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Abstract

A Hadamard matrix of order n has no proper Hadamard subma-
trices of order m > n/2. We generalise this result to maximal deter-
minant submatrices of Hadamard matrices, and show that an interval
of length ∼ n/2 is excluded from the allowable orders. We make a
conjecture regarding a lower bound for sums of squares of minors of
maximal determinant matrices, and give evidence to support it. We
give tables of the values taken by the minors of all maximal deter-
minant matrices of orders ≤ 21 and make some observations on the
data. Finally, we describe the algorithms that were used to compute
the tables.

1 Introduction

A {+1,−1}-matrix (abbreviated “{±1}-matrix” below) is a matrix whose
elements are +1 or −1. The Hadamard maximal determinant problem, posed
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by Hadamard [15], is to find the maximal determinant D(n) of an n × n
{±1}-matrix of given order n. A matrix that attains the maximum is a
maximal determinant matrix (abbreviatedmaxdet matrix ). Such matrices, of
which Hadamard matrices are a special case, are of interest in combinatorics
and have applications in statistical design [20], coding theory and signal
processing [17, 32, 36]. In design theory a maxdet matrix is also known as a
saturated D-optimal design.

Finding maxdet matrices is in general difficult, with the difficulty depend-
ing on the congruence class of n (mod 4). Most is known for n ≡ 0 (mod 4)
(the Hadamard orders), and least for n ≡ 3 (mod 4). Maxdet matrices are
known for orders 1 through 21 inclusive; for n = 22 and n = 23 there are
conjectures (see [32]) but as yet no proofs of maximality. Constructions exist
for various infinite families and ad-hoc examples, see [33].

Consider the k× k submatrices Sk(A) of an n× n {±1}-matrix A, where
0 < k ≤ n. For M ∈ Sk(A), we say that det(M) is a minor of order k of A.
Usually only the absolute value of det(M) is of interest.

One method for finding maxdet or large-determinant matrices involves
choosing a large-determinant matrix of a slightly smaller (or larger) order
than the desired order, possibly perturbing it by a low-rank modification, and
adding (or removing) a small number of suitably chosen rows and columns.
For example, Solomon [32, 39] found a (conjectured) maxdet matrix of order
33 and determinant 441 × 274 in this way by starting with an appropriate
(large excess) Hadamard matrix of order 32, and in [8, 24, 28] the method
was used to obtain lower bounds on D(n).

This motivates our interest in the minors of maxdet matrices, and in par-
ticular the question: What is the largest order of a maxdet matrix contained
as a proper submatrix of a given maxdet matrix? In this paper we answer
this question for the maxdet submatrices of maxdet matrices of orders n ≤ 21
by computing all minors of maxdet matrices of these orders. Our work ex-
tends that of earlier researchers who have considered minors of Hadamard
and maxdet matrices with other applications in mind, such as the problem
of growth in Gaussian elimination [11, 23, 25, 26, 35].

Schmidt [34, pg. 441] says “The nature of the construction · · · is in line
with the computer assisted observation that binary matrices with maximal de-
terminants may not contain large order submatrices with large determinants”.
Whether this is true in general depends on the precise meaning of “large”.
Certainly there are exceptions. For example, the maxdet {±1}-matrix of
order 17 contains a maxdet (Hadamard) submatrix of order 16.
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In Theorem 1 of §2 we prove that a Hadamard matrix of order n can
not have a proper Hadamard submatrix of order m > n/2. We then con-
sider maxdet submatrices of Hadamard matrices, and show, assuming the
Hadamard conjecture, that a Hadamard matrix of order n can not have a
maxdet submatrix M of order m > n/2+ 5 logn unless m ≥ n− 2 (see The-
orem 2). In other words, m can not lie in the interval (n/2 + 5 logn, n− 2).
Without the assumption of the Hadamard conjecture, we can still exclude
an interval (n/2 + o(n), n − o(n)) of length ∼ n/2, see Theorem 3 and Re-
mark 2. These results partially confirm the remark of Schmidt quoted above.
However, they apply only to sub-matrices of Hadamard matrices. We can
not, except in small cases that are amenable to explicit computation, exclude
the possibility that a maxdet matrix of order n 6≡ 0 (mod 4) has a maxdet
submatrix of any given order m < n.

In §3 we define two sequences related to the sets of minors of maxdet
matrices, and give the first 21 terms of each sequence.

In §4 we describe the minors that occur in maxdet matrices of orders 1
through 21, and make some observations on the patterns that occur. We
mention a result (Proposition 3), on small minors of Hadamard matrices,
which was suggested by the data before a proof was found.

Motivated by Turán’s result [41] that the expected value of det(A)2 is
m! for random {±1} matrices of order m, we consider the mean value of
det(M)2 over all m×m submatrices of maxdet matrices of order n ≥ m, and
conjecture that it is bounded below by m! (see Conjecture 1). The conjecture
is consistent with our computations for 1 ≤ m ≤ n ≤ 21.

Finally, in §5 we describe the algorithms that we used to compute mi-
nors of square {±1}-matrices, as well as some related algorithms that were
considered but rejected for various reasons.

Hadamard equivalence and HT-equivalence1

Two {±1}-matrices are Hadamard equivalent if one can be obtained from the
other by negating rows or columns, and/or by interchanging rows or columns.
Clearly the answer to the question posed above is the same for all matrices in
a Hadamard equivalence class, and also for any matrix A and its transpose
(dual) AT . Hence, it is useful to define the notion of HT-equivalence by saying

1There seems to be no widely-accepted name for this concept. In [5] HT-equivalence
is called “extended Hadamard equivalence”. Wanless [42] calls an HT-equivalence class a
“resemblance class”.
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that two matrices A and B are HT-equivalent if A is Hadamard-equivalent
to B or A is Hadamard-equivalent to BT . For example, there are 5 distinct
Hadamard equivalence classes of Hadamard matrices of order 16, but two of
these classes contain matrices that are dual to those in the other class, so
there are only 4 distinct HT-equivalence classes.

2 Excluded minors of Hadamard matrices

In this section we consider the possible orders of submatricesM of a Hadamard
matrix H , satisfying the condition that M is Hadamard (see Theorem 1) or,
more generally, that M is a maxdet matrix (see Theorems 2–3).

Recently Szöllősi [40, Proposition 5.5] established an elegant correspon-
dence between the minors of order m and of order n−m of a Hadamard ma-
trix of order n. His result applies to complex Hadamard matrices, of which
{±1} Hadamard matrices are a special case. More precisely, if d + m = n,
0 < d < n, then for each minor of order m and determinant µ there corre-
sponds a minor of order d and determinant ±nn/2−dµ. Only a few special
cases (for small d or m) were known before Szöllősi’s result (see for ex-
ample [11, 25, 35, 37]), although we note that Szöllősi’s Lemma 5.7 follows
easily from Jacobi’s determinant identity [18]. We use the following corollary
of Szöllősi’s theorem.

