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Abstract. We consider some of Jonathan and Peter Borweins’ contributions to
the high-precision computation of π and the elementary functions, with partic-
ular reference to their book Pi and the AGM (Wiley, 1987). Here “AGM” is the
arithmetic-geometric mean of Gauss and Legendre. Because the AGM converges
quadratically, it can be combined with fast multiplication algorithms to give fast
algorithms for the n-bit computation of π , and more generally the elementary
functions. These algorithms run in “almost linear” time O(M(n) logn), where
M(n) is the time for n-bit multiplication. We outline some of the results and al-
gorithms given in Pi and the AGM, and present some related (but new) results.
In particular, we improve the published error bounds for some quadratically and
quartically convergent algorithms for π , such as the Gauss-Legendre algorithm.
We show that an iteration of the Borwein-Borwein quartic algorithm for π is
equivalent to two iterations of the Gauss-Legendre quadratic algorithm for π , in
the sense that they produce exactly the same sequence of approximations to π if
performed using exact arithmetic.

Keywords: arithmetic-geometric mean, Borwein-Borwein algorithm, Borwein-
Borwein quartic algorithm, Brent-Salamin algorithm, Chudnovsky algorithm, com-
putation of π , computational complexity, elliptic integrals, equivalence of algo-
rithms for π , evaluation of elementary functions, Gauss-Legendre algorithm, lin-
ear convergence, quadratic convergence, quartic convergence, Ramanujan-Sato
algorithms, Sasaki-Kanada algorithm, theta functions.

1 Introduction

Jonathan Borwein was fascinated by the constant π , and gave many stimulating talks on
this topic. The slides for most of these talks may be found on the memorial website [11].
In my talk [22] at the Jonathan Borwein Commemorative Conference I discussed the
reasons for this fascination. In a nutshell, it is that theorems about π are often just the
tips of “mathematical icebergs” – much of interest lies hidden beneath the surface.

This paper considers some of Jonathan and Peter Borweins’ contributions to the
high-precision computation of π and the elementary functions log, exp, arctan, sin,
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etc. The material is mainly drawn from their fascinating book Pi and the AGM [14].
We make no attempt to review the whole book – a reader interested in the complete
contents should consult one of the reviews [2,3,9,48] or, better, read the book itself. We
do not try to distinguish between the contributions of Jonathan and his brother Peter –
so far as we know, they contributed equally to the book, although no doubt in different
ways.

We take the opportunity to present some new results that are related to the material
in Pi and the AGM. For example, the error after a finite number of iterations of some
of the quadratically and quartically convergent algorithms for π can be expressed suc-
cinctly in terms of theta functions. Inspection of these expressions suggests that some
algorithms, previously considered different, are actually equivalent, in the sense that
they give exactly the same sequence of approximations to π if performed using exact
arithmetic. For example, one of the Borweins’ quadratically convergent algorithms [14,
Iteration 5.2 with r = 4] is equivalent to the Gauss-Legendre algorithm [18,20,42], and
it follows that one step of the Borweins’ quartically convergent algorithm [14, Iteration
5.3] is equivalent to two steps of the Gauss-Legendre algorithm. These connections
between superficially different algorithms do not seem to have been noticed before.

In §2 we give some necessary definitions, discuss the arithmetic-geometric mean,
and consider its connection with elliptic integrals and Jacobi theta functions. We also
mention the concept of order of convergence of an algorithm.

A brief history of quadratically convergent algorithms for π is given in §3.
In §4 we consider some quadratically and quartically convergent algorithms for π ,

including the Gauss-Legendre algorithm and several algorithms due to the Borweins.
In §5 we show that some of the algorithms of §4, although superficially different, are
actually equivalent when performed with exact arithmetic.

Chapter 5 of Pi and the AGM considers some striking Ramanujan-Sato formulæ for
1/π that give very fast (though linearly convergent) algorithms for computing π . The
first such formulæ were given by Ramanujan [40]. Later authors include Takeshi Sato,
the Borwein brothers, and the Chudnovsky brothers. See [6,7,15] for references. In §6
we briefly consider some Ramanujan-Sato formulæ and the corresponding algorithms
for computing π .

One of the “icebergs” alluded to above is the fast computation of elementary func-
tions to arbitrary precision. The constant π = 4arctan(1) is of course just a special case
(the tip of the iceberg). In §7 we outline how fast algorithms for computing elementary
(and some other) functions can be based on the arithmetic-geometric mean iteration.

2 Preliminaries: Means, Elliptic Integrals and Theta Functions

We define the order of convergence of a sequence. It will be sufficient to say that a
sequence (xn)n∈N converges linearly to L (or with order of convergence 1) if

0 < µ0 = liminf
n→∞

|xn+1−L|
|xn−L|

≤ limsup
n→∞

|xn+1−L|
|xn−L|

= µ1 < 1.

If µ0 = µ1 then µ0 is called the rate of convergence.
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We say that a sequence (xn)n∈N converges to L with order p > 1 if the sequence
converges to L and there exists

p = lim
n→∞

log |xn+1−L|
log |xn−L|

> 1.

Quadratic, cubic and quartic convergence are the cases p = 2,3,4 respectively. For ex-
ample, if xn = 2n exp(−3n), then (xn)n∈N converges cubically to zero, because
log |xn+1|/ log |xn|= (−3n+1 +O(n))/(−3n +O(n))→ 3 as n→ ∞.

Roughly speaking, if a sequence converges linearly to L with rate µ , then the num-
ber of correct decimal digits in the approximation to L increases by about log10(1/µ)
per term. For example, if

xn = 2
√

3
n

∑
j=0

(−1) j

(2 j+1)3 j
, (1)

then xn converges linearly to π with about log10 3 ≈ 0.4771 decimal digits per term.1

If a sequence converges to L with order p > 1, then the number of correct digits is
approximately multiplied by p for each additional term. For example, Newton’s method
for computing square roots2

xn+1 :=
1
2

(
xn +

S
xn

)
converges quadratically to L :=

√
S, provided that x0 and S are positive. In fact, it is

easy to show that

xn+1−L≈ 1
2L

(xn−L)2.

