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Abstract. Pseudo-random numbers with long periods and good sta-
tistical properties are often required for applications in computational
finance. We consider the requirements for good uniform random number
generators, and describe a class of generators whose period is a Mersenne
prime or a small multiple of a Mersenne prime. These generators are
based on “almost primitive” trinomials, that is trinomials having a large
primitive factor. They enable very fast vector/parallel implementations
with excellent statistical properties.

1 Introduction

Pseudo-random numbers have been used in Monte Carlo calculations since the
pioneering days of Von Neumann [39]. Monte Carlo and quasi-Monte Carlo
methods are of great importance in computational finance [18, 24, 30], numerical
integration [40], physics [12, 16, 25, 32], simulation [51], etc. With the increas-
ing speed of vector processors and parallel computers, considerable attention
must be paid to the statistical quality of random number generators. A program
running on a supercomputer might use 108 random numbers per second over
a period of many hours (or months in the case of QCD calculations), so 1012

or more random numbers might contribute to the result. Small correlations or
other deficiencies in the random number generator could easily lead to spurious
effects and invalidate the results of the computation, see e.g. [16, 46].

Applications require random numbers with various distributions (e.g. normal,
exponential, Poisson, . . .) but the algorithms used to generate these random
numbers almost invariably require a good uniform random number generator –
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see for example [7, 14, 26, 42]. In this paper we consider only the generation of
uniformly distributed numbers. Usually we are concerned with real numbers un

that are intended to be uniformly distributed on the interval [0, 1). Sometimes
it is convenient to consider integers Un in some range 0 ≤ Un < m. In this case
we require un = Un/m to be (approximately) uniformly distributed.1

Pseudo-random numbers generated in a deterministic fashion on a digital
computer can not be truly random. What is required is that finite segments
of the sequence u0, u1, · · · behave in a manner indistinguishable from a truly
random sequence. In practice, this means that they pass all statistical tests that
are relevant to the problem at hand. Since the problems to which a library
routine will be applied are not known in advance, random number generators in
subroutine libraries should pass a number of stringent statistical tests (and not
fail any) before being released for general use.

A sequence u0, u1, · · · depending on a finite state must eventually be periodic,
i.e. there is a positive integer ρ such that un+ρ = un for all sufficiently large n.
The minimal such ρ is called the period.

In §2 we consider desiderata for random number generators. Then, in §3,
we outline some popular classes of random number generators, and consider to
what extent they pass or fail our requirements. In §4 we consider generators
whose period is (a small multiple of) a Mersenne prime, and describe some new
generators based on “almost primitive” trinomials over GF(2). Finally, in §5 we
briefly describe an implementation that meets the requirements of §2.

2 Requirements for good random number generators

The important requirements for a good pseudo-random number generator and
its implementation in a subroutine library have been discussed in many surveys,
e.g. [1, 5, 7, 11, 15, 25, 26, 33, 41]. Here we summarize them –

• Uniformity. The sequence of random numbers should pass statistical tests
for uniformity of distribution.

• Independence. Subsequences of the full sequence u0, u1, · · · should be inde-
pendent. Random numbers are often used to sample a d-dimensional space,
so the sequence of d-tuples (udn, udn+1, . . . , udn+d−1) should be uniformly
distributed in the d-dimensional cube [0, 1]d for all “small” values of d (cer-
tainly for all d ≤ 6). For random number generators on parallel machines,
the sequences generated on each processor should be independent.

• Long period. As mentioned above, a simulation might use 1012 random num-
bers. In such a case the period ρ must exceed 1012. For many generators there
are strong correlations between u0, u1, · · · and um, um+1, · · ·, where m = ρ/2
(and similarly for other simple fractions of the period). Thus, in practice the
period should be much larger than the number of random numbers that will
ever be used. A good rule of thumb is to use at most

√
ρ numbers.

1 For clarity we adopt the convention that upper case subscripted variables such as
Un denote integers, and the corresponding lower case variables such as un denote
real numbers.
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• Repeatability. For testing and development it is useful to be able to repeat
a run with exactly the same sequence of random numbers as was used in
an earlier run. This is usually easy if the sequence is restarted from the
beginning (u0). It may not be so easy if the sequence is to be restarted from
some other value, say um for a large integer m, because this requires saving
the state information associated with the random number generator.

• Portability. Again, for testing and development purposes, it is useful to be
able to generate exactly the same sequence of random numbers on two dif-
ferent machines, possibly with different wordlengths.