Corollary 1. Suppose that a Hadamard matrix H of order n has an m×m
submatrix M , where n/2 ≤ m ≤ n. Then

| det(M)| ≤ nm−n/2D(n−m) .

Proof. By Szöllősi’s theorem, | det(M)| = nn/2−d| det(M ′)|, where d = n−m
and M ′ is some d × d submatrix of H . Since n/2 − d = m − n/2 and
| det(M ′)| ≤ D(d) by the definition of D, the corollary follows.

The following lower bound on D(m) is given in [8, Corollary 3].

Proposition 1. Assume the Hadamard conjecture2. Then, for m ≥ 4, we
have D(m) ≥ 4mm/2−1.

2It is sufficient to assume that Hadamard matrices of order 4k exist for all positive
integers k ≤ (m+ 2)/4. This is known to be true for 4k < 668, see [21, 36].
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Suppose that a Hadamard matrixH of order n has a maxdet submatrixM
of order m. Corollary 1 gives an upper bound on | det(M)|, and Proposition 1
gives a lower bound. Theorems 1–2 show that these bounds are incompatible
for certain values of m. Theorem 1 considers the case that M is a Hadamard
matrix, and Theorem 2 considers the more general case that M is a maxdet
matrix. We have stated Theorem 2 under the assumption of the Hadamard
conjecture, but a weaker result is provable without this assumption – see
Theorem 3.

Theorem 1. Let H be a Hadamard matrix of order n having a Hadamard
submatrix M of order m < n. Then m ≤ n/2.

Proof. The theorem is trivial if m ≤ n/2, so assume that n > m > n/2.
Let d = n − m. Since M exists and | det(M)| = mm/2, Corollary 1 and
Hadamard’s bound for D(d) give

mm/2 ≤ nm−n/2dd/2 . (1)

Squaring both sides of (1), we have (m/n)m ≤ (d/n)d. Taking n-th roots
and defining x := m/n ∈ (0, 1), we see that

xx ≤ (1− x)1−x.

This inequality is equivalent to f(x) ≤ 0, where f : [0, 1] → R is defined by

f(x) =

{

x ln x− (1− x) ln(1− x) if x ∈ (0, 1),

0 otherwise.

It is easy to verify that f(1/2) = f(1) = 0, f ′(x) = −2− ln x− ln(1−x), and

f ′′(x) =
1− 2x

x(1− x)
< 0 in (1/2, 1).

Thus, f(x) > 0 in (1/2, 1), so we must have x ≤ 1/2 or x = 1. The case
x = 1 is ruled out because it implies that m = n, contrary to the assumption
that m < n. Thus x ≤ 1/2, which implies that m ≤ n/2.

Theorem 2. Assume the Hadamard conjecture. Let H be a Hadamard
matrix of order n having a maxdet submatrix M of order m < n. Then
m ≤ (n/2 + 5 lnn) or m ≥ n− 2.
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Proof. The result is trivial if m ≤ n/2, and n/2 + 5 lnn > n− 3 for n ≤ 28,
so we can assume that m > n/2 > 14. By Proposition 1 and Corollary 1, we
have

mm/2

(

4

m

)

≤ nm−n/2dd/2, (2)

where d = n−m. We prefer to use the slightly weaker inequality

mm/2

(

4

n

)

≤ nm−n/2dd/2. (3)

Taking logarithms, and defining x := m/n and f as in the proof of Theorem 1,
we obtain

f(x) ≤ 2 ln(n/4)

n
. (4)

The right side of this inequality is positive (since n > 4) and independent
of x (this is why we used (3) instead of (2)). We showed in the proof of
Theorem 1 that f(1/2) = f(1) = 0 and f ′′(x) < 0 on (1/2, 1). Let

xmax = (1 +
√

1− 4/e2)/2 ≈ 0.84

be the (unique) point in (1/2, 1) at which f ′(x) vanishes. Thus f(x) attains
its maximum value at x = xmax. Since 2 ln(n/4)/n < 0.14 < f(xmax) ≈ 0.15
for n > 28, the inequality (4) is not satisfied for all x ∈ (1/2, 1), and there
is a unique interval (x0, x1) ⊆ (1/2, 1) on which f(x) > ln(n/4)/n, with
xmax ∈ (x0, x1). (Here x0 and x1 depend on n but not on m.) It follows that
there can not exist a maxdet submatrix of order m with x0 < m/n < x1.

To locate x1 we consider the case d = n−m = 3. The inequality (3) gives
(

n− 3

n

)n−3

≤ 27

16n
, (5)

but the left side of this inequality is bounded away from zero as n → ∞,
whereas the right side tends to zero. Thus, the inequality can not hold for
large n. In fact, a computation shows that (5) can only hold for n < 29.
Thus, for n ≥ 29 an interval (x0, x1) as above exists, with x1 > 1 − 3/n, so
m = n− 3 is not a possible order of a maxdet submatrix M .

We now show that nx0 ≤ n/2+5 lnn. Define δ := m−ν. Thus m = ν+δ,
d = ν − δ, and squaring the inequality (3) gives

(ν + δ)ν+δ

(

2

ν

)2

≤ (2ν)2δ(ν − δ)ν−δ ,
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or equivalently
(

ν + δ

ν − δ

)ν

≤
(ν

2

)2
(

4ν2

ν2 − δ2

)δ

. (6)

Write z := δ/ν = 2x− 1. We can assume that

0 < z < zmax = 2xmax − 1 =
√

1− 4/e2 ≈ 0.68 .

Taking logarithms in (6) gives

δ

z
ln

(

1 + z

1− z

)

≤ δ(ln 4− ln(1− z2)) + 2 ln(ν/2). (7)

Collecting the terms involving δ gives

δ(2− ln 4− ε(z)) ≤ 2 ln(ν/2),

where

ε(z) = 2− 1

z
ln

(

1 + z

1− z

)

− ln(1− z2) =
∞
∑

k=1

z2k

k(2k + 1)

is monotonic increasing on [0, zmax], so

ε(z) ≤ ε(zmax) < 0.1803,

and thus 2− ln 4− ε(z) > 0.4334 for z ∈ (0, zmax). It follows that

δ <
2 ln(ν/2)

0.4334
< 5 lnn.

Remark 1. We do not expect the values m = n− 1 or m = n− 2 to occur
for n > 4. They have to be included as possibilities simply because the
lower bound on D(n) given by Proposition 1 is too weak to exclude them.
It is possible to have m > n/2, for example a maxdet submatrix of order
m = n/2 + 1 occurs in Hadamard matrices of orders n = 4 and n = 12.

We can prove a result similar to, but weaker than, Theorem 2 without
assuming the Hadamard conjecture. Let the prime gap function λ(n) be the
maximum gap between consecutive primes (pi, pi+1) with pi ≤ n. Then we
have:
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Theorem 3. Let H be a Hadamard matrix of order n ≥ 4 having a maxdet
submatrix M of order m < n, and let λ(n) be the prime gap function.
Then there exist positive constants c1, c2 such that m ≤ n/2 + c1λ(n) lnn
or m ≥ n− c2λ(n).

