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Abstract  

 
Prospective readers can quickly determine whether 

a document is relevant to their information need if the 
significant phrases (or keyphrases) in this document 
are provided. Although keyphrases are useful, not 
many documents have keyphrases assigned to them, 
and manually assigning keyphrases to existing 
documents is costly. Therefore, there is a need for 
automatic keyphrase extraction. This paper introduces 
a new domain independent keyphrase extraction 
algorithm. The algorithm approaches the problem of 
keyphrase extraction as a classification task, and uses 
a combination of statistical and computational 
linguistics techniques, a new set of attributes, and a 
new learning method to distinguish keyphrases from 
non-keyphrases. The experiments indicate that this 
algorithm performs at least as well as other keyphrase 
extraction tools and that it outperforms Microsoft 
Word 2000’s AutoSummarize feature significantly.  
 
 

1. Introduction  
 

With the proliferation of the Internet and the huge 
numbers of documents (“document” is regarded as 
being synonymous with “text” in this paper) it 
contains, the provision of summaries of these 
documents has become more and more important. 
Prospective readers can quickly determine whether a 
document is relevant to their information need if the 
significant phrases (or keyphrases) in this document 
are provided. Keyphrases give a short summary of the 
document and provide supplementary information for 
the readers, in addition to titles and abstracts. Even 
though keyphrases are useful, only a small minority of 
documents have keyphrases assigned to them, and 
manually assigning keyphrases to existing documents 
is very costly. Therefore, there is a need for automatic 
keyphrase extraction [1-3, 8-10].  

Automatic keyphrase extraction is the identification 
of the most important phrases within the body of a 

document by computers rather than human beings. It 
normally involves the use of statistical information. 
There is no controlled vocabulary list, so in theory any 
phrase within the body of the document can be 
identified as a keyphrase. When authors assign 
keyphrases without a controlled vocabulary list, 
typically 70-90% of their keyphrases appear 
somewhere in their documents [10]. Keyphrases are 
similar to keywords, except that the document is 
summarized by a set of phrases rather than words.  

Keyphrase extraction is a classification task: a 
document can be seen as a set of phrases, and a 
keyphrase extraction algorithm should correctly 
classify a phrase as a keyphrase or a non-keyphrase. 
Machine learning techniques can automate this task if 
they are provided with a set of training data composed 
of both keyphrase examples and non-keyphrase 
examples. The data are used to train the algorithm to 
distinguish keyphrases from non-keyphrases. The 
resulting algorithm can then be applied to new 
documents for keyphrase extraction. Previous work 
shows that the training data and the new documents 
need not be from the same domain, though the 
performance of the algorithm can be boosted 
significantly if they are [2].  

This paper introduces a new domain independent 
keyphrase extraction algorithm called KE. KE is not 
tied to a specific domain; it is designed to summarize a 
given document, which can be of any topic (excluding 
poetry and other similar works of literature), in a few 
keyphrases automatically extracted from the body of 
that document. Unlike other keyphrase extraction 
algorithms, KE uses a combination of statistical and 
computational linguistics techniques, a different set of 
attributes, and a different machine learning method to 
extract keyphrases from documents. The experiments 
indicate that KE performs at least as well as other 
keyphrase extraction tools and that it outperforms 
Microsoft Word 2000’s AutoSummarize feature 
significantly.  

Section 2 summarizes related work by other 
researchers. Section 3 introduces the KE algorithm and 
compares it with other keyphrase extraction 



algorithms. The experimental results are presented in 
Section 4. Section 5 concludes this paper and discusses 
future work.  
 

2. Related work  
 

This section discusses two important term weights: 
term frequency and inverse document frequency, and 
two important keyphrase extraction algorithms: GenEx 
and Kea.  
 
2.1. TF×IDF  
 

The vector space model suggests that a document 
(or query) can be represented by a vector of terms. 
Terms in this model are not equally weighted; each 
term is associated with a specific weight which reflects 
the importance of that term. Term frequency (TF) and 
inverse document frequency (IDF) are the two most 
important term weights in this model.  

