
Extracting Significant Phrases from Text

Yuan J. Lui*, Richard Brent† and Ani Calinescu*
*University of Oxford, UK †Australian National University, Australia

Abstract

Prospective readers can quickly determine whether

a document is relevant to their information need if the
significant phrases (or keyphrases) in this document
are provided. Although keyphrases are useful, not
many documents have keyphrases assigned to them,
and manually assigning keyphrases to existing
documents is costly. Therefore, there is a need for
automatic keyphrase extraction. This paper introduces
a new domain independent keyphrase extraction
algorithm. The algorithm approaches the problem of
keyphrase extraction as a classification task, and uses
a combination of statistical and computational
linguistics techniques, a new set of attributes, and a
new learning method to distinguish keyphrases from
non-keyphrases. The experiments indicate that this
algorithm performs at least as well as other keyphrase
extraction tools and that it outperforms Microsoft
Word 2000’s AutoSummarize feature significantly.

1. Introduction

With the proliferation of the Internet and the huge
numbers of documents (“document” is regarded as
being synonymous with “text” in this paper) it
contains, the provision of summaries of these
documents has become more and more important.
Prospective readers can quickly determine whether a
document is relevant to their information need if the
significant phrases (or keyphrases) in this document
are provided. Keyphrases give a short summary of the
document and provide supplementary information for
the readers, in addition to titles and abstracts. Even
though keyphrases are useful, only a small minority of
documents have keyphrases assigned to them, and
manually assigning keyphrases to existing documents
is very costly. Therefore, there is a need for automatic
keyphrase extraction [1-3, 8-10].

Automatic keyphrase extraction is the identification
of the most important phrases within the body of a

document by computers rather than human beings. It
normally involves the use of statistical information.
There is no controlled vocabulary list, so in theory any
phrase within the body of the document can be
identified as a keyphrase. When authors assign
keyphrases without a controlled vocabulary list,
typically 70-90% of their keyphrases appear
somewhere in their documents [10]. Keyphrases are
similar to keywords, except that the document is
summarized by a set of phrases rather than words.

Keyphrase extraction is a classification task: a
document can be seen as a set of phrases, and a
keyphrase extraction algorithm should correctly
classify a phrase as a keyphrase or a non-keyphrase.
Machine learning techniques can automate this task if
they are provided with a set of training data composed
of both keyphrase examples and non-keyphrase
examples. The data are used to train the algorithm to
distinguish keyphrases from non-keyphrases. The
resulting algorithm can then be applied to new
documents for keyphrase extraction. Previous work
shows that the training data and the new documents
need not be from the same domain, though the
performance of the algorithm can be boosted
significantly if they are [2].

This paper introduces a new domain independent
keyphrase extraction algorithm called KE. KE is not
tied to a specific domain; it is designed to summarize a
given document, which can be of any topic (excluding
poetry and other similar works of literature), in a few
keyphrases automatically extracted from the body of
that document. Unlike other keyphrase extraction
algorithms, KE uses a combination of statistical and
computational linguistics techniques, a different set of
attributes, and a different machine learning method to
extract keyphrases from documents. The experiments
indicate that KE performs at least as well as other
keyphrase extraction tools and that it outperforms
Microsoft Word 2000’s AutoSummarize feature
significantly.

Section 2 summarizes related work by other
researchers. Section 3 introduces the KE algorithm and
compares it with other keyphrase extraction

algorithms. The experimental results are presented in
Section 4. Section 5 concludes this paper and discusses
future work.

2. Related work

This section discusses two important term weights:
term frequency and inverse document frequency, and
two important keyphrase extraction algorithms: GenEx
and Kea.

2.1. TF×IDF

The vector space model suggests that a document
(or query) can be represented by a vector of terms.
Terms in this model are not equally weighted; each
term is associated with a specific weight which reflects
the importance of that term. Term frequency (TF) and
inverse document frequency (IDF) are the two most
important term weights in this model.

TF is the frequency of a term in the document. The
more often a term occurs in the document, the more
likely it is to be important for that document. The
standard TF of a term T in a document D is calculated
by:

Standard TF = no. of occurrences of T in D

IDF is the rarity of a term across the collection. A
term that occurs in only a few documents is often more
valuable than a term that occurs in many documents.
The standard IDF of a term T is calculated by:

Standard IDF =
inoccurs documents of no.

collectionin documents of no.log
T

TF×IDF is a common way of combining TF and

IDF. Despite the popularity of these weights, they do
not have a universal definition.