Sketch of proof. The proof is similar to that of Theorem 2, but uses Theo-
rem 1 and Corollary 1 of [8] in place of Proposition 1. Thus (3) is replaced
by

mm/2

(

4

ne

)λ(n/2)/2

≤ nm−n/2dd/2,

and (4) by

f(x) ≤ λ(n/2)
ln(ne/4)

n
.

The remainder of the proof follows that of Theorem 2, except that some
of the explicit constants have to be replaced by O(λ(n/2)) terms, and we
have to assume that n is sufficiently large, say n ≥ n0. At the end, we can
increase c1 or c2 if necessary to ensure that n/2 + c1λ(n) lnn > n − c2λ(n)
for 4 ≤ n < n0.

Remark 2. By a result of Baker, Harman and Pintz [2], λ(n) = O(n21/40),
so the excluded interval in Theorem 3 has length ∼ n/2.

3 Sequences related to minors

In this section we define two sequences related to the minors of maxdet
matrices, and give the first 21 terms in each sequence [31].

For the convenience of the reader, Tables 1–2 give some data taken from
Orrick and Solomon [32], where references to the original sources may be
found. Table 1 gives the spectrum of possible (absolute values of) deter-
minants of {±1}-matrices of order n ≤ 11, normalised by the usual fac-
tor 2n−1. In this and other tables, the notation “a..b” is a shorthand for
“{x ∈ N : a ≤ x ≤ b}”. Table 2 gives ∆(n) := D(n)/2n−1 for n ≤ 21.

We are interested in when the full spectrum of possible minor values
occurs in the minors of maxdet matrices of given order n. In the following
definitions, N denotes the positive integers.
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n Spectrum {| det(A)|/2n−1}
1 {1}
2 {0, 1}
3 {0, 1}
4 {0..2}
5 {0..3}
6 {0..5}
7 {0..9}
8 {0..18, 20, 24, 32}
9 {0..40, 42, 44, 45, 48, 56}

{0..102, 104, 105, 108, 110, 112,
10 116, 117, 120, 125, 128, 144}

{0..268, 270..276, 278..280, 282..286,
11 288, 291, 294..297, 304, 312, 315, 320}

Table 1: Spectrum of {±1}-matrices of order n ≤ 11,
from Orrick and Solomon [32]; for n = 13 see [7].

Definition 1. The full-spectrum threshold of an n × n {±1} matrix A is
the maximum mf ≤ n such that the full spectrum of possible values occurs
for the minors of order mf of A.

Definition 2. The full-spectrum threshold mf : N → N is the maximum of
the full-spectrum threshold of A over all maxdet matrices A of order n.

We write mf (A) or mf(n) to denote the full-spectrum thresholds of Def-
initions 1 or 2 respectively; which is meant should be clear from the context.
The values of mf (n) for 1 ≤ n ≤ 21 are given in Table 3. We note that
the full-spectrum threshold mf (A) does depend on the HT-equivalence class
of A. For example, the four HT-equivalence classes for order 16 give four
different values mf ∈ {5, 6, 7, 8}, see Tables 23–26.

For the reasons mentioned in §1, we are also interested in the largest
order of a maxdet matrix contained as a proper submatrix of a given maxdet
matrix. We make some definitions analogous to Definitions 1–2.

Definition 3. The complementary depth of an n× n {±1} matrix A is the
maximum md < n such that a maxdet matrix of order md occurs as a proper
submatrix of A, or 0 if n = 1. The depth of A is d(A) := n−md(A).

9



n ∆(n) n ∆(n) n ∆(n) n ∆(n)
– – 1 1 2 1 3 1
4 2 5 3 6 5 7 9
8 4× 23 9 7× 23 10 18× 23 11 40× 23

12 6× 35 13 15× 35 14 39× 35 15 105× 35

16 8× 47 17 20× 47 18 68× 47 19 833× 46

20 10× 59 21 29× 59 – – – –

Table 2: Maximal determinants ∆(n) = D(n)/2n−1, n ≤ 21,
from Orrick and Solomon [32].

Definition 4. The complementary depth md : N → Z is the maximum of
the complementary depth of A over all maxdet matrices A of order n. The
depth d : N → Z is defined by d(n) := n−md(n).

We write d(A) or d(n) for the depths of Definitions 3 or 4 respectively;
similarly for md(A) and md(n). Clearly d(A) depends on the HT-equivalence
class of A – for example, see Tables 30–32 for the three HT-equivalence classes
of order 18 with depths 7, 7 and 10. From Definition 4, d(n) is the minimum
of d(A) over all maxdet matrices A of order n, so d(18) = 7. Computed
values of d(n), md(n) and mf (n) for 1 ≤ n ≤ 21 are given in Table 3. It is
clear from the definitions that mf(n) ≤ md(n) for n > 1.

n 1 2 3 4 5 6 7 8 9 10 11 12
d 1 1 1 1 1 1 1 4 1 2 3 5
md 0 1 2 3 4 5 6 4 8 8 8 7
mf 1 1 2 2 3 4 6 4 6 6 7 6

n 13 14 15 16 17 18 19 20 21
d 6 7 8 8 1 7 10 10 10
md 7 7 7 8 16 11 9 10 11
mf 7 7 7 8 8 8 9 8 10

Table 3: Depths d(n) of largest maxdet proper
submatrices, complementary depth md(n) = n− d(n),
and full-spectrum threshold mf (n); see Definitions 2–4.

If n ≡ 0 (mod 8) then d(n) = n/2 in the range of our computations. If
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n ≡ 4 (mod 8) then both d(n) = n/2 (for n = 20) and d(n) = n/2 − 1 (for
n = 4, 12) are possible. We see from Table 3 that the computed values all
satisfy d(n) ≤ (n + 1)/2. It is interesting that the value d = 1 occurs for
n ≤ 7, n = 9 and n = 17 (contrary to the remark of Schmidt quoted in §1).

4 Further results and observations on minors

In Tables 6–43, which may be found in the Appendix at the end of the
paper, we give computational results on the minors of maxdet matrices of
order n ≤ 21. Here we make some empirical observations on the results and
mention a fact (Proposition 3) that was suggested by them.

Let k = ⌊n/4⌋. Factors of the form k2k, k2k−1, . . . , k2, k are present as
we descend through the minors of maxdet matrices of even order n. For
Hadamard matrices this is an easy consequence of the Hadamard bound
nn/2 and Szöllősi’s theorem, but for n ≡ 2 (mod 4) we do not have a sim-
ple explanation. Factors of the form k2k−1, k2k−2, . . . , k are present in the
minors of maxdet matrices with order n ≡ 1 (mod 4), and factors of the
form k2k−2, k2k−3, . . . , k are present if n ≡ 3 (mod 4). It is an open ques-
tion whether this behaviour persists for n > 21. The observed divisibility
properties are related to the structure of the Gram matrices ATA of maxdet
matrices A, but in general this structure is unknown. For a summary of what
is currently known, see [32].