We now consider some well-known means. The arithmetic mean of a,b ∈ R is

AM(a,b) :=
a+b

2
,

and the geometric mean is
GM(a,b) :=

√
ab. (2)

Assuming that a and b are positive, we have the inequality

GM(a,b)≤ AM(a,b).

Initially we assume that a, b are positive real numbers. In §7 we permit a, b to be
complex. To resolve the ambiguity in the square root in (2) we assume that
ℜ(GM(a,b))≥ 0, and ℑ(GM(a,b))≥ 0 if ℜ(GM(a,b)) = 0.

Given two positive reals a0,b0, we can iterate the arithmetic and geometric means
by defining, for n≥ 0,

an+1 = AM(an,bn)

bn+1 = GM(an,bn).

1The formula (1) is listed in Bailey’s compendium [5], and is attributed to Madhava of Sanga-
magramma (c.1340–c.1425). It follows from the Taylor series for arctan(1/

√
3).

2Attributed to Hero of Alexandria (c.10–70 A.D.), though also called the Babylonian method.
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The sequences (an) and (bn) converge quadratically to a common limit called the
arithmetic-geometric mean (AGM) of a0 and b0. We denote it by AGM(a0,b0).

Gauss [27] and Legendre [36] solved the problem of expressing AGM(a,b) in terms
of known functions. The answer may be written as

1
AGM(a,b)

=
2
π

∫
π/2

0

dθ√
a2 cos2 θ +b2 sin2

θ

. (3)

The right-hand-side of (3) is the product of a constant (whose precise value will be
significant later) and a complete elliptic integral of the first kind. As usual, the complete
elliptic integral of the first kind is defined by

K(k) :=
∫

π/2

0

dθ√
1− k2 sin2

θ

=
∫ 1

0

dt√
(1− t2)(1− k2t2)

,

and the complete elliptic integral of the second kind by

E(k) :=
∫

π/2

0

√
1− k2 sin2

θ dθ =
∫ 1

0

√
1− k2t2
√

1− t2
dt.

The variable k is called the modulus, and k′ :=
√

1− k2 is called the complementary
modulus. It is customary to define

K′(k) := K(
√

1− k2) = K(k′)

and
E ′(k) := E(

√
1− k2) = E(k′),

so in the context of elliptic integrals a prime (′) does not denote differentiation. On the
occasions when we need a derivative, we use operator notation

DkK(k) := dK(k)/dk.

We remark that Pi and the AGM uses the “dot” notation K̇(k) := dK(k)/dk, but this is
potentially ambiguous and hard to see, so we prefer to avoid it.

The moduli k and k′ can in general be complex, but unless otherwise noted we
assume that they are real and in the interval (0,1).

In terms of the Gaussian hypergeometric function

F(a,b;c;z) := 1+
a ·b
1! · c

z+
a(a+1) ·b(b+1)

2! · c(c+1)
z2 + · · · ,

we have
K(k) =

π

2
F
( 1

2 ,
1
2 ;1;k2) (4)

and
E(k) =

π

2
F
(
− 1

2 ,
1
2 ;1;k2) . (5)
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From (4) and [1, 17.3.21], we also have3

K′(k) =
2
π

log
(

4
k

)
K(k)− f (k), (6)

where f (k) = k2/4+O(k4) is analytic in the disk |k|< 1.
Substituting (a,b) 7→ (1,k′) in (3), and recalling that k2 +(k′)2 = 1, we have

AGM(1,k′) =
π

2K(k)
. (7)

Thus, if we start from a0 = 1, b0 = k′ ∈ (0,1) and apply the AGM iteration, K(k) can
be computed from

lim
n→∞

an =
π

2K(k)
. (8)

E(k) can be computed via the AGM at the same time as K(k), using the well-known
result [14, (b) on pg. 15]

E(k)
K(k)

= 1− k2

2
−

∞

∑
n=0

2n (an−an+1)
2.

It follows from (4) and (6) that, for small k,

K′(k) =
(
1+O(k2)

)
log
(

4
k

)
. (9)

This will be relevant in §7. A bound on the O(k2) term is given in [14, Thm. 7.2].
The Gauss-Legendre algorithm depends on Legendre’s relation: for 0 < k < 1,

E(k)K′(k)+E ′(k)K(k)−K(k)K′(k) =
π

2
.

For a proof, see Pi and the AGM, Sec. 1.6.
A computationally important special case, obtained by taking k = k′ = 1/

√
2, is(

2E
(
1/
√

2
)
−K

(
1/
√

2
))

K
(
1/
√

2
)
=

π

2
. (10)

It can be shown [14, Thm. 1.7] that the two factors in (10) are

K(1/
√

2) =
Γ 2
( 1

4

)
4π1/2 and 2E(1/

√
2)−K(1/

√
2) =

Γ 2
( 3

4

)
π1/2

.

To estimate the order of convergence and to obtain error bounds, we consider the
parameterisation of the AGM in terms of Jacobi theta functions. We need the basic theta
functions of one variable, defined for |q|< 1 by

θ2(q) := ∑
n∈Z

q(n+1/2)2
, θ3(q) := ∑

n∈Z
qn2

, θ4(q) := ∑
n∈Z

(−1)nqn2
.

3Here and elsewhere, log denotes the natural logarithm.
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The theta functions satisfy many identities [47, §21.3]. In particular, we use the follow-
ing addition formulæ, due to Jacobi [32]. They are proved in [14, §2.1].