Salton and Buckley (1988) review the use of
statistical information for weighting document terms
and query terms, and discuss various ways of defining
and combining TF and IDF. A total of 1,800 different
term weighting combinations were used in their
experiments, and 287 have been found to be distinct.
They also make recommendations on the best
combination in different situations. For technical
documents (like the ones used in our experiments),
they recommend using the normalized TF and the
standard IDF. The normalized TF is calculated by
normalizing the standard TF factor by the maximum
TF in the vector [6]:

Normalized TF =
TFmax

TF5.05.0 +

2.2. GenEx

Turney (1999) proposes a keyphrase extraction
algorithm called GenEx which consists of a set of
parameterized heuristic rules that are fine-tuned by a
genetic algorithm. During training, the genetic
algorithm adjusts the rules’ parameters to maximize
the match between the output keyphrases and the target
keyphrases. For details of the parameters used in
GenEx, please refer to [9]. The experiments show that
machine learning techniques can be used for the
problem of keyphrase extraction and that GenEx
generalizes well across collections. While GenEx is
trained on a collection of journal articles, it
successfully extracts keyphrases from web pages on
different topics.

2.3. Kea

Frank et al. (1999) discuss another keyphrase
extraction algorithm called Kea which is based on the
naïve Bayes learning technique [2]. The basic model
involves two attributes: TF×IDF and distance.

The standard TF is used, but the IDF is defined
differently. They calculate the IDF of a term T in a
document D by:

Kea’s IDF = -log (no. of documents in collection that
 contain T, excluding D)

The distance attribute is the position where a term
first appears in the document. The distance of a term T
in a document D is calculated by:

Distance =
D

T
in wordsofno.

 of appearancefirst before wordsof no.

Kea uses the same set of training and testing

documents as GenEx so that its performance can be
directly compared with GenEx. The experiments
indicate that GenEx and Kea perform at roughly the
same level, measured by the average number of
matches between the author-assigned keyphrases and
the machine-extracted keyphrases [10].

3. Keyphrase extraction

This section introduces the attributes used in the
KE algorithm, gives an overview of KE, and compares
KE with GenEx and Kea.

3.1. Attributes

The selection of relevant attributes is probably the
most important factor in determining the effectiveness
of a keyphrase extraction algorithm. Many attributes
have been considered, e.g. the frequency of a term, the
length of a document, the position of a term in the
document, etc. However, according to our
experiments, only five attributes have been found
useful for keyphrase extraction:

– The TF×IDF attribute has been discussed; please
see Section 2.1 for details.

– The position attribute is the same as Kea’s
distance; please see Section 2.3 for details.

– The title attribute is a flag that indicates if a term
appears in the title of the document. A term that occurs
in the title of the document is often more valuable than
a term that does not. Titles may not provide enough
information on their own, but they may contain some
important words. In fact, it has been reported that the
use of abstracts in addition to titles brings substantial
advantages in retrieval effectiveness and that the
additional utilization of the full texts of the documents
appears to produce little improvement over titles and
abstracts alone in most subject areas [7]. If a term is
found in the title, title is set to 1; otherwise, it is set to
0.

– The proper noun attribute is a flag that indicates
if a term is a proper noun. If a term is a proper noun,
proper noun is set to 1; otherwise, it is set to 0.

– The number of terms attribute is the number of
terms in a term phrase. A term phrase that occurs the
same number of times as a term in the document is
likely to be more valuable.

3.2. The KE algorithm

The KE algorithm is based on GenEx and Kea (for
details of the differences between KE, GenEx, and
Kea, please see Section 3.3) and consists of seven
steps:

– Step 1 is to tag the input document and to select
all the words which have been tagged as adjective,
verb and noun and are not included in the stopword
list. Although it is unlikely that adjectives and verbs
will be output, they help to boost the score of their
noun form (provided their stems are the same as the
noun’s) and therefore increase the likelihood that it
will be shown.

– Step 2 is to stem the selected words, to calculate
the TF×IDF, position, title and proper noun of each
term, to assign a score to each term based on these
attributes, and to sort the terms in descending order of

score. The iterated Lovins algorithm has been used for
stemming in our algorithm. It is chosen because it has
been reported that aggressive stemming is better for
keyphrase extraction than conservative stemming and
that the iterated Lovins algorithm is more aggressive
than the Porter and the Lovins algorithms [8, 9].

– Step 3 is to select all the noun phrases from the
document. Like KE, D’Avanzo and Magnini (2005)
use a part-of-speech tagger to help to select candidate
phrases in their keyphrase extraction algorithm:
candidate phrases are selected if they match one of the
many manually predefined linguistics-based patterns,
e.g. adjective + noun, and noun + verb + adjective +
noun (the symbol ‘+’ denotes ‘followed by’) [1].
Nevertheless, we believe this could be simplified by
selecting only noun phrases, which can be naively
defined as zero, one or two nouns or adjectives
followed by a noun or a gerund, from the document.
This is because almost all the keyphrases are noun
phrases and that they normally follow this definition
[8].