The presence of high powers of k = ⌊n/4⌋ in the minors of order m,
and high powers of a possibly different integer k′ = ⌊m/4⌋ in the maximal
determinants of order m, gives one explanation of why certain minors can
not meet the maximal determinant for that order.3 For example, Table 19
shows that a Hadamard matrix of order n = 12 has minors of order 11 with
scaled value 35, but ∆(11) = 5 × 26, which contains a high power of 2, not
of 3.

Proposition 2 is from [9, Theorem 1]. The upper bound is sharp because
it is attained for Hadamard matrices. For the case that A is a Hadamard
matrix, the result is due to de Launey and Levin [28, Proposition 2].

3Of course, this begs the question of why the maximal determinants are divisible by a
high power of k′ – we do not have a convincing explanation for this unless the order m is
such that the Hadamard, Barba [3], or Ehlich-Wojtas [13, 44] bound is achieved, in which
case it follows from the form of the relevant bound, see Osborn [33][pp. 98–99].
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Proposition 2. Let A be a square {±1} matrix of order n ≥ m > 1. Then
the mean value E(det(M)2) of det(M)2, taken over all m × m submatrices
M of A, satisfies

E(det(M)2) ≤ nm
/

(

n

m

)

. (8)

Moreover, equality holds in (8) iff A is a Hadamard matrix.

Remark 3. For random {±1} matrices M of order m, the expected value
of det(M)2 is m!, by a result of Turán [41]. Proposition 2 implies that
E(det(M)2) ≥ m! for the order-m submatrices M of a Hadamard matrix,
with strict inequality if m > 1.

As a check on the correctness of our programs, we computed the mean
value of det(M)2 for submatrices of order m of maxdet matrices of order
n ≤ 21, and 2 ≤ m ≤ n. The results agreed with the predictions of Proposi-
tion 2. The following conjecture is consistent with our computations.

Conjecture 1. Let A be a maxdet matrix. Then the mean value E(det(M)2)
of det(M)2 taken over all m×m submatrices M of A satisfies the inequality

E(det(M)2) ≥ m! (9)

Moreover, the inequality (9) is strict for m > 1.

Table 4 gives some data for orders 13 ≤ n ≤ 15 to support Conjecture 1.
In the table, RL(m,n) is the ratio of E(det(M)2), for submatrices M of
order m of a maxdet matrix of order n, to the conjectured lower bound m!.
Similarly, RH(m,n) is the ratio of E(det(M)2) to the upper bound (8). We
see that RL(m,n) > 1 for 2 ≤ m ≤ n (as conjectured), and the lower bound
is reasonably good for m ≤ 5, but deteriorates for larger m. The upper
bound is within a factor of three of E((detM)2) for all m. A similar pattern
occurs for all orders n ≤ 21, except that RH(m,n) = 1 if n is a Hadamard
order, in accordance with Proposition 2.

The frequencies of occurrence of small singular submatrices of Hadamard
matrices are given in the following Proposition [9, Corollary 4], which was
suggested by the computational results before we found a proof. The case
m = 2 is implicit in a paper of Little and Thuente [29, pg. 254].
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m RL(m, 13) RH(m, 13) RL(m, 14) RH(m, 14) RL(m, 15) RH(m, 15)
2 1.077 0.994 1.067 0.991 1.059 0.988
3 1.259 0.983 1.222 0.973 1.195 0.966
4 1.611 0.968 1.516 0.948 1.445 0.935
5 2.283 0.949 2.054 0.917 1.890 0.897
6 3.625 0.928 3.072 0.882 2.694 0.852
7 6.560 0.904 5.139 0.843 4.233 0.804
8 13.81 0.879 9.773 0.802 7.427 0.752
9 34.80 0.851 21.58 0.759 14.79 0.699
10 109.4 0.823 56.93 0.715 34.14 0.645
11 457.4 0.795 187.0 0.671 94.00 0.592
12 2864 0.765 815.6 0.627 321.7 0.540
13 35796 0.736 5318 0.584 1461 0.491
14 69137 0.542 9902 0.444
15 133638 0.399

Table 4: Ratio of E(det(M)2) to lower and upper bounds, 13 ≤ n ≤ 15.
For definitions of RL(m,n) and RH(m,n), see text.

Proposition 3. Let H be a Hadamard matrix of order n, and let Z(m,H)
be the number of minors of order m of H that vanish. Then

Z(2, H) = n2(n− 1)(n− 2)/8, and (10)

Z(3, H) = n2(n− 1)(n− 2)(n− 4)(5n− 4)/288. (11)

Remark 4. There is no analogue of Proposition 3 for minors of order m > 3,
because the value of Z(m,H) can depend on the HT-equivalence class of H ,
so is not given by a polynomial in m unless m ≤ 3. For example, the
four HT-equivalence classes of Hadamard matrices of order 16 have 1717520,
1712912, 1710608, and 1709456 vanishing minors of order 4. For maxdet
matrices of order n ≡ 3 (mod 4), we sometimes find different numbers of
vanishing minors of order 2. For example, if n = 11, we get 1391, 1389, and
1401 vanishing minors for the three HT-equivalence classes. The right-hand-
side of eqn. (10), which by [9, Corollary 2] is a lower bound on the number
of vanishing minors in this non-Hadamard case, gives 1362 (rounded up).

13



Finally, we briefly consider the frequencies (or multiplicities) with which
the different values of | det(M)/2n−1| occur for minors of order m of a maxdet
matrix of order n. In Table 5 we give the results of computations for m = 7,
n = 15, which gives the typical behaviour that we have observed.4 The sec-
ond column gives the observed multiplicity of a minor with | det(M)|/2n−1

equal to the integer in the first column. The third column gives the multiplic-

ities observed when taking a random sample of
(

15
7

)2
= 41409225 uniformly

distributed {±1}-matrices of order m (we call this the random model). It
is clear from the table that the actual distribution is nothing like the distri-
bution for the random model. A χ2 test gives an absurdly small probability
< 10−1010 that the two samples were drawn from the same distribution. Sim-
ilar behaviour occurs for other values of m ≥ 2. For example, when m = 2
we find 5187 zero minors and 5838 nonzero minors, but for random matrices
of order 2 we expect zero and nonzero values to occur with equal probability.

multiplicity multiplicity in| det(M)|/2n−1| of minors random model ratio

0 12857784 24030613 0.54
1 8402100 11140444 0.75
2 10831128 4662108 2.32
3 3483909 924336 3.77
4 3935280 504938 7.79
5 622842 76496 8.14
6 927162 55811 16.61
7 129576 7769 16.68
8 201900 6102 33.09
9 17544 608 28.86

total 41409225 41409225

Table 5: Comparison of observed multiplicities of minors of
order 7 in a maxdet matrix of order 15 with a random model

Table 5 shows that the normalised minors are biased towards even val-
ues. For the random model, this bias can be explained by reducing to the
{0, 1} case and considering the evaluation of the determinant in Z/2Z. Then,
for large n, we expect even values to occur about 71% of the time.5 This

4Data for other values of m and n may be found at [4].
5The precise constant in the limit as n → ∞ is 1−∏

k≥1
(1− 2−k), see [6, 14, 27].