θ
2
3 (q) = θ

2
2 (q

2)+θ
2
3 (q

2), (11)

θ
4
3 (q) = θ

4
2 (q)+θ

4
4 (q). (12)

It is not difficult to show that

θ 2
3 (q)+θ 2

4 (q)
2

= θ
2
3 (q

2) and
√

θ 2
3 (q)θ

2
4 (q) = θ

2
4 (q

2).

Thus, the AGM variables (an,bn) can be parameterised by (θ 2
3 (q

2n
),θ 2

4 (q
2n
)) if scaled

suitably. More precisely, if 1 = a0 > b0 = θ 2
4 (q)/θ 2

3 (q)> 0, where q ∈ (0,1), then the
variables an, bn appearing in the AGM iteration satisfy

an =
θ 2

3 (q
2n
)

θ 2
3 (q)

, bn =
θ 2

4 (q
2n
)

θ 2
3 (q)

. (13)

It is useful to define auxiliary variables cn+1 := an− an+1 = (an− bn)/2. Using the
quotient for an and the addition formula (11), we see that

cn =
θ 2

2 (q
2n
)

θ 2
3 (q)

(14)

holds for n≥ 1. We could use (14) to define c0, but this will not be necessary.4

We can write q (which is called the nome) explicitly, in fact

q = exp(−πK′(k)/K(k)). (15)

This is due to Gauss/Jacobi; for a proof see [14, Thm. 2.3]. In the important special case
k = k′ = 1/

√
2, we have K′ = K and q = e−π = 0.0432139 . . .

Because the AGM iteration converges quadratically, it offers the prospect of quadrat-
ically convergent algorithms for approximating π and, more generally, all the elemen-
tary functions. This is the topic of §4 and §7 below. First we make some comments on
the history of quadratically convergent algorithms for π .

3 Historical Remarks

An algorithm for computing log(4/k), using (7), (9) and the AGM, assuming that we
know π to sufficient accuracy, was given by Salamin [8, pg. 71] in 1972. On the same
page Salamin gives an algorithm for computing π , taking k = 4/en in (9). With his
choice π ≈ 2nAGM(1,k). However, this assumes that we know e, so it is not a “stan-
dalone” algorithm for π via the AGM. Similarly, if we take k = 4/2n in (9), we obtain
an algorithm for computing π log2 (and hence π , if we know log2).

4Salamin [42] defines cn using the relation c2
n = a2

n− b2
n. This has the advantage that c0 is

defined naturally, and for n > 0 it is equivalent to our definition. However, it is computationally
more expensive to compute (a2

n−b2
n)

1/2 than an−an+1.
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In 1975, Salamin [42] and (independently) the present author [18,20] discovered a
quadratically convergent algorithm for computing π via the AGM without needing to
know e or log2 to high precision. It is known as the “Gauss-Legendre” algorithm (after
the discoverers of the key identities [26,36]) or the “Brent-Salamin” algorithm (after the
20th century discoverers [21]), and is about twice as fast as the earlier algorithms which
assume a knowledge of e or log2. We abbreviate the name to Algorithm GL. Bailey and
Borwein, in Pi: The Next Generation [6, Synopsis of paper 1], say “This remarkable
co-discovery arguably launched the modern computer era of the computation of π”.5

In 1984, Jon and Peter Borwein [12] (see also [14, Alg. 2.1]) discovered another
quadratically convergent algorithm for computing π , with convergence about as fast as
Algorithm GL. We call this the (first) Borwein-Borwein algorithm, or Algorithm BB1.
Yet another quadratically convergent algorithm, which we call the (second) Borwein-
Borwein algorithm and abbreviate as Algorithm BB2, dates from 1986 – see [13] and
[14, Iteration 5.1]. Although Algorithm BB2 appears different from Algorithm GL, we
show in §5 that the two algorithms are in fact equivalent, in the sense of producing the
same sequence of approximations to π . This surprising fact does not seem to have been
noticed before.

4 Some Superlinearly Convergent Algorithms for π

In this section we describe the Gauss-Legendre algorithm (GL) and two quadratically
convergent algorithms (BB1 and BB2) due to Jon and Peter Borwein. We also describe
a 4-th order algorithm (BB4) due to the Borweins.

Using Legendre’s relation and the formulæ that we have given for E and K in terms
of the AGM iteration, it is not difficult to derive Algorithm GL. We present it in pseudo-
code using the same style as the algorithms in [23].

Algorithm GL
Input: The number of iterations nmax.
Output: A sequence of nmax intervals containing π .

a0 := 1; b0 := 1/
√

2; s0 := 1
4 .

for n from 0 to nmax−1 do
an+1 := (an +bn)/2;
cn+1 := an−an+1;

output (a2
n+1/sn, a2

n/sn).

if n < nmax−1 then
bn+1 :=

√
anbn;

sn+1 := sn−2n c2
n+1.

5In [10, §10], Jon Borwein says “It [Algorithm GL] is based on the arithmetic-geometric
mean iteration (AGM) and some other ideas due to Gauss and Legendre around 1800, although
neither Gauss, nor many after him, ever directly saw the connection to effectively computing π”.
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Remarks
1. Subscripts on variables such as an,bn are given for expository purposes. In an effi-

cient implementation only a constant number of real variables are needed, because
an+1 can overwrite an (after saving an in a temporary variable for use in the com-
putation of bn+1), and similarly for bn, cn and sn.

2. The purpose of the final “if . . . then” is simply to avoid unnecessary computations
after the final output. Similar comments apply to the other algorithms given below.

3. Salamin [42] notes the identity 4an+1cn+1 = c2
n which can be used to compute cn+1

without the numerical cancellation that occurs when using the definition cn+1 =
an − an+1. However, this refinement costs time and is unnecessary, because the
terms 2nc2

n+1 diminish rapidly and make only a minor contribution to the overall
error caused by using finite-precision real arithmetic. To obtain an accurate result
it is sufficient to use O(lognmax) guard digits.