TF is the frequency of a term in the document. The 
more often a term occurs in the document, the more 
likely it is to be important for that document. The 
standard TF of a term T in a document D is calculated 
by:  
 
Standard TF = no. of occurrences of T in D  
 

IDF is the rarity of a term across the collection. A 
term that occurs in only a few documents is often more 
valuable than a term that occurs in many documents. 
The standard IDF of a term T is calculated by:  
 

Standard IDF = 
inoccurs  documents of no.

collectionin  documents of no.log
T

  

 
TF×IDF is a common way of combining TF and 

IDF. Despite the popularity of these weights, they do 
not have a universal definition.  

Salton and Buckley (1988) review the use of 
statistical information for weighting document terms 
and query terms, and discuss various ways of defining 
and combining TF and IDF. A total of 1,800 different 
term weighting combinations were used in their 
experiments, and 287 have been found to be distinct. 
They also make recommendations on the best 
combination in different situations. For technical 
documents (like the ones used in our experiments), 
they recommend using the normalized TF and the 
standard IDF. The normalized TF is calculated by 
normalizing the standard TF factor by the maximum 
TF in the vector [6]:  
 

Normalized TF = 
TFmax 

TF5.05.0 +   

 
2.2. GenEx  
 

Turney (1999) proposes a keyphrase extraction 
algorithm called GenEx which consists of a set of 
parameterized heuristic rules that are fine-tuned by a 
genetic algorithm. During training, the genetic 
algorithm adjusts the rules’ parameters to maximize 
the match between the output keyphrases and the target 
keyphrases. For details of the parameters used in 
GenEx, please refer to [9]. The experiments show that 
machine learning techniques can be used for the 
problem of keyphrase extraction and that GenEx 
generalizes well across collections. While GenEx is 
trained on a collection of journal articles, it 
successfully extracts keyphrases from web pages on 
different topics. 
 
2.3. Kea  
 

Frank et al. (1999) discuss another keyphrase 
extraction algorithm called Kea which is based on the 
naïve Bayes learning technique [2]. The basic model 
involves two attributes: TF×IDF and distance.  

The standard TF is used, but the IDF is defined 
differently. They calculate the IDF of a term T in a 
document D by:  
 
Kea’s IDF = -log  (no. of documents in collection that 
  contain T, excluding D)  
 

The distance attribute is the position where a term 
first appears in the document. The distance of a term T 
in a document D is calculated by:  
 

Distance = 
D

T
in   wordsofno.

 of appearancefirst  before  wordsof no.   

 
Kea uses the same set of training and testing 

documents as GenEx so that its performance can be 
directly compared with GenEx. The experiments 
indicate that GenEx and Kea perform at roughly the 
same level, measured by the average number of 
matches between the author-assigned keyphrases and 
the machine-extracted keyphrases [10].  
 

3. Keyphrase extraction  
 

This section introduces the attributes used in the 
KE algorithm, gives an overview of KE, and compares 
KE with GenEx and Kea.  



 
3.1. Attributes  
 

The selection of relevant attributes is probably the 
most important factor in determining the effectiveness 
of a keyphrase extraction algorithm. Many attributes 
have been considered, e.g. the frequency of a term, the 
length of a document, the position of a term in the 
document, etc. However, according to our 
experiments, only five attributes have been found 
useful for keyphrase extraction:  

– The TF×IDF attribute has been discussed; please 
see Section 2.1 for details.  

– The position attribute is the same as Kea’s 
distance; please see Section 2.3 for details.  

– The title attribute is a flag that indicates if a term 
appears in the title of the document. A term that occurs 
in the title of the document is often more valuable than 
a term that does not. Titles may not provide enough 
information on their own, but they may contain some 
important words. In fact, it has been reported that the 
use of abstracts in addition to titles brings substantial 
advantages in retrieval effectiveness and that the 
additional utilization of the full texts of the documents 
appears to produce little improvement over titles and 
abstracts alone in most subject areas [7]. If a term is 
found in the title, title is set to 1; otherwise, it is set to 
0.  