14



prediction is in agreement with the data for the random model (the third
column). For the second column we find that even values occur about 69%
of the time, which is close to the prediction for the random model. Thus,
although the actual distribution differs considerably from that of the random
model, the bias towards even values persists. In comparison with the random
model, the extreme bias in favour of even values in the tail of the distribution
compensates for a bias against zero minors.

5 Algorithms for computing the set of minors

Recall that Sk(A) is the set of k×k submatrices of an n×n {±1}-matrix A,
where 0 < k ≤ n. In this section we describe algorithms for enumerating all
the minors of A. Our application is to maxdet matrices, but the algorithms
apply to all square {±1}-matrices A.

In our enumeration we consider only the absolute values of minors, nor-
malised by the factor 2n−1 which always divides the determinant of an n×n
{±1}-matrix, so the set of minors of A is defined to be the set

S(A) = ∪n
k=1{| det(M)|/2n−1 : M ∈ Sk(A)}.

There are
(

n
k

)

possible choices of rows and
(

n
k

)

possible choices of columns
for a minor of order k, so altogether a total of

Tn :=
n

∑

k=1

(

n

k

)2

=

(

2n

n

)

− 1 ∼ 4n√
πn

possibilities to consider when finding the set S(A) for an n × n matrix A.
In this section we consider four possible algorithms (of which we used two)
for finding S(A). Their running times all involve the factor 4n, so none of
them is practical for n much larger than 20, but they differ significantly in
the factor multiplying 4n and in their space requirements.

Each algorithm has two variants: the first just determines the set S(A)
of minors; the second also counts the multiplicity of each minor, that is, how
often a given value d ∈ S(A) occurs. We describe the first variant of each
algorithm, and briefly mention the changes required for the second variant.

In the descriptions of the algorithms we explain how to compute the
complete set S(A); it should be clear how to compute the subset of S(A)
corresponding to the minors of a given order k.
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Algorithm A

Algorithm A simply considers, for each k in {1, 2, . . . , n}, the set of all k× k
submatrices ofA, and evaluates the determinant of each such submatrixM by
Gaussian elimination with partial pivoting, using floating-point arithmetic.
The computed determinant is scaled by division by 2n−1 and rounded to the
nearest integer.

Clearly there is a danger that rounding errors during the process of Gaus-
sian elimination could lead to an incorrectly rounded integer result. However,
our experiments, using IEEE standard 64-bit floating-point arithmetic [1],
showed that this is not a problem for the values of n that we considered
(n ≤ 25). Gaussian elimination with partial pivoting is numerically sta-
ble [16, 43], and the maximum scaled determinant of a 25× 25 {±1}-matrix
is 42×611 = 15237476352, meeting the Barba bound [3, 32], so only requires
34 bits of precision, significantly fewer than the 53 bits provided by IEEE
standard arithmetic. As a precaution, our implementation prints a warning
and halts if the fractional part of a scaled determinant exceeds 1/8; this never
occurred for n ≤ 25.

Gaussian elimination requires O(k3) arithmetic operations to evaluate the
determinant of a k × k matrix. As is traditional in numerical analysis, we
count multiplications/divisions but ignore additions/subtractions. With this
convention, Gaussian elimination requires k3/3+O(k2) operations. Thus the
total cost is

WA ∼
n

∑

k=1

(

n

k

)2
k3

3
∼ 4nn5/2

24
√
π
.

The storage requirements of Algorithm A are minimal, apart from the space
required to store the results, that is the set S(A) of minors and (if required)
their multiplicities. This is common to all the algorithms considered – they
all need space to store their results.

The set S(A) can be represented using one bit for each possible value
| det |/2n−1. From the Hadamard bound, this requires at most 21−nnn/2 + 1
bits. For example, if n = 20, it requires 19531251 bits (2.33 MB). For
n = 24 it requires 519 MB, which is still feasible. For the variant that counts
multiplicities, each bit needs to be replaced by an integer word (say 32 bits or
4 bytes), so the storage required would be acceptable for n = 20 (75 MB) but
excessive for n = 24 (16 GB), since the computers available to us typically
have memories of 1 to 4 GB.
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Fortunately, a much more economical representation of S(A) is usually
possible, because not all minors in the range [0, ⌊21−nnn/2⌋] actually occur.
The set S(A) is usually quite sparse, especially when the order n of A is
divisible by 4. For example, with Hadamard matrices of order 16, we have
#S(A) < 100 (see §4). Thus, instead of using 131073 bits to represent S(A),
we can use a hash table with say 200 words [22]. With such an implementa-
tion, the storage requirements are moderate for n ≤ 25.

Algorithm B

Algorithm B is similar to Algorithm A, but uses a rank-1 updating formula
to update the inverse and determinant of each k× k submatrix B of A if we
already know the inverse and determinant of a submatrix that differs from
B in only one row or column. The inverse updating formula

(B + uvT )−1 = B−1 − (1 + vTB−1u)−1B−1uvTB−1

is known at the Sherman-Morrison formula [38] – the determinant updating
formula

det(B + uvT ) = det(B)(1 + vTB−1u)

seems to be known only as a “matrix determinant lemma”.
Since the updating steps require ∼ k2 operations, the complexity is

WB ∼ 4nn3/2/
√
π ,

so WA/WB ∼ n/24.
We did not use Algorithm B because the constant factors involved make

it slower than Algorithm A for n ≤ 20, and because it is difficult to guarantee
a correctly rounded integer result due to possible numerical instability. Also,
even with exact arithmetic, we would have to use a different method whenever
B is singular.

Algorithm C

Algorithm C uses integer arithmetic and evaluates each k × k determinant
using the method (attributed to Laplace) of expansion by minors, see for
example [30, Chapter 4]. To compute a k × k minor det(B), we need to
know the (k − 1) × (k − 1) minors formed by deleting the first row and
an arbitrary column of B. If these minors have been saved from a previous
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computation, then the work involved in computing one minor | det(B)| is only
k multiplications (by ±1) and k − 1 integer additions, plus any overheads
involved in retrieving the previously stored values. If we assume, for purposes
of comparison with Algorithms A–B, that the work involved amounts to k
operations, then the total cost is

WC =

n
∑

k=1

(

n

k

)2

k ∼ 4nn1/2

2
√
π

,

giving WA/WC ∼ n2/12.
Unfortunately, this algorithm has a potentially large memory require-

ment. If we compute the minors of order k in increasing order k = 1, 2, . . . , n,

then to compute the minors of order k we need all
(

n
k−1

)2
minors of order

k − 1. In the worst case, when k ≈ n/2, the memory required to store the
minors of order k−1 and k is about 4n+1/(πn) words, which is too large to be
practical for the values of n that we wish to consider. More memory-efficient
implementations are possible, but complicated. For this reason we discarded
Algorithm C and implemented a slightly slower, but much simpler algorithm,
Algorithm D.