Neglecting the effect of rounding errors, Algorithm GL gives a sequence of lower and
upper bounds on π:

a2
n+1

sn
< π <

a2
n

sn
,

and both bounds converge quadratically to π . The lower bound is more accurate, so
the algorithm is often stated with just the lower bound a2

n+1/sn (we call this variant
Algorithm GL1). Table 1 shows the approximations to π given by the first few iterations.
Correct digits are shown in bold. The quadratic convergence is evident.

n lower bound a2
n+1/sn upper bound a2

n/sn

0 2.914213562373095048801689 < π < 4.000000000000000000000000
1 3.140579250522168248311331 < π < 3.187672642712108627201930
2 3.141592646213542282149344 < π < 3.141680293297653293918070
3 3.141592653589793238279513 < π < 3.141592653895446496002915
4 3.141592653589793238462643 < π < 3.141592653589793238466361

Table 1: Convergence of Algorithm GL

Recall that in Algorithm GL we have a0 = 1, b0 = 1/
√

2, s0 =
1
4 and, for n≥ 0,

an+1 =
an +bn

2
, bn+1 =

√
anbn, cn+1 = an−an+1, sn+1 = sn−2n c2

n+1 .

Take q = e−π , and write

a∞ := lim
n→∞

an = θ
−2
3 (q) = 2π

3/2/Γ
2( 1

4 )≈ 0.8472, (16)

s∞ := lim
n→∞

sn = θ
−4
3 (q)/π = 4π

2/Γ
4( 1

4 )≈ 0.2285 . (17)

Since cn = θ 2
2 (q

2n
)/θ 2

3 (q), we have

sn− s∞ = θ
−4
3 (q)

∞

∑
m=n

2m
θ

4
2 (q

2m+1
) . (18)
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Write an/a∞ = 1+δn and sn/s∞ = 1+ εn. Then

δn = θ
2
3 (q

2n
)−1∼ 4q2n

as n→ ∞,

and (17) – (18) give

εn = π

∞

∑
m=n

2m
θ

4
2 (q

2m+1
)∼ 2n+4

πq2n+1
.

Writing
a2

n/a2
∞

sn/s∞

=
a2

n

πsn
=

(1+δn)
2

1+ εn
,

it is straightforward to obtain an upper bound on π:

0 < a2
n/sn−π <U(n) := 8πq2n

. (19)

Convergence is quadratic: if en := a2
n/sn−π , then

lim
n→∞

en+1/e2
n =

1
8π

.

Replacing an by an+1 and δn by δn+1, we obtain a lower bound on π:

0 < π−
a2

n+1

sn
< L(n) := (2n+4

π
2−8π)q2n+1

. (20)

Pi and the AGM [(2.5.7) on page 48] gives a slightly weaker lower bound which, via
(16), may be written as

π−
a2

n+1

sn
≤ 2n+4π2q2n+1

a2
∞

. (21)

Since a2
∞ < 1, the bound (21) is weaker than the bound (20). In (20), the factor

(2n+4π2−8π) is the best possible, since an expansion of a2
n+1/sn in powers of q gives

π − a2
n+1/sn = (2n+4π2− 8π)q2n+1− O(2nq2n+2

), with the minus sign before the “O”
term informally indicating the sign of the remainder.

In Table 2, U(n) := 8π exp(−2nπ) and L(n) := (2n+4π2−8π)exp(−2n+1π) are the
bounds given in (19)–(20). It can be seen that the bounds are very accurate for n > 1, as
expected from our analysis.

Recall that Algorithm GL gives approximations a2
n/sn and a2

n+1/sn to π = a2
∞/s∞.

Using the expressions for an and sn in terms of theta functions, we see that

π =
a2

n θ
−4
3 (q2n

)

sn−θ
−4
3 (q)∑

∞
m=n 2m θ 4

2 (q
2m+1

)
, (22)

[or similarly with the numerator replaced by a2
n+1θ

−4
3 (q2n+1

)]. The expression (22) for
π is essentially of the form

π =
a2

n−O(q2n
)

sn−O(2nq2n+1
)

[
or

a2
n+1−O(q2n+1

)

sn−O(2nq2n+1
)

]
.
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n a2
n/sn−π π−a2

n+1/sn
a2

n/sn−π

U(n)
π−a2

n+1/sn

L(n)
0 8.58e-1 2.27e-1 0.790369040 0.916996189
1 4.61e-2 1.01e-3 0.981804947 0.999656206
2 8.76e-5 7.38e-9 0.999922813 0.999999998
3 3.06e-10 1.83e-19 0.999999999 1.000000000
4 3.72e-21 5.47e-41 1.000000000 1.000000000
5 5.50e-43 2.41e-84 1.000000000 1.000000000
6 1.20e-86 2.31e-171 1.000000000 1.000000000
7 5.76e-174 1.06e-345 1.000000000 1.000000000
8 1.32e-348 1.11e-694 1.000000000 1.000000000

Table 2: Numerical values of upper and lower bounds for Algorithm GL

This shows precisely how Algorithm GL approximates π and why it provides upper [or
lower] bounds.

In Pi and the AGM, Jon and Peter Borwein present a quadratically convergent algo-
rithm for π , based on the AGM, but different from Algorithm GL. It is Algorithm 2.1
in Chapter 2, and was first published in [12]. We call it Algorithm BB1.

Instead of using Legendre’s relation, Algorithm BB1 uses the identity

K(k) DkK(k)
∣∣
k=1/

√
2 =

π√
2
,

where Dk denotes differentiation with respect to k.

Using the connection between K(k′) and the AGM, the Borweins [14, (2.4.7)] prove
that

π = 23/2 (AGM(1,k′))3

Dk AGM(1,k′)

∣∣∣∣
k=1/

√
2
.

An algorithm for approximating the derivative in this formula can be obtained by dif-
ferentiating the AGM iteration symbolically. Details are given in [14].