– The proper noun attribute is a flag that indicates 
if a term is a proper noun. If a term is a proper noun, 
proper noun is set to 1; otherwise, it is set to 0.  

– The number of terms attribute is the number of 
terms in a term phrase. A term phrase that occurs the 
same number of times as a term in the document is 
likely to be more valuable.  
 
3.2. The KE algorithm  
 

The KE algorithm is based on GenEx and Kea (for 
details of the differences between KE, GenEx, and 
Kea, please see Section 3.3) and consists of seven 
steps:  

– Step 1 is to tag the input document and to select 
all the words which have been tagged as adjective, 
verb and noun and are not included in the stopword 
list. Although it is unlikely that adjectives and verbs 
will be output, they help to boost the score of their 
noun form (provided their stems are the same as the 
noun’s) and therefore increase the likelihood that it 
will be shown.  

– Step 2 is to stem the selected words, to calculate 
the TF×IDF, position, title and proper noun of each 
term, to assign a score to each term based on these 
attributes, and to sort the terms in descending order of 

score. The iterated Lovins algorithm has been used for 
stemming in our algorithm. It is chosen because it has 
been reported that aggressive stemming is better for 
keyphrase extraction than conservative stemming and 
that the iterated Lovins algorithm is more aggressive 
than the Porter and the Lovins algorithms [8, 9].  

– Step 3 is to select all the noun phrases from the 
document. Like KE, D’Avanzo and Magnini (2005) 
use a part-of-speech tagger to help to select candidate 
phrases in their keyphrase extraction algorithm: 
candidate phrases are selected if they match one of the 
many manually predefined linguistics-based patterns, 
e.g. adjective + noun, and noun + verb + adjective + 
noun (the symbol ‘+’ denotes ‘followed by’) [1]. 
Nevertheless, we believe this could be simplified by 
selecting only noun phrases, which can be naively 
defined as zero, one or two nouns or adjectives 
followed by a noun or a gerund, from the document. 
This is because almost all the keyphrases are noun 
phrases and that they normally follow this definition 
[8].  

– Step 4 is similar to Step 2. The main differences 
are that noun phrases, instead of words, are stemmed 
and that the TF×IDF, position, title, and number of 
terms of each term phrase is calculated.  

– Step 5 is to expand the single terms to term 
phrases. For each term, find all the term phrases that 
contain the term, and link it with the highest scoring 
term phrase. The result is a list of term phrases. The 
scores calculated in Step 2 are used to rank this list 
because it is generally preferable to represent 
documents and measure the importance of each 
representation element in terms of single terms rather 
than term phrases [6]. Term phrases, on the other hand, 
are used for output purposes. This is because 
documents are summarized by a set of phrases, not 
words.  

– Step 6 is to eliminate duplicates from the list of 
term phrases. More than one term may be linked to the 
same term phrase. If that is the case, the term phrase 
will be mapped by the highest scoring term.  

– Step 7 is to identify the most frequent 
corresponding phrase in the document for each of the 
term phrase. If a term phrase is mapped by more than 
one phrase, the most frequent phrase will be chosen. 
This step also eliminates subphrases if they do not 
perform better than their superphrases. If phrase P1 
occurs within phrase P2, P1 is the subphrase of P2 and 
P2 is the superphrase of P1. If a phrase is the subphrase 
of another phrase, it will only be accepted as a 
keyphrase if it is ranked higher; otherwise it will be 
deleted from the output list.  
 



3.3. Comparison with GenEx and Kea  
 

KE is based on GenEx and Kea, but is different 
from them in several ways:  

– Purely statistical methods have been used in 
GenEx and Kea. KE, however, uses a combination of 
statistical and computational linguistics techniques for 
keyphrase extraction. Part-of-speech tagging, which is 
a useful computational linguistics technique, has been 
used to improve the quality of candidate phrases. Only 
words which have been tagged as adjective, verb and 
noun are selected as candidate phrases.  

