvement in
job performance is also seen when using the workloads
generated from a different workload modeling proce-
dure [17].

As shown in Table 2, when Strategy 2 is adopted,
the average slowdown for short jobs decreases as the
system workload becomes heavier. This is caused by
the way the workloads are generated. As described in
the previous section, all other 8 workloads (from w1

to w8) are generated from a baseline workload (w0) by
increasing average job service time. In our experiment,
however, we consider short jobs as those with a job
length shorter than 150. When we measure average
slowdown for short jobs, w1 has less short jobs than
w0 and w2 contains less short ones than w1, and so
on. Therefore, we cannot claim that average slowdown
for short jobs is decreased when the system workload
becomes heavier.

The values in Table 3 are the percentage of time
when the system is running with different time slots
for Strategy 1. We can see from this table that most
of the time (99% of the total operational time) the sys-



1598
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.9 SEPTEMBER 2003

Table 4 The percentage of time the system is running with different time slots, when
adopting Strategy 2.

slots w0 w1 w2 w3 w4 w5 w6 w7 w8

1 13.9 21.4 26.7 32.2 37.0 40.5 44.4 47.9 50.3
2 28.3 25.3 29.5 26.0 27.0 27.2 28.0 28.6 27.7
3 27.1 26.6 24.5 24.3 23.1 21.0 19.1 16.2 15.7
4 17.0 15.2 11.1 10.4 8.0 7.5 6.2 5.1 4.7
5 13.7 15.5 8.2 7.1 4.9 3.8 2.3 2.2 1.6

Table 5 The average number of time slots in a scheduling round.

w0 w1 w2 w3 w4 w5 w6 w7 w8

Strategy 1 4.57 4.98 4.98 4.98 4.99 4.99 4.99 4.99 4.99
Strategy 2 2.88 2.70 2.45 2.34 2.17 2.07 1.94 1.85 1.80

Table 6 Average slowdown for all jobs obtained by varying the length of time slots,
using Strategy 2.

slot length w0 w1 w2 w3 w4 w5 w6 w7 w8

1 9.62 15.4 19.5 24.6 29.6 34.6 39.7 44.2 49.8
10 10.0 14.7 20.5 25.2 29.6 35.3 39.5 44.5 49.8
50 11.7 16.7 21.1 27.5 31.3 36.7 40.6 46.3 50.1
100 14.1 19.4 23.4 26.9 34.2 38.2 44.5 49.1 52.3
150 17.4 22.4 26.2 30.9 35.7 41.1 45.4 49.9 55.3
200 20.2 24.9 29.1 34.8 39.0 43.6 47.6 53.0 56.3

Table 7 Average slowdown for short jobs obtained by varying the length of time slots,
using Strategy 2.

slot length w0 w1 w2 w3 w4 w5 w6 w7 w8

1 4.02 4.34 3.68 3.42 2.76 2.61 2.52 2.41 2.37
10 4.61 4.12 3.88 3.57 3.01 3.02 2.76 2.70 2.66
50 8.63 8.50 7.74 7.92 6.94 6.66 6.35 6.19 5.84
100 14.5 14.7 13.3 13.5 12.9 11.9 11.3 11.2 11.1
150 21.4 21.2 19.3 19.0 18.1 17.1 16.3 15.9 16.1
200 28.1 28.3 27.0 26.5 24.6 23.3 22.0 21.6 21.1

Table 8 Average slowdown for all jobs obtained by varying the length of time slots,
using Strategy 3.

slot length w0 w1 w2 w3 w4 w5 w6 w7 w8

1 8.40 13.4 19.1 23.9 28.9 34.9 40.3 43.5 48.8
10 8.66 13.7 19.8 24.8 29.9 34.2 39.7 44.2 49.0
50 9.11 14.0 19.6 24.3 30.1 35.2 40.7 44.4 49.0
100 8.97 14.6 19.8 25.0 30.8 34.2 41.1 44.8 50.0
150 9.93 15.7 20.7 25.4 30.9 36.5 40.6 46.3 50.6
200 11.3 16.5 21.7 26.1 31.2 37.6 42.1 47.8 52.0

tem is running with 5 time slots. When Strategy 2 is
applied, however, we can see from Table 4 that a great
amount of time the system is running with just 1 time
slot (over 40% of the total time under heavy system
workload). As a result, the average number of time
slots in a scheduling round is significantly reduced, as
shown in Table 5.

Note that the average number of time slots de-
creases as the system workload becomes heavier for
Strategy 2. This is because a job is considered long
if its length is longer than 6000 in our experiment, and
more long jobs will be produced due to the way the
workloads are generated and thus more jobs could be
queued when the workload becomes heavier.

The experimental results presented in the above
tables are obtained by setting the length of time slot to
1. Table 6 and Table 7 show some results obtained by
setting different slot length when Strategy 2 is applied.
It can be seen from Table 6 that the overall average
slowdown increases as the length of time slot becomes
longer. However, it is short jobs that suffer the most.
As shown in Table 7, the average slowdown for short
jobs can increase by a factor of more than 10 when the
length is increased from 1 to 200.