We now present Algorithm BB1. Note that the algorithm given in [14] defines the
upper bound πn := πn−1(xn + 1)/(yn + 1) and omits the lower bound πn, but πn can
be obtained from [14, ex. 2.5.11]. We present a version that computes upper (πn) and
lower (πn) bounds for comparison with Algorithm GL.
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Algorithm BB1
Input: The number of iterations nmax.
Output: A sequence of nmax intervals containing π .

x0 :=
√

2;
output (π0 := x0, π0 := x0 +2).

y1 := x0
1/2; x1 := 1

2 (x
1/2
0 + x−1/2

0 );
for n from 1 to nmax−1 do

πn :=
2πn−1

yn +1
; πn := πn

(
xn +1

2

)
;

output (πn, πn);
if n < nmax−1 then

xn+1 := 1
2 (x

1/2
n + x−1/2

n ); yn+1 :=
yn x1/2

n + x−1/2
n

yn +1
.

It may be shown that πn decreases monotonically to the limit π , and πn increases mono-
tonically to π . Moreover, πn−πn decreases quadratically to zero. This is illustrated in
Table 3.

It is not immediately obvious that Algorithm BB1 depends on the AGM. However,
the AGM is present in Legendre form: if a0 := 1, b0 := k′ = 1/

√
2, and we perform

n steps of the AGM iteration to define an,bn, then xn = an/bn and, for n ≥ 1, yn =
Dkbn/Dkan.

n πn πn

0 1.414213562373095048801689 < π < 3.414213562373095048801689
1 3.119132528827772757303373 < π < 3.142606753941622600790720
2 3.141548837729436193482357 < π < 3.141592660966044230497752
3 3.141592653436966609787790 < π < 3.141592653589793238645774
4 3.141592653589793238460785 < π < 3.141592653589793238462643

Table 3: Convergence of Algorithm BB1

Comparing Tables 1 and 3, we see that Algorithm BB1 gives better upper bounds,
but worse lower bounds, than Algorithm GL, for the same value of n (i.e. same number
of square roots).

As for Algorithm GL, we can express the error after n iterations of Algorithm BB1
using theta functions, and deduce the asymptotic behaviour of the error.

Consider the AGM iteration with a0 = 1,b0 = k′ = (1− k2)1/2. Then an and bn are
functions of k. In Pi and the AGM it is shown that, for n≥ 1,

πn−1 =
(

23/2b2
nan/Dkan

)
|k=1/

√
2 . (23)
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Now an and bn are given by (13) with q = e−π . We differentiate an with respect to k,
where k = (1−b2

0)
1/2 = θ 2

2 (q)/θ 2
3 (q). This gives

Dkan = Dq

(
θ 2

3 (q
2n
)

θ 2
3 (q)

)/
Dq

(
θ 2

2 (q)
θ 2

3 (q)

)∣∣∣∣∣
q=e−π

. (24)

We remark that (24) gives Dka0 = 0, as expected since a0 is independent of k.
Thanks to the analyticity of the theta functions in |q| < 1, there is no difficulty in

showing that6

lim
n→∞

Dkan = Dk lim
n→∞

an .

We denote the common value by Dka∞. Taking the limit in (23), we obtain (as also
follows from [14, (2.4.7)]):

Dka∞ =
23/2a3

∞

π
= 0.547486 . . . (25)

Now an−a∞ =
∞

∑
m=n+1

cm, and differentiating both sides with respect to k gives

Dkan−Dka∞ =
∞

∑
m=n+1

Dq

(
θ 2

2 (q
2m
)

θ 2
3 (q)

)/
Dq

(
θ 2

2 (q)
θ 2

3 (q)

)∣∣∣∣∣
q=e−π

. (26)

We remark that (26) is analogous to (18), which we used in the analysis of Algo-
rithm GL. Using (23) – (26), we obtain an upper bound on π (for n≥ 1, q = e−π )

0 < πn−π < 2n+4
π

2q2n+1
. (27)

A slightly weaker bound than (27) is proved in [14, §2.5].
Similarly, we can obtain a lower bound on π:

0 < π−πn < 4πq2n
. (28)

We omit detailed proofs of (27) and (28); they involve straightforward but tedious ex-
pansions of power series in q. Experimental evidence is provided in Table 4.

Table 4 gives numerical values of the approximation errors πn−π and π−πn, and
the ratio of these values to the bounds (27) and (28) respectively. It can be seen that
the bounds are very accurate (as expected from the expressions for the errors in terms
of theta functions and the rapid convergence of the series for the theta functions). The
upper bound overestimates the error by a factor of 1+O(2−n). A computation shows
that we can not replace the bound by the function L(n) defined in (20), although a
similar bound appears to be valid if the constant 8π in (20) is replaced by a slightly
smaller constant, e.g. 7π .

6Similarly, where we exchange the order of taking derivatives and limits elsewhere in this
section, it is easy to justify.
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n πn−π
πn−π

2n+4π2q2n+1 π−πn
π−πn
4πq2n

1 1.01e-3 0.9896487063 2.25e-2 0.9570949132
2 7.38e-9 0.9948470082 4.38e-5 0.9998316841
3 1.83e-19 0.9974691480 1.53e-10 0.9999999988
4 5.47e-41 0.9987456847 1.86e-21 1.0000000000
5 2.41e-84 0.9993755837 2.75e-43 1.0000000000
6 2.31e-171 0.9996884727 6.01e-87 1.0000000000
7 1.06e-345 0.9998444059 2.88e-174 1.0000000000
8 1.11e-694 0.9999222453 6.59e-349 1.0000000000

Table 4: Numerical values of upper and lower bounds for Algorithm BB1

The bounds (27)–(28) can be compared with the lower bound (2n+4π2− 8π)q2n+1

and upper bound 8πq2n
for Algorithm GL. The upper bound is better for Algorithm

BB1, but the lower bound is better for Algorithm GL. This confirms the observation
above regarding the comparison of Tables 1 and 3.