– KE uses a different set of attributes to 
discriminate between keyphrases and non-keyphrases: 
TF×IDF, position, title, proper noun and number of 
terms. Kea uses only two attributes: TF×IDF and 
distance. GenEx, on the other hand, uses many more 
attributes (i.e. 12 parameters), but it does not use 
TF×IDF and title.  

– KE uses a different machine learning algorithm; 
it is trained by an artificial neural network (for details 
of the training of KE, please see Section 4.2). GenEx is 
trained by a genetic algorithm while Kea is based on 
the naïve Bayes learning technique.  

– KE is a different model; it consists of seven steps, 
and takes both words and phrases as candidate phrases. 
Kea is a simple model; it only selects phrases as 
candidate phrases, so it does not involve any mapping 
between words and phrases. GenEx is more 
complicated; it consists of ten steps, considers both 
words and phrases, and involves many post-processing 
tasks.  

We expect these differences will make KE a better 
algorithm in some application domains, but further 
testing is needed to support this. Nevertheless, the 
results summarized in Table 1 (please see Section 4.5) 
suggest that KE is already at least as good as GenEx 
and Kea.  
 

4. Experiments  
 

This section explains how we evaluate the output 
keyphrases and train the KE algorithm, compares the 
individual performance of different attributes, the 
performance of different combinations of TF×IDF, 
and the performance of different keyphrase extraction 
tools, and discusses the experimental results.  
 
4.1. Methodology  
 

KE has been trained and tested on the same set of 
documents as GenEx and Kea. Of course, this can be 
done on other corpora, but we will not able to compare 

our experimental results with other keyphrase 
extraction algorithms then. The criteria used for 
evaluating the output keyphrases are also the same as 
GenEx and Kea (i.e. a machine-extracted keyphrase is 
said to be correct if its stem matches the stem of an 
author-assigned keyphrase), so direct comparison is 
possible. For details of the corpus and the evaluation 
method used, please refer to [9].  
 
4.2. Training of KE  
 

The set of terms (i.e. output of Step 2) and the set 
of term phrases (i.e. output of Step 4) have been 
trained separately by a fully connected 4-9-1 back-
propagation neural network. The resulting sets are then 
combined to perform Step 5, 6 and 7 of the KE 
algorithm. The number of hidden units affects the 
generalization performance of a neural network [5]. 
We have tested different numbers of hidden units, and 
found that nine hidden units give the best result. Also, 
it is possible to have more than one hidden layer in a 
neural network, but one hidden layer is adequate for 
most applications [5]. KE has been trained and tested 
on a neural network with two hidden layers, but the 
difference between that and one hidden layer is not 
statistically significant. Therefore, only one hidden 
layer is used.  

The experiments also indicate that the term set 
often requires more training iterations than the term 
phrase set. A training iteration involves all the 
documents in the training set and the selection of 150 
terms (or term phrases), including both keyphrase and 
non-keyphrase examples, from each document. The 
cross-validation method [5] has been used to estimate 
the appropriate point to stop training to avoid 
overfitting.  
 
4.3. Different attributes  
 

Five different attributes are used in the KE 
algorithm, but we have only compared the individual 
performance of four attributes: TF×IDF (using the 
standard TF and Kea’s IDF), position, title, and proper 
noun. Number of terms has not been evaluated in this 
experiment. Since number of terms is always one when 
it comes to single terms, the attribute (if used alone) 
cannot discriminate between different terms. 
Therefore, we have decided not to evaluate the 
individual performance of this attribute.  

Figure 1 shows the comparison of the individual 
performance of different attributes with varying 
number of output keyphrases. The experiments 
indicate that the performance of position is more stable 
than TF×IDF and is always better than title, and that 



proper noun gives the worst performance. We 
conclude that position is the best individual indicator 
of keyphrase extraction. This confirms the findings by 
Edmundson (1969) and Kupiec et al. (1995) that 
location-based methods give the best performance, 
though their work is concerned with sentence 
extraction and that they use a different set of attributes. 
For details of their work, please refer to [4].  
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Figure 1. Comparison of different attributes’ 

individual performance  

 
4.4. Different combinations of TF×IDF  
 

As mentioned before, there is no universal 
definition of TF×IDF. Four different TF×IDF 
definitions have been discussed: standard TF, standard 
IDF, normalized TF, and Kea’s IDF. Three different 
combinations of TF×IDF have been implemented 
using these definitions and tested in our experiments.  