Algorithm D

The idea of Algorithm D is the same as that of Algorithm C. However, when
computing the minors of order k of an n×n matrix A, the outer loop runs over
all

(

n
k

)

combinations of k rows of A. Having selected these k rows, forming a
k×n matrix B, we now compute all minors of order k of B. At the j-th step
we compute all minors of order j in the last j rows of B. Thus the number
of operations (counting as for Algorithm C) to compute the minors of order
k of B is

k
∑

j=1

(

n

j

)

j

and the space requirement is at most 2
(

n
⌊n/2⌋

)

∼ 2n+
3

2/
√
πn words, much less

than for Algorithm C. The overall operation count is

n
∑

k=1

(

n

k

) k
∑

j=1

(

n

j

)

j = 4n−1n.
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This is larger than the operation count for Algorithm C by a factor
∼ √

πn/2, but smaller than the operation count for Algorithm A by a factor
∼ n3/2/(6

√
π).

If a parallel implementation is desired, then it is easy to parallelise over
the outer loop – different processors can work on different combinations of k
rows of A in parallel.

We ran both Algorithms A and D on small cases to check the correctness
of our implementations. For the large cases we used mainly Algorithm D,
which is much faster than Algorithm A for the most time-consuming cases
(k ≈ n/2), as expected from the operation counts given above.
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±1-matrix is singular, J. AMS 8 (1995), 223–240.

20



[20] H. Kharaghani and W. Orrick, D-optimal designs, in [10, Chapter V.3,
295–297].

[21] H. Kharaghani and B. Tayfeh-Rezaie, A Hadamard matrix of order 428,
Journal of Combinatorial Designs 13 (2005), 435–440.

[22] D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting
and Searching, second edition, Addison-Wesley, Reading, Mass., 1998.

[23] C. Koukouvinos, E. Lappas, M. Mitrouli and J. Seberry, An algorithm
to find formulæ and values of minors for Hadamard matrices: II, Linear
Algebra and Applications 371 (2003), 111–124.

[24] C. Koukouvinos, M. Mitrouli and J. Seberry, Bounds on the maximum
determinant for (1,−1) matrices, Bulletin of the Institute of Combina-
torics and its Applications 29 (2000), 39–48.

[25] C. Koukouvinos, M. Mitrouli and J. Seberry, An algorithm to find for-
mulæ and values of minors for Hadamard matrices, Linear Algebra and
Applications 330 (2001), 129–147.

[26] C. Kravvaritis and M. Mitrouli, A technique for computing minors of
binary Hadamard matrices and application to the growth problem, Elec-
tronic Transactions on Numerical Analysis, 31 (2008), 49–67.
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(Concerned with sequences A215644,A215645,A003432,A003433.)

Appendix: Tables of minors for orders ≤ 21

In Tables 6–43, k = ⌊n/4⌋, where n is the order of the {±1}-matrix. The first
column gives the order m of the minor, 1 ≤ m ≤ n. The second column gives
the set of absolute values of the minors of order m, divided by the known
factor 2m−1. In this column the notation “{a, b, . . .}× kα” is a shorthand for
“{akα, bkα, . . .}”, etc. For n ∈ {19, 21} we have abbreviated the entry in the
second column by giving only the minimum and maximum rather than the
complete set, using “(min,max)” instead of “{a, b, . . .}”. In such cases we
write “(a, b)× kα” instead of “(akα, bkα)”.

In the third column we give the scaled maximum determinant ∆(m) =
D(m)/2m−1 (redundant, but included for easy comparison with the entries in
the second column). The fourth column answers whether some minor meets
the maximum possible determinant for its order (see Table 2), and the last
column answers whether the full spectrum of possible values of minors (as
given in Table 1) occurs.

If there is more than one HT-equivalence class for an order n, the classes
are listed in the same order as they are given in [32]. The information given
in Tables 6–43 is sufficient to uniquely identify each HT-equivalence class.

To avoid making this Appendix excessively long, we have omitted details
such as the frequency of occurrence of each minor value. Further information
is available on our website [4].
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Orders 1–6

m {minors} ∆(m) max? full?
1 {1} 1 yes yes

Table 6: n = 1, k = 0, mf = 1

m {minors} ∆(m) max? full?
2 {1} 1 yes no
1 {1} 1 yes yes

Table 7: n = 2, k = 0, d = 1, mf = 1

m {minors} ∆(m) max? full?
3 {1} 1 yes no
1–2 full spectrum 1 yes yes

Table 8: n = 3, k = 0, d = 1, mf = 2

m {minors} ∆(m) max? full?
4 {2} 2 yes no
3 {1} 1 yes no
1–2 full spectrum 1 yes yes

Table 9: n = 4, k = 1, d = 1, mf = 2

m {minors} ∆(m) max? full?
5 {3} 3 yes no
4 {1, 2} 2 yes no
1–3 full spectrum 1 yes yes

Table 10: n = 5, k = 1, d = 1, mf = 3

m {minors} ∆(m) max? full?
6 {5} 5 yes no
5 {1..3} 3 yes no
1–4 full spectrum ≤ 2 yes yes

Table 11: n = 6, k = 1, d = 1, mf = 4
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Orders 7–11(a)

m {minors} ∆(m) max? full?
7 {9} 9 yes no
1–6 full spectrum ≤ 5 yes yes

Table 12: n = 7, k = 1, d = 1, mf = 6

m {minors} ∆(m) max? full?
8 {2} × 24 2× 24 yes no
7 {1} × 23 9 no no
6 {0, 1} × 22 5 no no
5 {0, 1} × 21 3 no no
1–4 full spectrum ≤ 2 yes yes

Table 13: n = 8, k = 2, d = 4, mf = 4

m {minors} ∆(m) max? full?
9 {7} × 23 7× 23 yes no
8 {2, 3, 4, 6, 8} × 22 8× 22 yes no
7 {0..4} × 21 9 no no
1–6 full spectrum ≤ 5 yes yes

Table 14: n = 9, k = 2, d = 1, mf = 6

m {minors} ∆(m) max? full?
10 {9} × 24 9× 24 yes no
9 {3, 6} × 23 7× 23 no no
8 {0..5, 8} × 22 8× 22 yes no
7 {0..4} × 21 9 no no
1–6 full spectrum ≤ 5 yes yes