Since it will be needed in §5, we state another quadratic algorithm, Algorithm BB2,
different from Algorithm BB1 but also due to Jon and Peter Borwein (iteration 5.2 on
page 170 of [14] with the parameter r = 4).

Algorithm BB2
Input: The number of iterations nmax.
Output: A sequence of nmax approximations to π .

α0 := 6−4
√

2; k0 := 3−2
√

2;
for n from 0 to nmax−1 do

output π̂n := 1/αn ;
if n < nmax−1 then

k′n :=
√

1− k2
n; kn+1 :=

1− k′n
1+ k′n

;

αn+1 := (1+ kn+1)
2
αn−2n+2kn+1 .

In Algorithm BB2, we have π̂n→ π quadratically [14, pg. 170]. We remark that it would
be clearer to increase (by one) the subscripts on the variables in Algorithm BB2, so as
to correspond to the usage in Algorithm GL, which implicitly has k′0 = b0/a0 = 1/

√
2

and k1 = (1− k′0)/(1+ k′0) = 3−2
√

2, but we have kept the notation used in [14].
The Borwein brothers did not stop at quadratic (second-order) algorithms for π . In

Chapter 5 of Pi and the AGM they gave algorithms of orders 3, 4, 5 and 7. Of course,
these algorithms are not necessarily faster than the quadratic algorithms, because we
must take into account the amount of work per iteration. For a fair comparison, we can
use Ostrowski’s efficiency index [39, §3.11], defined as log(p)/W , where p > 1 is the
order of convergence and W is the work per iteration. A justification of this measure of
efficiency is given in [17]. Consider a simple example – if we combine three iterations
of Algorithm BB2 into one iteration of a new algorithm, then we obtain an algorithm
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of order 8, but with three times as much work per iteration. The efficiency index is the
same in both cases, as it should be.

We refer to [14, Chapter 5] for the Borweins’ cubic, quintic and higher-order algo-
rithms, and consider only their quartic algorithm, which we call Algorithm BB4. It is
a specialisation to the case r = 4 of the slightly more general algorithm given in [14,
iteration 5.3, pg. 170]. The same special case is given in [15, Algorithm 1] and has been
used in extensive calculations of π , see for example [4,33]. We have changed notation
slightly (an 7→ zn) to avoid conflict with the notation used in Algorithm GL.

Algorithm BB4
Input: The number of iterations nmax.
Output: A sequence of nmax approximations to π .

y0 :=
√

2−1; z0 := 2y2
0;

for n from 0 to nmax−1 do
output πn := 1/zn ;
if n < nmax−1 then

yn+1 :=
1− (1− y4

n)
1/4

1+(1− y4
n)

1/4 ;

zn+1 := zn(1+ yn+1)
4−22n+3yn+1(1+ yn+1 + y2

n+1).

In Algorithm BB4, πn converges quartically to π . A sharp error bound is

0 < π−πn < π
2 4n+2 exp(−2π 4n). (29)

This improves by a factor of two on the error bound given in [14, top of pg. 171]. We
defer the proof until §5.

Table 5 shows the error π −πn after n iterations of the Borwein quartic algorithm,
and the ratio of the error π−πn to the upper bound (29).

n π−πn
π−πn

bound (29)
0 2.273790912e-1 0.7710517124
1 7.376250956e-9 0.9602112619
2 5.472109145e-41 0.9900528160
3 2.308580715e-171 0.9975132040
4 1.110954934e-694 0.9993783010
5 9.244416653e-2790 0.9998445753
6 6.913088685e-11172 0.9999611438
7 3.376546688e-44702 0.9999902860
8 3.002256862e-178825 0.9999975715

Table 5: Approximation error in Algorithm BB4
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At this point the reader may well ask “which of Algorithms GL, BB1, BB2 and
BB4 is the fastest?”. The answer seems to depend on implementation details. All four
algorithms involve the same number of square roots to obtain comparable accuracy
(counting a fourth root in Algorithm BB4 as equivalent to two square roots, which is
not necessarily correct7). Algorithm GL has the advantage that high-precision divisions
are only required when generating the output (so the early divisions can be skipped if
intermediate output is not required). The other three algorithms require at least one di-
vision per iteration. Borwein, Borwein and Bailey [15, pg. 202] say “[Algorithm BB4]
is arguably the most efficient algorithm currently known for the extended precision cal-
culation of π”, and the times given in Bailey’s paper [4, pg. 289] confirm this (28 hours
for Algorithm BB4 versus 40 hours for Algorithm BB1). However, Kanada [33], who
extended Bailey’s computation, reached the opposite conclusion. His computation took
5 hours 57 minutes with Algorithm GL, and 7 hours 30 minutes with Algorithm BB4
(which was used for verification).

5 Equivalence of Some Algorithms for π

In the following, doubling an algorithm A means to construct an algorithm A2 that
outputs (x0,x2,x4, . . .) if algorithm A outputs (x0,x1,x2, . . .). Replacing n by 2n in (20)
and retaining only the most significant term, we see that an error bound for Algorithm
GL1 doubled is

0 < π−a2
2n+1/s2n < π

2 4n+2 exp(−2π 4n).

It is suggestive that the right-hand side is the same as in the error bound (29) for the
Borwein quartic algorithm after n iterations.