It is not desirable to have over 20 minutes to finish
the computation of a job which requires only 1 minute
of service. Our third strategy is thus introduced to
alleviate this undesirable situation. The experimental



ZHOU et al.: CONCERNING THE LENGTH OF TIME SLOTS FOR EFFICIENT GANG SCHEDULING
1599

Table 9 Average slowdown for short jobs obtained by by varying the length of time
slots, using Strategy 3.

slot length w0 w1 w2 w3 w4 w5 w6 w7 w8

1 1.10 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05
10 1.06 1.05 1.05 1.06 1.06 1.06 1.06 1.06 1.06
50 1.26 1.28 1.25 1.22 1.24 1.23 1.23 1.21 1.20
100 2.06 2.10 2.03 1.97 1.94 1.84 1.75 1.67 1.72
150 3.28 3.40 3.22 3.12 2.86 2.88 2.77 2.77 2.45
200 5.03 4.74 4.87 4.64 4.36 4.34 4.00 3.81 3.69

Table 10 The percentage of time running with different time slots and the average
number of time slots in a scheduling round (the last row) obtained by setting the slot
length to 200 and using Strategy 3.

slots w0 w1 w2 w3 w4 w5 w6 w7 w8

1 15.3 21.7 27.5 32.0 37.3 40.9 44.4 48.1 51.0
2 24.5 23.9 25.1 24.3 23.4 25.1 25.3 24.4 26.2
3 26.3 24.9 24.7 24.0 23.4 21.5 19.8 18.3 15.6
4 17.5 15.2 11.6 12.2 10.1 8.8 6.9 6.6 5.1
5 16.3 14.3 11.1 7.5 5.8 3.7 3.6 2.6 2.1
6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

average 2.95 2.77 2.54 2.39 2.24 2.09 2.00 1.91 1.81

results in Table 8 and Table 9 show that applying Strat-
egy 3 can significantly enhance the performance of short
jobs without greatly degrading the performance of the
others. Comparing the values in Table 8 and those in
Table 6, we see that Strategy 3 performs a little better
in terms of the average slowdown for all jobs, though
not much. When comparing Table 9 with Table 7, how-
ever, we can see that a big improvement for short jobs
is achieved by adopting Strategy 3. With Strategy 3
short jobs are not queued and executed as soon as pos-
sible without considering if the limit of time slots in
the system is exceeded. However, the average number
of time slots in a scheduling round is not significantly
increased. This can be seen by comparing the results
obtained by setting the length of time slots to 200 and
using Strategy 3 in Table 10 with those obtained by
setting the length of time slots to 1 and using Strategy
2 in Tables 4 and 5.

6. Conclusions

It is known that space-sharing scheduling for parallel
processing can cause the problem of blockade under
heavy workload and that this problem can be alleviated
by applying the gang scheduling strategy. Although
there have been many new strategies introduced to im-
prove the performance of gang scheduling and to make
it more practical, the problem of how to set length of
time slots has not been so far seriously addressed. This
problem is very important and can seriously affect the
performance of gang scheduling. In practice the length
of time slots should be set relatively long as a short
length of time slots can greatly increase the schedul-
ing overhead. However, setting the length too long will
degrade both efficiency of system utilization and per-
formance of jobs, especially short jobs.

In this paper we proposed a new strategy for tack-
ling the problem of setting the length of time slots.
In this strategy short jobs are given special treatments.
Firstly, short jobs are not queued and are able to run as
soon as possible on their arrival. Secondly, the length of
time slots may be temporarily adjusted as long as each
short job can complete its execution in just a single
time slot. In consequence, the average waiting time for
short jobs is minimized and the performance of short
jobs will not be affected significantly by the length of
time slots.

It should be stressed that limiting long jobs to run
simultaneously on the same processors has played a
very important role for the success of our new strategy.
This is because to limit long jobs running simultane-
ously on the same processors can significantly reduce
the average number of time slots in a scheduling round.
Therefore, there are more free places for short jobs to
fit in without adding too many extra time slots in the
system.

In the paper we also presented some experimen-
tal results to demonstrate the effectiveness of our new
strategy.

References

[1] A. Batat and D.G. Feitelson, “Gang scheduling with mem-
ory considerations,” Proc. 14th International Parallel and
Distributed Processing Symposium, pp.109–114, Cancun,
May 2000.

[2] A.B. Downey, “A parallel workload model and its impli-
cations for processor allocation,” Proc. 6th International
Symposium on High Performance Distributed Computing,
pp.112–124, Aug. 1997.

[3] A.C. Dusseau, R.H. Arpaci, and D.E. Culler, “Effective dis-
tributed scheduling of parallel workloads,” Proc. ACM SIG-
METRICS’96 International Conference, pp.56–62, 1996.

[4] D.G. Feitelson, “Packing schemes for gang scheduling,” in



1600
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.9 SEPTEMBER 2003

Job Scheduling Strategies for Parallel Processing, eds., D.G.
Feitelson and L. Rudolph, Lecture Notes Computer Science,
vol.1162, pp.89–110, Springer-Verlag, 1996.

[5] D.G. Feitelson and L. Rudolph, “Distributed hierarchical
control for parallel processing,” Computer, vol.23, no.5,
pp.65–77, May 1990.