Table 15: n = 10, k = 2, d = 2, mf = 6

m {minors} ∆(m) max? full?
11 {20} × 24 20× 24 yes no
10 {0, 2..8, 10, 12, 16} × 23 18× 23 no no

{0, 2..4, 6, 8..10, 12..24,
9 26..33, 36, 40, 48} 56 no no

8 {0..18, 20, 24} 32 no no
1–7 full spectrum ≤ 9 yes yes

Table 16: n = 11(a), k = 2, d = 4, mf = 7
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Orders 11(b)–12

m {minors} ∆(m) max? full?
11 {20} × 24 20× 24 yes no
10 {0, 1, 4..6, 8..11, 14, 16}× 23 18× 23 no no

{0, 2..4, 6, 8..24, 26..28,
9 30..32, 36, 40, 44, 48} 56 no no

8 {0..18, 20, 24} 32 no no
1–7 full spectrum ≤ 9 yes yes

Table 17: n = 11(b), k = 2, d = 4, mf = 7

m {minors} ∆(m) max? full?
11 {20} × 24 20× 24 yes no
10 {4, 6, 8, 12, 16} × 23 18× 23 no no
9 {0..4, 6, 8, 12} × 22 14× 22 no no
8 {0..8, 12, 16} × 21 16× 21 yes no
7 {0..8} 9 no no
1–6 full spectrum ≤ 5 yes yes

Table 18: n = 11(c), k = 2, d = 3, mf = 6

m {minors} ∆(m) max? full?
12 {2} × 36 2× 36 yes no
11 {1} × 35 5× 26 no no
10 {0, 1} × 34 32 × 24 no no
9 {0, 1} × 33 7× 23 no no
8 {0..2} × 32 25 no no
7 {0..3} × 31 32 yes no
1–6 full spectrum ≤ 5 yes yes

Table 19: n = 12, k = 3, d = 5, mf = 6
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Orders 13–15

m {minors} ∆(m) max? full?
13 {5} × 36 5× 36 yes no
12 {2, 3} × 35 6× 35 no no
11 {0..3} × 34 5× 26 no no
10 {0..4} × 33 32 × 24 no no
9 {0..5} × 32 7× 23 no no
8 {0..6} × 31 25 no no
1–7 full spectrum ≤ 9 yes yes

Table 20: n = 13, k = 3, d = 6, mf = 7

m {minors} ∆(m) max? full?
14 {13} × 36 13× 36 yes no
13 {4, 6, 7, 9} × 35 15× 35 no no
12 {0..7, 9, 10} × 34 18× 34 no no
11 {0..9, 11} × 33 5× 26 no no
10 {0..13} × 32 32 × 24 no no
9 {0..15} × 31 7× 23 no no
8 {0..18, 20} 25 no no
1–7 full spectrum ≤ 9 yes yes

Table 21: n = 14, k = 3, d = 7, mf = 7

m {minors} ∆(m) max? full?
15 {35} × 36 35× 36 yes no
14 {7, 8, 12, 14, 17, 18, 21, 23, 27}× 35 39× 35 no no
13 {0..21, 23, 24, 26, 27}× 34 45× 34 no no
12 {0..22, 24..27} × 33 54× 33 no no
11 {0..29, 31, 35} × 32 5× 26 no no
10 {0..36, 39, 40} × 31 32 × 24 no no
9 {0..36, 38..40, 42, 44, 45} 56 no no
8 {0..18, 20, 24} 32 no no
1–7 full spectrum ≤ 9 yes yes

Table 22: n = 15, k = 3, d = 8, mf = 7
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Order 16

m {minors} ∆(m) max? full?
16 {2} × 48 2× 48 yes no
15 {1} × 47 35× 36 no no
14 {0, 1} × 46 13× 36 no no
13 {0, 1} × 45 5× 36 no no
12 {0..2} × 44 2× 36 no no
11 {0..3} × 43 5× 26 no no
10 {0..2} × 25 9× 24 no no
9 {0..2} × 24 7× 23 no no
8 {0..4} × 23 32 yes no
7 {0..2} × 22 9 no no
6 {0..2} × 21 5 no no
1–5 full spectrum ≤ 3 yes yes

Table 23: n = 16(a), k = 4, d = 8, mf = 5

m {minors} ∆(m) max? full?
11–16 as for 16(a) – – no
10 {0..5} × 42 9× 42 no no
9 {0..4} × 23 7× 23 no no
8 {0..6, 8} × 22 32 yes no
7 {0..4} × 21 9 no no
1–6 full spectrum ≤ 5 yes yes

Table 24: n = 16(b), k = 4, d = 8, mf = 6

m {minors} ∆(m) max? full?
10–16 as for 16(b) – – no
9 {0..9} × 41 14× 41 no no
8 {0..10, 12, 16} × 21 16× 21 yes no
1–7 full spectrum ≤ 9 yes yes

Table 25: n = 16(c), k = 4, d = 8, mf = 7

m {minors} ∆(m) max? full?
9–16 as for 16(c) – – no
1–8 full spectrum ≤ 32 yes yes

Table 26: n = 16(d), k = 4, d = 8, mf = 8
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Order 17

m {minors} ∆(m) max? full?
17 {5} × 48 5× 48 yes no
16 {2, 3, 8} × 47 8× 47 yes no
15 {0..4} × 46 35× 36 no no
14 {0..4} × 45 13× 36 no no
13 {0..7} × 44 5× 36 no no
12 {0..9} × 43 2× 36 no no
11 {0..13, 15} × 42 20× 42 no no
10 {0..21, 24, 27} × 41 36× 41 no no
9 {0..40, 42, 44, 45, 48} 56 no no
1–8 full spectrum ≤ 32 yes yes

Table 27: n = 17(a), k = 4, d = 1, mf = 8

m {minors} ∆(m) max? full?
10–17 as for 17(a) – – no
9 {0..22, 24} × 21 28× 21 no no
1–8 full spectrum ≤ 32 yes yes

Table 28: n = 17(b), k = 4, d = 1, mf = 8

m {minors} ∆(m) max? full?
11–17 as for 17(a) – – no
10 {0..10, 12} × 23 18× 23 no no
9 {0..12} × 22 14× 22 no no
8 {0..10, 12, 16} × 21 16× 21 yes no
1–7 full spectrum ≤ 9 yes yes

Table 29: n = 17(c), k = 4, d = 1, mf = 7

29



Order 18

m {minors} ∆(m) max? full?
18 {17} × 48 17× 48 yes no
17 {6, 7, 10, 11} × 47 20× 47 no no
16 {0..8, 10, 11, 13} × 46 32× 46 no no
15 {0..16} × 45 35× 36 no no
14 {0..20} × 44 13× 36 no no
13 {0..24, 26, 28} × 43 5× 36 no no
12 {0..38, 40, 41, 44, 52}× 42 2× 36 no no
11 {0..62, 64, 68, 80} × 41 80× 41 yes no