• Skipping over terms. If a simulation is to be run on a machine with several
processors, or if a large simulation is to be performed on several indepen-
dent machines, it is essential to ensure that the sequences of random numbers
used by each processor are disjoint. Two methods of subdivision are com-
monly used. Suppose, for example, that we require 4 disjoint subsequences
for a machine with 4 processors. One processor could use the subsequence
(u0, u4, u8, · · ·), another the subsequence (u1, u5, u9, · · ·), etc. For efficiency
each processor should be able to “skip over” the terms that it does not re-
quire. Alternatively, processor j could use the subsequence (umj , umj+1, · · ·),
where the indices m0, m1,m2, m3 are sufficiently widely separated that the
(finite) subsequences do not overlap. This requires some efficient method of
generating um for large m without generating all the intermediate values
u1, . . . , um−1.

• Proper initialization. The initialization of random number generators, espe-
cially those with a large amount of state information, is an important and
often neglected topic. In some applications only a short sequence of random
numbers is used after each initialization of the generator, so it is important
that short sequences produced with different seeds are uncorrelated. Many
current generators fail this test [19, 27].

• Efficiency. It should be possible to implement the method efficiently so that
only a few arithmetic operations are required to generate each random num-
ber, all vector/parallel capabilities of the machine are used, and overheads
such as those for subroutine calls are minimal.

3 Generalized Fibonacci generators

The Fibonacci numbers satisfy the recurrence Fn = Fn−1 + Fn−2. However, it
is easy to see that the corresponding recurrence un = un−1 + un−2 mod 1 does
not give a satisfactory sequence of pseudo-random numbers [26, ex. 3.2.2.2].

We can generalize the Fibonacci recurrence to obtain “generalized Fibonacci”
or “lagged Fibonacci” random number generators [22, 26, 44]. Marsaglia [33]
considers generators F (r, s, θ) that satisfy

Un = Un−r θ Un−s mod m

for fixed “lags” r and s (r > s > 0) and n ≥ r. Here m is a modulus (typically
2w if w is the wordlength in bits), and θ is some binary operator, e.g. addition,
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subtraction, multiplication or “exclusive or”. We abbreviate these operators by
+,−, ∗ and ⊕ respectively. Generators using ⊕ are also called “shift register”
generators or “Tausworthe” generators [21, 48].

If θ is + or − then theoretical results can be deduced from the generating
function

G(x) =
∞∑

n=0

Un xn

that is given by G(x) = P (x)/Q(x) mod m, where Q(x) = 1 − (xr θ xs) and
P (x) is a polynomial of degree at most r − 1, determined by the initial values
U0, . . . , Ur−1. For example, if m = 2 and the initial values are not all zero,
then the sequence has maximal period 2r − 1 if and only if Q(x) is a primitive
polynomial (mod 2).

If m = 2w and the lags r and s are chosen correctly, it is possible to obtain
period

ρ =


2r − 1 if θ = ⊕,
2w−1(2r − 1) if θ = ±,
2w−3(2r − 1) if θ = ∗ .

The initial values must be odd for θ = ∗, not all even for θ = ±, and not
all zero for θ = ⊕. For precise conditions, see [6, 35]. We see one advantage of
the generalized Fibonacci generators over most other classes of generators – the
period can be made very large by choosing r large.

Marsaglia [33] reports the results of statistical tests on the generators
F (17, 5, θ), F (31, 13, θ) and F (55, 24, θ). The results for θ = ⊕ are poor –
several tests are failed. All tests are passed for the generators F (607, 273, θ)
and F (1279, 418, θ), so the conclusion is that ⊕ generators should only be used
if the lag r is large.

Marsaglia’s results for θ = ± are good with one exception – the generators
with r ≤ 55 fail the “Birthday Spacings” test. Our conclusion is that these
generators are probably acceptable if r and s are sufficiently large (not necessarily
as large as for the ⊕ generators).

With the generalized Fibonacci recurrence

Un = Un−r ± Un−s mod m ,

only four of the six orderings of (Un, Un−r, Un−s) can occur. A statistical test
based on this fact will “fail” any F (r, s,±) generator. Even if r and s are
not assumed to be known, the test can check all possible r and s satisfying
0 < s < r < B say, where B is a prescribed bound. We call such a test a “Gener-
alized Triple” test. Clearly the existence of such tests is one reason for choosing
r to be large.

Marsaglia’s results indicate that generalized Fibonacci generators with
θ = ∗ mod m are acceptable. Unfortunately, it is more difficult to implement
multiplication (mod m) than addition/subtraction (mod m) because of the re-
quirement for a double-length product, unless m is small enough for m2 to be
representable in single-precision.
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There are several ways to improve the performance of generalized Fibonacci
generators on the Birthday Spacings and Generalized Triple tests. The simplest
is to include small odd integer multipliers α and β in the generalized Fibonacci
recurrence, e.g.