On closer inspection we find that the two algorithms (GL1 doubled and BB4) are
equivalent, in the sense that they give exactly the same sequence of approximations to
π . Symbolically,

πn = a2
2n+1/s2n, (30)

where an,sn are as in Algorithm GL, and πn is as in Algorithm BB4. This observation
appears to be new – it is not stated explicitly in Pi and the AGM or elsewhere, so far as
we know.8

Before proving the result, we give some empirical evidence for it, since that is how
the result was discovered – in the spirit of “Experimental Mathematics”, as beloved by
Jon Borwein. In Table 6, n+ 1 is the number of square roots, and the second column
is the error in the approximation given by Algorithm GL1 after n iterations, or by the
Algorithm BB4 after n/2 iterations (n even). The error is the same for both algorithms
(verified to 1000 decimal digits, not all shown).
Using the definitions of the two algorithms, equality for the first line of the table (n = 0)
follows from

a2
1/s0 = π0 =

3
2 +
√

2 = π−0.227 . . .

7For example, one might compute x1/4 using two inverse square roots, i.e. (x−1/2)−1/2, which
is possibly faster than two square roots, i.e. (x1/2)1/2, see [23, §4.2.3].

8For example, the equivalence is not mentioned in [4], [15], [29], [30] or [33].
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n π−a2
2n+1/s2n (for Algorithm GL1) or π−πn (for Algorithm BB4)

0 2.2737909121669818966095465906980480562749752399816e-1
2 7.3762509563132989512968071098827321760295030264154e-9
4 5.4721091456899418327485331789641785565936917028248e-41
6 2.3085807149343902668213207343869568303303472423996e-171
8 1.1109549335576998257002904117322306941479378545140e-694

Table 6: Approximation error for Algorithms GL1 doubled and BB4

For the second line (n = 2) we have, with t := 2−1/4,

a3 =
(t2 +2t +1+2

√
2t3 +2t)

8
and s2 =

8t3−4t2 +8t−5
16

,

so a2
3

s2
=

(t2 +2t +1+2
√

2t3 +2t)2

4(8t3−4t2 +8t−5)
. (31)

Also, from the definition of Algorithm BB4 we find, with

y1 =
1− (12

√
2−16)1/4

1+(12
√

2−16)1/4
,

that
π1 =

1
(6−4

√
2)(1+ y1)4−8y1−8y2

1−8y3
1

. (32)

It is not obvious that the algebraic numbers given by (31) and (32) are identical, but it
can be verified that they both have minimal polynomial

P(x) :=1−1635840576x−343853312x2 +60576043008x3

+1865242664960x4−16779556159488x5 +37529045696512x6

−29726424956928x7 +6181548457984x8.

Using Sturm sequences [45], it may be shown that P(x) has two real roots, one in the
interval [0,1], and the other in [3,4]. A numerical computation shows that |a2

3/s2−π1|<
1, but both a2

3/s2 and π1 are real roots of P(x), so they must be equal.
Clearly this “brute force” approach does not generalise. To prove the equivalence

of Algorithms BB4 and GL1, we first consider the equivalence of Algorithms BB2 and
GL1.

Theorem 1. Algorithm BB2 is equivalent to Algorithm GL1, in the sense that

π̂n = a2
n+1/sn,

where π̂n = 1/αn is as in Algorithm BB2, and an+1,sn are as in Algorithm GL.

Proof. In the proof we take n≥ 0, q = e−π , and assume that an,bn,cn+1,sn are defined
as in Algorithm GL, and kn,αn, π̂n are as in Algorithm BB2.
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Algorithm GL implements the recurrence

sn+1 = sn−2nc2
n+1, (33)

whereas Algorithm BB2 implements the recurrence

αn+1 = (1+ kn+1)
2
αn−2n+2kn+1. (34)

We show that the recurrences (33)–(34) are related. Noting the remark on subscripts
following the statement of Algorithm BB2, we see that kn = cn+1/an+1, since both sides
equal θ 2

2 (q
2n+1

)/θ 2
3 (q

2n+1
). Thus

1+ kn+1 = an+1/an+2. (35)

Define βn := a2
n+1αn and γn := a2

n+2kn+1. Substituting (35) into (34) and clearing
the fractions gives

βn+1 = βn−2n+2
γn. (36)

Now
4γn = 4a2

n+2kn+1 = 4an+2cn+2 = θ
4
2 (q

2n+2
)/θ

4
3 (q) = c2

n+1,

so (36) is equivalent to
βn+1 = βn−2nc2

n+1. (37)

This is essentially the same recurrence as (33). Also, s0 = 1/4 and β0 = a2
1α0 = 1/4, so

s0 = β0. It follows that sn = βn for all n≥ 0. Thus sn = a2
n+1αn, and

π̂n = 1/αn = a2
n+1/sn,

which completes the proof. ut

Corollary 1. Algorithm BB4 is equivalent to Algorithm GL1 doubled, in the sense that

πn = a2
2n+1/s2n,

where πn is as in Algorithm BB4, and an,sn are as in Algorithm GL.

Proof. The Borwein brothers noted [14, pg. 171] that Algorithm BB4 is equivalent to
Algorithm BB2 doubled,9 i.e. πn = π̂2n. Thus, the result follows from Theorem 1. ut

Corollary 2. For Algorithm BB4, the error bound (29) holds.

Proof. In view of Corollary 1, the error bound (29) follows from (30) and the error
bound (20) for Algorithm GL. ut

9In fact, this is how Algorithm BB4 was discovered, by doubling Algorithm BB2 and then
making some straightforward program optimisations.
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6 Some Fast (but Linear) Algorithms for π

Let (x)n := x(x+ 1) · · ·(x+ n− 1) denote the ascending factorial. In Chapter 5 of Pi
and the AGM, Jon and Peter Borwein discuss Ramanujan-Sato series such as

1
π
= 23/2

∞

∑
n=0

( 1
4 )n(

1
2 )n(

3
4 )n

(n!)3
(1103+26390n)

994n+2
.

This is linearly convergent, with rate 1/994, so adds nearly eight decimal digits per
term, since 994 ≈ 108.