{0..94, 96..98, 100..102,
10 104, 108, 112, 128} 144 no no

9 {0..40, 42, 44, 45, 48} 56 no no
1–8 full spectrum ≤ 32 yes yes

Table 30: n = 18(a), k = 4, d = 7, mf = 8

m {minors} ∆(m) max? full?
14–18 as for 18(a) – – no
13 {0..24, 26, 28, 32} × 43 5× 36 no no
12 {0..38, 40, 41, 44, 64}× 42 2× 36 no no
11 {0..62, 64, 68, 80} × 41 80× 41 yes no
10 {0..52, 54, 56, 64} × 21 72× 21 no no
9 {0..40, 42, 44, 45, 48} 56 no no
1–8 full spectrum ≤ 32 yes yes

Table 31: n = 18(b), k = 4, d = 7, mf = 8

m {minors} ∆(m) max? full?
14–18 as for 18(a) – – no
13 {0..24, 32} × 43 5× 36 no no
12 {0..37, 40, 64} × 42 2× 36 no no
11 {0..32} × 23 40× 23 no no
10 {0..28, 32} × 22 36× 22 no no
9 {0..22, 24} × 21 28× 21 no no
1–8 full spectrum ≤ 32 yes yes

Table 32: n = 18(c), k = 4, d = 10, mf = 8
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Order 19

m (min, max) |minor| ∆(m) max? full?
19 (833, 833)× 46 833× 46 yes no
18 (140, 784)× 45 1088× 45 no no
17 (0, 672)× 44 1280× 44 no no
16 (0, 676)× 43 2048× 43 no no
15 (0, 1050)× 42 35× 36 no no
14 (0, 1470)× 41 13× 36 no no
13 (0, 1904) 3645 no no
12 (0, 756) 1458 no no
11 (0, 312) 320 no no
10 (0, 128) 144 no no
1–9 full spectrum ≤ 56 yes yes

Table 33: n = 19(a), k = 4, d = 10, mf = 9

m (min, max) |minor| ∆(m) max? full?
19 (833, 833)× 46 833× 46 yes no
18 (168, 616)× 45 1088× 45 no no
17 (0, 672)× 44 1280× 44 no no
16 (0, 740)× 43 2048× 43 no no
15 (0, 1024)× 42 35× 36 no no
14 (0, 1536)× 41 13× 36 no no
13 (0, 2048) 3645 no no
12 (0, 1024) 1458 no no
11 (0, 288) 320 no no
10 (0, 128) 144 no no
1–9 full spectrum ≤ 56 yes yes

Table 34: n = 19(b), k = 4, d = 10, mf = 9

m (min, max) |minor| ∆(m) max? full?
14–19 as for 19(b) – – –
13 (0, 2560) 3645 no no
1–12 as for 19(b) – – –

Table 35: n = 19(c), k = 4, d = 10, mf = 9
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Order 20

m {minors} ∆(m) max? full?
20 {2} × 510 2× 510 yes no
19 {1} × 59 833× 46 no no
18 {0, 1} × 58 17× 48 no no
17 {0, 1} × 57 5× 48 no no
16 {0..2} × 56 2× 48 no no
15 {0..3} × 55 35× 36 no no
14 {0..5} × 54 13× 36 no no
13 {0..9} × 53 5× 36 no no
12 {0..18, 20, 24, 32} × 52 2× 36 no no
11 {0..40, 42, 44, 48} × 51 64× 51 no no
10 {0..92, 95, 96, 100, 104, 108, 112, 125, 144} 144 yes no
9 {0..40, 42, 44, 48} 56 no no
1–8 full spectrum ≤ 32 yes yes

Table 36: n = 20(a), k = 5, d = 10, mf = 8

m {minors} ∆(m) max? full?
12–20 as for 20(a) – – no
11 {0..40, 42, 44, 45, 48}× 51 64× 51 no no

{0..90, 92, 93, 95..102, 104, 108,
10 112, 117, 120, 125, 128, 144} 144 yes no

9 {0..40, 42, 44, 45, 48} 56 no no
1–8 full spectrum ≤ 32 yes yes

Table 37: n = 20(b), k = 5, d = 10, mf = 8

m {minors} ∆(m) max? full?
11–20 as for 20(b) – – no

{0..88, 90, 92, 93, 96, 99, 100, 102,
10 104, 108, 112, 120, 125, 128, 144} 144 yes no

1–9 as for 20(b) – – –

Table 38: n = 20(c), k = 5, d = 10, mf = 8
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Order 21(a)–(b)

m (min, max) |minor| ∆(m) max? full?
21 (29, 29)× 59 29× 59 yes no
20 (10, 30)× 58 50× 58 no no
19 (0, 35)× 57 833× 46 no no
18 (0, 40)× 56 17× 48 no no
17 (0, 45)× 55 5× 48 no no
16 (0, 65)× 54 2× 48 no no
15 (0, 100)× 53 35× 36 no no
14 (0, 240)× 52 13× 36 no no
13 (0, 416)× 51 5× 36 no no
12 (0, 800) 1458 no no
11 (0, 320) 320 yes no
10 (0, 144) 144 yes no
1–9 full spectrum ≤ 56 yes yes

Table 39: n = 21(a), k = 5, d = 10, mf = 9

m (min, max) |minor| ∆(m) max? full?
15–21 as for 21(a) – – no
14 (0, 216)× 52 13× 36 no no
13 (0, 400)× 51 5× 36 no no
12 (0, 800) 1458 no no
11 (0, 320) 320 yes no
1–10 full spectrum ≤ 144 yes yes

Table 40: n = 21(b), k = 5, d = 10, mf = 10
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Order 21(c)–(e)

m (min, max) |minor| ∆(m) max? full?
15–21 as for 21(a) – – no
14 (0, 200)× 52 13× 36 no no
13 (0, 400)× 51 5× 36 no no
12 (0, 800) 1458 no no
11 (0, 304) 320 no no
10 (0, 144) 144 yes no
1–9 full spectrum ≤ 56 yes yes

Table 41: n = 21(c), k = 5, d = 11, mf = 9

m (min, max) |minor| ∆(m) max? full?
15–21 as for 21(a) – – no
14 (0, 240)× 52 13× 36 no no
13 (0, 416)× 51 5× 36 no no
12 (0, 800) 1458 no no
11 (0, 320) 320 yes no
1–10 full spectrum ≤ 144 yes yes

Table 42: n = 21(d), k = 5, d = 10, mf = 10

m (min, max) |minor| ∆(m) max? full?
15–21 as for 21(a) – – no
14 (0, 212)× 52 13× 36 no no
13 (0, 368)× 51 5× 36 no no
12 (0, 800) 1458 no no
11 (0, 288) 320 no no
10 (0, 144) 144 yes no
1–9 full spectrum ≤ 56 yes yes

Table 43: n = 21(e), k = 5, d = 11, mf = 9
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