Un = αUn−r + βUn−s mod m .

The theory goes through with minor modifications. Note that, because α and β
are odd, the values of Un mod 2 are unchanged. By [6, Theorem 3], the period is
2w−1(2r − 1) if m = 2w, provided the trinomial xr + xs + 1 is primitive (mod 2)
and U0, . . . , Ur−1 are not all even. Other ways to improve statistical properties
(at the expense of speed) are to include more terms in the linear recurrence [28,
29], to discard some members of the sequence [32], or to combine two or three
generators in various ways [13, 26, 33, 38, 49].

In the following we consider additive generalized Fibonacci generators whose
period ρ can be proved to be a small multiple of a large prime p. For simplicity,
we consider only the (period of the) least-significant bit, so all arithmetic can be
considered over the finite field GF(2) of two elements. Because carries propagate
from the least-significant bit into higher-order bits, the overall period will be 2kρ
for some integer k depending on the wordlength w (usually k = w − 1).

4 Generators with Mersenne prime period

We recall some definitions relating to polynomials over finite fields. A polynomial
P (x) is reducible if it has nontrivial factors; otherwise it is irreducible. A polyno-
mial P (x) of degree r > 1 is primitive if P (x) is irreducible and xj 6= 1 mod P (x)
for 0 < j < 2r − 1. For other definitions and algorithmic details see [9, 31, 38].

Known algorithms for verifying, in time polynomial in r, that the period of a
generator is (a multiple of) 2r − 1, require knowledge of the prime factorization
of 2r − 1. Complete factorizations are unknown for most r > 700 (see [52] for
small r). However, this problem disappears if r is the exponent of a Mersenne
prime (i.e. 2r−1 is prime), because then the prime factorization is trivial. In this
case a polynomial is primitive if and only if it is irreducible, and irreducibility
can be tested in time O(r2).

We restrict our attention to generators whose period ρ is a Mersenne prime
Mr = 2r − 1 or a small multiple of Mr. The integer r is called a Mersenne expo-
nent, and is itself prime. All Mersenne exponents less than 107 are known [20].

4.1 Implications of Swan’s theorem

Generators with Mersenne prime period have been discussed by several authors,
e.g. [5, 23, 36, 37]. However, not all of the known large Mersenne primes have been
considered, because Swan’s Theorem2 rules out about half of the candidates if
we wish to use a generator based on a primitive trinomial.
2 Swan’s Theorem is a rediscovery of earlier results – see Swan [47, p. 1099] and von

zur Gathen [17]. An elementary proof is given by Berlekamp [2, p. 159].
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Theorem 1. Swan [47, Corollary 5]. Suppose r > s > 0, r − s odd. Then
xr + xs + 1 has an even number of irreducible factors over GF(2) if and only if
one of the following holds:

a) r even, r 6= 2s, rs/2 mod 4 ∈ {0, 1};
b) 2r 6= 0 mod s, r = ±3 mod 8;
c) 2r = 0 mod s, r = ±1 mod 8.

If both r and s are odd, we can replace s by r − s (leaving the number of
irreducible factors unchanged) and apply Swan’s theorem. Since a polynomial
that has an even number of irreducible factors is reducible, we have:

Corollary 1. If r is prime, r = ±3 mod 8, s 6= 2, s 6= r − 2, then xr + xs + 1
is reducible over GF(2).

Corollary 1 shows that there are no irreducible trinomials with r = ±3 mod 8
(except possibly for s = 2 or r − 2, but the only known cases are r = 3, 5).
This appears to prevent us from finding generators (based on trinomials) whose
periods are (small multiples of) the corresponding Mersenne primes. One solution
is to use pentanomials instead of trinomials [28, 29], but this incurs a significant
speed penalty.

4.2 Almost primitive trinomials

Fortunately, there is a way around Swan’s theorem without paying a large speed
penalty. Blake, Gao and Lambert [4], following Tromp, Zhang and Zhao [50],
suggest searching for trinomials of slightly larger degree (say degree r + δ) that
have a primitive factor of degree r, and give examples for r ≤ 500. For most
purposes, such trinomials are almost as good as primitive trinomials of degree r.
We say that a polynomial P (x) of degree r + δ is almost primitive (almost
irreducible) if P (0) 6= 0 and P (x) has a primitive (irreducible) factor of degree r,
where 0 ≤ δ < r.