– Step 4 is similar to Step 2. The main differences
are that noun phrases, instead of words, are stemmed
and that the TF×IDF, position, title, and number of
terms of each term phrase is calculated.

– Step 5 is to expand the single terms to term
phrases. For each term, find all the term phrases that
contain the term, and link it with the highest scoring
term phrase. The result is a list of term phrases. The
scores calculated in Step 2 are used to rank this list
because it is generally preferable to represent
documents and measure the importance of each
representation element in terms of single terms rather
than term phrases [6]. Term phrases, on the other hand,
are used for output purposes. This is because
documents are summarized by a set of phrases, not
words.

– Step 6 is to eliminate duplicates from the list of
term phrases. More than one term may be linked to the
same term phrase. If that is the case, the term phrase
will be mapped by the highest scoring term.

– Step 7 is to identify the most frequent
corresponding phrase in the document for each of the
term phrase. If a term phrase is mapped by more than
one phrase, the most frequent phrase will be chosen.
This step also eliminates subphrases if they do not
perform better than their superphrases. If phrase P1
occurs within phrase P2, P1 is the subphrase of P2 and
P2 is the superphrase of P1. If a phrase is the subphrase
of another phrase, it will only be accepted as a
keyphrase if it is ranked higher; otherwise it will be
deleted from the output list.

3.3. Comparison with GenEx and Kea

KE is based on GenEx and Kea, but is different
from them in several ways:

– Purely statistical methods have been used in
GenEx and Kea. KE, however, uses a combination of
statistical and computational linguistics techniques for
keyphrase extraction. Part-of-speech tagging, which is
a useful computational linguistics technique, has been
used to improve the quality of candidate phrases. Only
words which have been tagged as adjective, verb and
noun are selected as candidate phrases.

– KE uses a different set of attributes to
discriminate between keyphrases and non-keyphrases:
TF×IDF, position, title, proper noun and number of
terms. Kea uses only two attributes: TF×IDF and
distance. GenEx, on the other hand, uses many more
attributes (i.e. 12 parameters), but it does not use
TF×IDF and title.

– KE uses a different machine learning algorithm;
it is trained by an artificial neural network (for details
of the training of KE, please see Section 4.2). GenEx is
trained by a genetic algorithm while Kea is based on
the naïve Bayes learning technique.

– KE is a different model; it consists of seven steps,
and takes both words and phrases as candidate phrases.
Kea is a simple model; it only selects phrases as
candidate phrases, so it does not involve any mapping
between words and phrases. GenEx is more
complicated; it consists of ten steps, considers both
words and phrases, and involves many post-processing
tasks.

We expect these differences will make KE a better
algorithm in some application domains, but further
testing is needed to support this. Nevertheless, the
results summarized in Table 1 (please see Section 4.5)
suggest that KE is already at least as good as GenEx
and Kea.

4. Experiments

This section explains how we evaluate the output
keyphrases and train the KE algorithm, compares the
individual performance of different attributes, the
performance of different combinations of TF×IDF,
and the performance of different keyphrase extraction
tools, and discusses the experimental results.

4.1. Methodology

KE has been trained and tested on the same set of
documents as GenEx and Kea. Of course, this can be
done on other corpora, but we will not able to compare

our experimental results with other keyphrase
extraction algorithms then. The criteria used for
evaluating the output keyphrases are also the same as
GenEx and Kea (i.e. a machine-extracted keyphrase is
said to be correct if its stem matches the stem of an
author-assigned keyphrase), so direct comparison is
possible. For details of the corpus and the evaluation
method used, please refer to [9].

4.2. Training of KE

The set of terms (i.e. output of Step 2) and the set
of term phrases (i.e. output of Step 4) have been
trained separately by a fully connected 4-9-1 back-
propagation neural network. The resulting sets are then
combined to perform Step 5, 6 and 7 of the KE
algorithm. The number of hidden units affects the
generalization performance of a neural network [5].
We have tested different numbers of hidden units, and
found that nine hidden units give the best result. Also,
it is possible to have more than one hidden layer in a
neural network, but one hidden layer is adequate for
most applications [5]. KE has been trained and tested
on a neural network with two hidden layers, but the
difference between that and one hidden layer is not
statistically significant. Therefore, only one hidden
layer is used.