[6] D.G. Feitelson and L. Rudolph, “Job scheduling for parallel
supercomputers,” in Encyclopedia of Computer Science and
Technology, vol.38, Marcel Dekker, New York, 1998.

[7] D.G. Feitelson and L. Rudolph, “Gang scheduling perfor-
mance benefits for fine-grained synchronisation,” J. Parallel
and Distributed Computing, vol.16, no.4, pp.306–318, Dec.
1992.

[8] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and
J. Riordan, “Modeling of workload in MPPs,” Proc. 3rd
Annual Workshop on Job Scheduling Strategies for Parallel
Processing, pp.95–116, April 1997.

[9] D. Lifka, “The ANL/IBM SP scheduling system,” in Job
Scheduling Strategies for Parallel Processing, eds., D.G.
Feitelson and L. Rudolph, Lecture Notes Computer Science,
vol.949, pp.295–303, Springer-Verlag, 1995.

[10] J.K. Ousterhout, “Scheduling techniques for concurrent
systems,” Proc. Third International Conference on Dis-
tributed Computing Systems, pp.20–30, May 1982.

[11] J. Skovira, W. Chan, H. Zhou, and D. Lifka, “The EASY —
LoadLeveler API project,” in Job Scheduling Strategies for
Parallel Processing, eds., D.G. Feitelson and L. Rudolph,
Lecture Notes Computer Science, vol.1162, Springer-Verlag,
1996.

[12] P.G. Sobalvarro and W.E. Weihl, “Demand-based
coscheduling of parallel jobs on multiprogrammed multi-
processors,” in Job Scheduling Strategies for Parallel Pro-
cessing, eds., D.G. Feitelson and L. Rudolph, Lecture Notes
Computer Science, vol.949, Springer-Verlag, 1995.

[13] K. Suzaki, H. Tanuma, S. Hirano, Y. Ichisugi, and M.
Tukamoto, “Time sharing systems that use a partitioning
algorithm on mesh-connected parallel computers,” Proc.
Ninth International Conference on Distributed Computing
Systems, pp.268–275, 1996.

[14] Y. Zhang, H. Franke, J.E. Moreira, and A.
Sivasubramaniam, “Improving parallel job scheduling by
combining gang scheduling and backfilling techniques,”
Proc. 14th International Parallel and Distributed Process-
ing Symposium, pp.133–142, Cancun, May 2000.

[15] Y. Zhang, H. Franke, J.E. Moreira, and A.
Sivasubramaniam, “An integrated approach to parallel
scheduling using gang-scheduling, backfilling and migra-
tion,” Proc. 7th Annual Workshop on Job Scheduling
Strategies for Parallel Processing, pp.109–127, Boston, June
2001.

[16] B.B. Zhou, R.P. Brent, C.W. Johnson, and D. Walsh, “Job
re-packing for enhancing the performance of gang schedul-
ing,” Proc. 5th Workshop on Job Scheduling Strategies for
Parallel Processing, pp.129–143, San Juan, April 1999.

[17] B.B. Zhou and R.P. Brent, “Gang scheduling with a queue
for large jobs,” Proc. 15th International Parallel and Dis-
tributed Processing Symposium, San Francisco, April 2001.

Bing Bing Zhou obtained his Ph.D.
in Computer Science from Australian Na-
tional University in 1989. He worked
from 1989 to 1992 as postdoc at South-
east University, China, from 1992 to
2000 as postdoc and then research fellow
at Australian National University, and
from 2000 to 2003 as senior lecturer at
Deakin University. Currently, he is Senior
Lecturer at University of Sydney, Aus-
tralia. His research interests include par-

allel/distributed computing, internet computing, job scheduling
strategies for cluster computing systems, parallel algorithms, and
signal processing.

Andrzej M. Goscinski is a chair pro-
fessor of computing at Deakin University.
He received his M.Sc. Ph.D. and D.Sc.
from the Staszic University of Mining and
Metallurgy, Krakow, Poland. Dr. Goscin-
ski is recognized as one of the leading
researchers in distributed systems, dis-
tributed and cluster operating systems
and parallel processing on clusters. The
results of his research have been published
in international refereed journals and con-

ference proceedings and presented at specialized conferences. In
1997, Dr. Goscinski and his research group have initiated a study
into the design and development of a cluster operating system
supporting parallelism management and offering a single system
image. The first version of this system is in use from the end
of 1998. Currently, Dr Goscinski is carrying out research into
reliable computing on clusters.

Richard P. Brent obtained his Ph.D.
in Computer Science from Stanford Uni-
versity in 1971. He has held research and
teaching positions at the IBM T.J. Wat-
son Research Center (Yorktown Heights)
and at the Australian National University
(Canberra), where he was appointed foun-
dation Professor of Computer Science in
1978. Since 1998 he has been Professor
of Computing Science at Oxford Univer-
sity, UK. He is a Fellow of the Australian

Academy of Science, the IEEE, and the ACM. His research inter-
ests include analysis of algorithms, computational number theory,
cryptography, numerical analysis, and parallel computer architec-
tures.