Figure 2 shows the comparison of different 
TF×IDF combinations with varying number of output 
keyphrases. The difference between the standard TF 
and Kea’s IDF and the standard TF and standard IDF 
is not statistically significant, though the former tends 
to give more stable results.  
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Figure 2. Comparison of different 

combinations of TF×IDF  

 

4.5. Different keyphrase extraction tools  
 

We have compared the performance of KE with 
other keyphrase extraction tools: GenEx, C4.5, Kea, 
Kea-C4.5, and Microsoft Word 2000 (the 
AutoSummarize1 feature). C4.5 and Kea-C4.5 have not 
been discussed because they have mainly been used as 
a standard of comparison for evaluating the 
performance of GenEx and Kea respectively. Please 
refer to [2, 9] for details of C4.5 and Kea-C4.5. Five 
keyphrases have been extracted from each testing 
document by these tools and compared with the 
corresponding author-assigned keyphrases. The 
number of output keyphrases is set to five because 
AutoSummarize always generates exactly five 
keyphrases. Also, unlike the other tools, 
AutoSummarize cannot be trained and the output 
keyphrases always contain exactly one word.  

Table 1 shows the number of correct keyphrases 
identified by different keyphrase extraction tools. 
Results of GenEx, C4.5, Kea, and Kea-C4.5 are from 
[2]. The experiments indicate that KE (using the 
standard TF and Kea’s IDF) performs comparably to 
GenEx and that the difference between KE, GenEx, 
C4.5 and Kea is not statistically significant. Since 
Word 2000 can only extract five single words from 
each document and that most of the keyphrases in the 
corpus contain more than one word, it is not surprising 
that Word 2000 gives the worst performance.  
 

Table 1. Experimental results for different 
keyphrase extraction tools  

 Average Number of 
Correct Keyphrases 

Standard 
Deviation 

KE  1.45 1.32 
GenEx 1.45 1.24 
C4.5  1.40 1.28 
Kea 1.35 0.93 
Kea-C4.5 1.20 0.83 
Word 2000 0.85 0.93 
 
4.6. Discussion of results  
 

The above performance numbers are misleadingly 
low. Author-assigned keyphrases are often a small 
subset of the set of good quality keyphrases for a given 
document. On average, there are only 7.5 keyphrases 

                                                           
1 The AutoSummarize feature aims at extracting key sentences from 
a given document and is available from the Tools menu. The 
generation of keywords is actually a by-product of AutoSummarize. 
When AutoSummarize is used, it also fills in the Keywords field of 
the document’s Properties, which is available from the File menu.  



per document in the corpus, and these phrases 
constitute less than 0.001% of the document length. A 
more accurate picture can be obtained by asking 
human assessors to evaluate the machine-extracted 
keyphrases. GenEx has been tested on 267 web pages: 
62% of the keyphrases extracted from these pages are 
rated by human assessors as ‘good’, 18% as ‘bad’, and 
20% as ‘no opinion’. This suggests that about 80% of 
the keyphrases extracted by GenEx are acceptable [9]. 
The quality of machine-extracted keyphrases may not 
be as good as author-assigned keyphrases. 
Nevertheless, machine-extracted keyphrases could give 
the author a useful starting point for further manual 
refinement when author-assigned keyphrases are not 
available.  

We notice that some common words are ranked 
fairly high in the output list despite the use of stopword 
lists and IDF. These words come from two main 
categories. Recall that the score of a term (or term 
phrase) is dependent on TF×IDF, position, and other 
attributes. Terms such as ‘chapter’ tend to occur at the 
beginning of the document. Early occurrence often 
boosts the score of these terms and increases the 
likelihood that they are output, though their IDF might 
be low. In addition, because of the nature of the 
corpus, terms such as ‘person’, which tend to occur 
rather frequently in everyday documents, appear only 
in a few documents in the corpus. This boosts the IDF 
of these terms and improves their ranking. A possible 
way of solving this problem is to add these common 
words to the stopword lists, but this will make KE 
more domain dependent, and that is not what we want.  