The experiments also indicate that the term set
often requires more training iterations than the term
phrase set. A training iteration involves all the
documents in the training set and the selection of 150
terms (or term phrases), including both keyphrase and
non-keyphrase examples, from each document. The
cross-validation method [5] has been used to estimate
the appropriate point to stop training to avoid
overfitting.

4.3. Different attributes

Five different attributes are used in the KE
algorithm, but we have only compared the individual
performance of four attributes: TF×IDF (using the
standard TF and Kea’s IDF), position, title, and proper
noun. Number of terms has not been evaluated in this
experiment. Since number of terms is always one when
it comes to single terms, the attribute (if used alone)
cannot discriminate between different terms.
Therefore, we have decided not to evaluate the
individual performance of this attribute.

Figure 1 shows the comparison of the individual
performance of different attributes with varying
number of output keyphrases. The experiments
indicate that the performance of position is more stable
than TF×IDF and is always better than title, and that

proper noun gives the worst performance. We
conclude that position is the best individual indicator
of keyphrase extraction. This confirms the findings by
Edmundson (1969) and Kupiec et al. (1995) that
location-based methods give the best performance,
though their work is concerned with sentence
extraction and that they use a different set of attributes.
For details of their work, please refer to [4].

0.00

0.10

0.20

0.30

0.40

1 2 3 4 5

Number of Output
Keyphrases

A
ve

ra
ge

 P
re

ci
si

on

TF×IDF
Position
Title
Proper Noun

Figure 1. Comparison of different attributes’

individual performance

4.4. Different combinations of TF×IDF

As mentioned before, there is no universal
definition of TF×IDF. Four different TF×IDF
definitions have been discussed: standard TF, standard
IDF, normalized TF, and Kea’s IDF. Three different
combinations of TF×IDF have been implemented
using these definitions and tested in our experiments.

Figure 2 shows the comparison of different
TF×IDF combinations with varying number of output
keyphrases. The difference between the standard TF
and Kea’s IDF and the standard TF and standard IDF
is not statistically significant, though the former tends
to give more stable results.

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

1 2 3 4 5

Number of Output Keyphrases

A
ve

ra
ge

 P
re

ci
si

on

Standard TF
and Kea’s IDF

Standard TF
and Standard
IDF
Normalized TF
and Standard
IDF

Figure 2. Comparison of different

combinations of TF×IDF

4.5. Different keyphrase extraction tools

We have compared the performance of KE with
other keyphrase extraction tools: GenEx, C4.5, Kea,
Kea-C4.5, and Microsoft Word 2000 (the
AutoSummarize1 feature). C4.5 and Kea-C4.5 have not
been discussed because they have mainly been used as
a standard of comparison for evaluating the
performance of GenEx and Kea respectively. Please
refer to [2, 9] for details of C4.5 and Kea-C4.5. Five
keyphrases have been extracted from each testing
document by these tools and compared with the
corresponding author-assigned keyphrases. The
number of output keyphrases is set to five because
AutoSummarize always generates exactly five
keyphrases. Also, unlike the other tools,
AutoSummarize cannot be trained and the output
keyphrases always contain exactly one word.

Table 1 shows the number of correct keyphrases
identified by different keyphrase extraction tools.
Results of GenEx, C4.5, Kea, and Kea-C4.5 are from
[2]. The experiments indicate that KE (using the
standard TF and Kea’s IDF) performs comparably to
GenEx and that the difference between KE, GenEx,
C4.5 and Kea is not statistically significant. Since
Word 2000 can only extract five single words from
each document and that most of the keyphrases in the
corpus contain more than one word, it is not surprising
that Word 2000 gives the worst performance.

Table 1. Experimental results for different
keyphrase extraction tools

 Average Number of
Correct Keyphrases

Standard
Deviation

KE 1.45 1.32
GenEx 1.45 1.24
C4.5 1.40 1.28
Kea 1.35 0.93
Kea-C4.5 1.20 0.83
Word 2000 0.85 0.93

4.6. Discussion of results

The above performance numbers are misleadingly
low. Author-assigned keyphrases are often a small
subset of the set of good quality keyphrases for a given
document. On average, there are only 7.5 keyphrases

1 The AutoSummarize feature aims at extracting key sentences from
a given document and is available from the Tools menu. The
generation of keywords is actually a by-product of AutoSummarize.
When AutoSummarize is used, it also fills in the Keywords field of
the document’s Properties, which is available from the File menu.

per document in the corpus, and these phrases
constitute less than 0.001% of the document length. A
more accurate picture can be obtained by asking
human assessors to evaluate the machine-extracted
keyphrases. GenEx has been tested on 267 web pages:
62% of the keyphrases extracted from these pages are
rated by human assessors as ‘good’, 18% as ‘bad’, and
20% as ‘no opinion’. This suggests that about 80% of
the keyphrases extracted by GenEx are acceptable [9].
The quality of machine-extracted keyphrases may not
be as good as author-assigned keyphrases.
Nevertheless, machine-extracted keyphrases could give
the author a useful starting point for further manual
refinement when author-assigned keyphrases are not
available.