Inspired by Blake et al., we have conducted a search for almost primitive tri-
nomials with r a Mersenne exponent. The search is now complete for all Mersenne
exponents r < 2976221. In all cases of Mersenne exponent r = ±3 mod 8 with
5 < r < 107, we have found trinomials of degree r + δ that have a primitive
polynomial factor of degree r, for some δ such that 2 ≤ δ ≤ 12. The results are
summarized in Table 1, which also includes the “traditional” case δ = 0, using
data from [9, Table 3 and update] and the results of previous authors [23, 28, 45,
53].

The entries for δ > 0 in Table 1 were computed using an extension of the
algorithm for δ = 0 that is described in [9]. Details of the extension are given
in [10, §4].

For example, in the case r = 13, a primitive trinomial of degree 13 does not
exist, but the trinomial x16 + x3 + 1 has a primitive factor of degree 13. In fact

x16 + x3 + 1 = (x3 + x2 + 1)(x13 + x12 + x11 + x9 + x6 + x5 + x4 + x2 + 1) ,
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r δ s f r δ s f

2 0 1 1 3 0 1 1
5 0 2 1 7 0 3 1
13 3 3 7 17 0 6 1
19 3 3 7 31 0 13 1
61 5 17 31 89 0 38 1
107 2 17 3 127 0 63 1
521 0 168 1 607 0 273 1
1279 0 418 1 2203 3 355 7
2281 0 1029 1 3217 0 576 1
4253 8 1806 255 4423 0 2098 1
9689 0 4187 1 9941 3 1077 7
11213 6 227 63 19937 0 9842 1
21701 3 7587 7 23209 0 9739 1
44497 0 21034 1 86243 2 2288 3
110503 0 53719 1 132049 0 54454 1
216091 12 42930 3937 756839 0 279695 1
859433 0 288477 1 1257787 3 74343 7
1398269 5 417719 21 2976221 8 1193004 85
3021377 0 1010202 1 6972593 0 3037958 1

Table 1. Some primitive and almost primitive trinomials over GF(2):

xr+δ + xs + 1 has a primitive factor of degree r; all
irreducible factors are primitive; the period ρ = f(2r − 1).

where both factors are primitive over GF(2), with relatively prime periods 23−1
and 213 − 1. Thus, a random bit generator Un = Un−16 ⊕Un−3 will have period
(213−1)(23−1), provided the initial vector (U0, . . . , U15) is in “general” position.
The period will be only 23 − 1 if the initial vector lies in a subspace defined by
Un ⊕ Un−2 ⊕ Un−3 = 0 for 3 ≤ n ≤ 15, because then the simpler recurrence
Un = Un−3 ⊕ Un−2, corresponding to the factor x3 + x2 + 1, is satisfied for all
n ≥ 3. We can rule this out very easily by taking U0 = U1 = U2 = U3 = 1, or in
general U0 = · · · = Uδ = 1.

A larger example is r = 216091, δ = 12. We have

x216103 + x42930 + 1 = (x12 + x11 + x5 + x3 + 1)P (x) ,

where P (x) is a primitive polynomial of degree 216091. The factor of degree 12
splits into a product of two primitive polynomials, x5 + x4 + x3 + x + 1 and
x7 +x5 +x4 +x3 +x2 +x+1. The contribution to the period from these factors
is (25 − 1)(27 − 1) = 3937.

For all but one of the entries in Table 1, the period ρ of the corresponding
recurrence satisfies

ρ = f(2r − 1) > 2r+δ−1

provided the initial vector is in general position (this is easy to verify). Thus,
the period is greater than what can be obtained for any polynomial of degree
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less than r + δ. The exception is the entry for r = 2976221, where the factor of
degree δ has period 85 = 255/3.

Table 1 includes all Mersenne exponents r < 107, see [20]. For the largest
known Mersenne exponent, r = 13466917, we have not yet started an extensive
computation, but we have shown in [10] that δ ≥ 3 and δ 6= 4.

5 Implementation

Many random number generators based on primitive trinomials have been doc-
umented in the literature, see e.g. [23, 26, 36, 43], but the implementations are
usually for a fixed trinomial. The choice of this trinomial involves a tradeoff.
Larger values of r give generators with better statistical properties, but the
space requirement is proportional to r, and the time required for initialization
also increases with r. Thus, the optimal choice of a trinomial depends on the
particular application and computing resources available.

The first author has implemented an open-source uniform pseudo-random
number generator ranut [8] that automatically selects a primitive or almost
primitive trinomial whose degree depends on the size of the working space allo-
cated by the user, and then implements a generalized Fibonacci generator based
on that trinomial. In the current implementation 127 ≤ r ≤ 3021377; additional
trinomials can be added very easily. We believe that ranut satisfies all the re-
quirements of §2. It has been tested with Marsaglia’s Diehard package [34] and
no anomalous results have been observed.
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