The use of proper noun appears to degrade the 
performance of KE. This is probably because the 
training and testing documents are all academic papers, 
which tend to contain many proper nouns, especially in 
the References section. Indicator phrases [4] may be 
used to resolve this problem by ignoring all the words 
in the References section, but this will make KE more 
domain dependent. However, we believe that proper 
nouns might be useful in some domains (e.g. news) 
where they tend to occur less frequently.  

Syntactic methods (e.g. the use of italics and 
acronyms) seem helpful in extracting high quality 
keyphrases, and they were considered as an attribute 
for keyphrase extraction initially. However, all the 
documents in the corpus are in ASCII and Unicode 
format, so we cannot implement it.  
 

5. Conclusions and future work  
 

We have discussed a new domain independent 
keyphrase extraction algorithm called KE, and shown 
that it performs at least as well as other keyphrase 

extraction tools, including GenEx and Kea, and that it 
outperforms Microsoft Word 2000’s AutoSummarize 
feature significantly. Machine-extracted keyphrases 
could provide valuable information about the content 
of a document, though they are not as good as author-
assigned keyphrases. To ensure comparability, KE has 
been trained and tested on the same set of documents 
as GenEx and Kea, but it will be interesting to see how 
KE performs when it is tested on a different (and 
possibly larger) corpus.  
 

6. References  
 
[1] E. D’Avanzo and B. Magnini, “A Keyphrase-Based 
Approach to Summarization: the LAKE System at DUC-
2005”, Document Understanding Workshop, Vancouver, 
Canada, 2005.  
 
[2] E. Frank, G. Paynter, I. Witten, C. Gutwin and C. Nevill-
Manning, “Domain-Specific Keyphrase Extraction”, 
Proceedings of 16th International Joint Conference on 
Artificial Intelligence, California, USA, Morgan Kaufmann, 
1999, pp. 668-673.  
 
[3] Y. Lui, “An Improved Keyphrase Extraction Algorithm”, 
Proceedings of PREP2005, Lancaster, UK, 2005.  
 
[4] I. Mani, “Automatic Summarization”, John Benjamins, 
2001.  
 
[5] D. Rumelhart, B. Widrow and M. Lehr, “The Basic Ideas 
in Neural Networks”, Communications of the ACM, Vol. 37, 
No. 3, 1994, pp. 87-92.  
 
[6] G. Salton and C. Buckley, “Term-Weighting Approaches 
in Automatic Text Retrieval”, Information Processing and 
Management, Vol. 24, No. 5, 1988, pp. 513-523.  
 
[7] G. Salton and M. McGill, “Introduction to Modern 
Information Retrieval”, McGraw-Hill, 1983.  
 
[8] P. Turney, “Extraction of Keyphrases from Text: 
Evaluation of Four Algorithms”, Technical Report ERB-
1051, National Research Council of Canada, 1997.  
 
[9] P. Turney, “Learning Algorithms for Keyphrase 
Extraction”, Information Retrieval, Vol. 2, No. 4, 2000, pp. 
303-336.  
 
[10] P. Turney, “Coherent Keyphrase Extraction via Web 
Mining”, Proceedings of 18th International Joint Conference 
on Artificial Intelligence, Acapulco, Mexico, CogPrints, 
2003, pp. 434-439.  
 


	Abstract
	1. Introduction
	2. Related work
	2.1. TF×IDF
	2.2. GenEx
	2.3. Kea

	3. Keyphrase extraction
	3.1. Attributes
	3.2. The KE algorithm
	3.3. Comparison with GenEx and Kea

	4. Experiments
	4.1. Methodology
	4.2. Training of KE
	4.3. Different attributes
	4.4. Different combinations of TF×IDF
	4.5. Different keyphrase extraction tools
	4.6. Discussion of results

	5. Conclusions and future work
	6. References