We notice that some common words are ranked
fairly high in the output list despite the use of stopword
lists and IDF. These words come from two main
categories. Recall that the score of a term (or term
phrase) is dependent on TF×IDF, position, and other
attributes. Terms such as ‘chapter’ tend to occur at the
beginning of the document. Early occurrence often
boosts the score of these terms and increases the
likelihood that they are output, though their IDF might
be low. In addition, because of the nature of the
corpus, terms such as ‘person’, which tend to occur
rather frequently in everyday documents, appear only
in a few documents in the corpus. This boosts the IDF
of these terms and improves their ranking. A possible
way of solving this problem is to add these common
words to the stopword lists, but this will make KE
more domain dependent, and that is not what we want.

The use of proper noun appears to degrade the
performance of KE. This is probably because the
training and testing documents are all academic papers,
which tend to contain many proper nouns, especially in
the References section. Indicator phrases [4] may be
used to resolve this problem by ignoring all the words
in the References section, but this will make KE more
domain dependent. However, we believe that proper
nouns might be useful in some domains (e.g. news)
where they tend to occur less frequently.

Syntactic methods (e.g. the use of italics and
acronyms) seem helpful in extracting high quality
keyphrases, and they were considered as an attribute
for keyphrase extraction initially. However, all the
documents in the corpus are in ASCII and Unicode
format, so we cannot implement it.

5. Conclusions and future work

We have discussed a new domain independent
keyphrase extraction algorithm called KE, and shown
that it performs at least as well as other keyphrase

extraction tools, including GenEx and Kea, and that it
outperforms Microsoft Word 2000’s AutoSummarize
feature significantly. Machine-extracted keyphrases
could provide valuable information about the content
of a document, though they are not as good as author-
assigned keyphrases. To ensure comparability, KE has
been trained and tested on the same set of documents
as GenEx and Kea, but it will be interesting to see how
KE performs when it is tested on a different (and
possibly larger) corpus.

6. References

[1] E. D’Avanzo and B. Magnini, “A Keyphrase-Based
Approach to Summarization: the LAKE System at DUC-
2005”, Document Understanding Workshop, Vancouver,
Canada, 2005.

[2] E. Frank, G. Paynter, I. Witten, C. Gutwin and C. Nevill-
Manning, “Domain-Specific Keyphrase Extraction”,
Proceedings of 16th International Joint Conference on
Artificial Intelligence, California, USA, Morgan Kaufmann,
1999, pp. 668-673.

[3] Y. Lui, “An Improved Keyphrase Extraction Algorithm”,
Proceedings of PREP2005, Lancaster, UK, 2005.

[4] I. Mani, “Automatic Summarization”, John Benjamins,
2001.

[5] D. Rumelhart, B. Widrow and M. Lehr, “The Basic Ideas
in Neural Networks”, Communications of the ACM, Vol. 37,
No. 3, 1994, pp. 87-92.

[6] G. Salton and C. Buckley, “Term-Weighting Approaches
in Automatic Text Retrieval”, Information Processing and
Management, Vol. 24, No. 5, 1988, pp. 513-523.

[7] G. Salton and M. McGill, “Introduction to Modern
Information Retrieval”, McGraw-Hill, 1983.

[8] P. Turney, “Extraction of Keyphrases from Text:
Evaluation of Four Algorithms”, Technical Report ERB-
1051, National Research Council of Canada, 1997.

[9] P. Turney, “Learning Algorithms for Keyphrase
Extraction”, Information Retrieval, Vol. 2, No. 4, 2000, pp.
303-336.

[10] P. Turney, “Coherent Keyphrase Extraction via Web
Mining”, Proceedings of 18th International Joint Conference
on Artificial Intelligence, Acapulco, Mexico, CogPrints,
2003, pp. 434-439.

	Abstract
	1. Introduction
	2. Related work
	2.1. TF×IDF
	2.2. GenEx
	2.3. Kea

	3. Keyphrase extraction
	3.1. Attributes
	3.2. The KE algorithm
	3.3. Comparison with GenEx and Kea

	4. Experiments
	4.1. Methodology
	4.2. Training of KE
	4.3. Different attributes
	4.4. Different combinations of TF×IDF
	4.5. Different keyphrase extraction tools
	4.6. Discussion of results

	5. Conclusions and future work
	6. References