A more extreme example is the Chudnovsky series [24]

1
π
= 12

∞

∑
n=0

(−1)n (6n)!(13591409+545140134n)
(3n)!(n!)3 6403203n+3/2

, (38)

which adds about 14 decimal digits per term.
Although such series converge only linearly, their convergence is so fast that they are

competitive with higher-order algorithms such as Algorithm GL for computing highly
accurate approximations to π . Which algorithm is the fastest in practice depends on
details of the implementation and on technological factors such as memory sizes and
access times.

7 Fast Algorithms for the Elementary Functions

In this section, we consider the bit-complexity of algorithms. The bit-complexity of an
algorithm is the (worst case) number of single-bit operations required to complete the
algorithm. For a fuller discussion, see Chapter 6 of Pi and the AGM. We are interested
in asymptotic results, so are usually willing to ignore constant factors.

If all operations are performed to (approximately) the same precision, then it makes
sense to count operations such as multiplications, divisions and square roots. Algo-
rithms based on the AGM fall into this category.

If the precision of the operations varies widely, then bit-complexity is a more sensi-
ble measure of complexity. An example is Newton’s method, which is self-correcting,
so can be started with low precision. Another example is summing a series with rational
terms, such as e = ∑

∞
k=0 1/k!.

The bit-complexity of multiplying two n-bit numbers to obtain a 2n-bit product
is denoted by M(n). The classical algorithm shows that M(n) = O(n2), but various
asymptotically faster algorithms exist. The best result so far, due to Harvey, van der
Hoeven and Lecerf [31], is

M(n) = O
(

n lognKlog∗n
)

with K = 8. Here the iterated logarithm function log∗n is defined by

log∗n :=

{
0 if n≤ 1;
1+ log∗(logn) if n > 1.
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It is unbounded but grows extremely slowly as n→ ∞, e.g. slower than

loglog · · · logn [for any fixed number of logs].

Indeed, if the multiplication algorithm is implemented on a computer that fits in the
observable universe and has components no smaller than atomic nuclei, then we can
safely assume that log∗n is bounded by a moderate constant, and that multiplication has
bit-complexity O(n logn).

We follow Pi and the AGM and assume that M(n) is nondecreasing and satisfies the
weak regularity condition

2M(n)≤M(2n)≤ 4M(n).

Newton’s method can be used to compute reciprocals and square roots with bit-
complexity

O
(
M(n)+M(dn/2e)+M

(⌈
n/22⌉)+ · · · +M(1)

)
= O(M(n)).

It can be shown that the bit-complexities of squaring, multiplication, reciprocation, divi-
sion, and root extraction are asymptotically the same, up to small constant factors [19].
All these operations have bit-complexity of order M(n).

To compute π to n digits (binary or decimal) by the arctan formula (1), or to compute
1/π by the Chudnovsky series (38), we have to sum of order n terms. Using divide and
conquer, also called binary splitting [19,28],10 this can be done with bit-complexity

O(M(n) log2 n).

Suppose we compute π to n-digit accuracy using one of the quadratically convergent
AGM algorithms. This requires O(logn) iterations, each of which has bit-complexity
O(M(n)). Thus, the overall bit-complexity is

O(M(n) logn).

This is (theoretically) better than series summation methods, the best of which have
bit-complexity of order M(n) log2 n.

In practice, a method with bit-complexity of order M(n) log2n may be faster than
a method with bit-complexity of order M(n) logn unless n is sufficiently large. This is
one reason for the recent popularity of the Chudnovsky series (38) for high-precision
computation of π , even though the AGM-based methods are theoretically (i.e. asymp-
totically) more efficient.

In §3, we mentioned Salamin’s algorithm for computing logx for sufficiently large
x = 4/k, i.e. sufficiently small k, using (9). We can evaluate K′(k)/π using the AGM
with (a0,b0) = (1,k), and hence approximate log(4/k), assuming that π is precom-
puted. To compute logx to n-bit accuracy requires about 2 log2(n) AGM iterations, or
3 log2(n) iterations if we count the computation of π .

If x is not sufficiently large, we can use the identity log(x) = log(2px)− p log2,
where p is a sufficiently large integer (but not too large or excessive cancellation will

10Somewhat more general, but based on the same idea, is E. Karatsuba’s FEE method [34].
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occur). This assumes that log2 is precomputed, and that the precision is increased to
compensate for cancellation.

To obtain a small relative error when x is close to 1, say |x−1|< 2−n/ logn, it is better
to use the Taylor series for log(1+ z), with z = x− 1. The Taylor series computation
can be accelerated by “splitting”, see [23, §4.4.3] and [44],

The O(k2) error term in the expression (9) can be written explicitly using hyper-
geometric series, see [14, (1.3.10)]. This gives one way of improving the accuracy of
the approximation K′(k) to log(4/k). We give an alternative using theta functions, for
which the series converge faster than the hypergeometric series (which converge only
linearly). The result (39) follows from several identities given in §2. We collect them
here for convenience:

log(1/q) = πK′(k)/K(k),

k = θ
2
2 (q)/θ

2
3 (q),

K(k) = (π/2)θ
2
3 (q),

K′(k) = (π/2)/AGM(1,k).

Putting these pieces together gives the elegant result of Sasaki and Kanada [43]

log(1/q) =
π

AGM(θ 2
2 (q),θ

2
3 (q))

. (39)

In (39) we can replace q by q4 to avoid fractional powers of q in the expansion of θ2(q),
obtaining an exact formula for all q ∈ (0,1):

log(1/q) =
π/4

AGM(θ 2
2 (q

4),θ 2
3 (q

4))
. (40)

As in Salamin’s algorithm, we have to ensure that x := 1/q is sufficiently large,
but now there is a trade-off between increasing x or taking more terms in the series
defining the theta functions. For example, to attain n-bit accuracy, if x > 2n/36, we can
use θ2(q4)= 2(q+q9+q25+O(q49)) and θ3(q4)= 1+2(q4+q16+O(q36)). This saves
about four AGM iterations, compared to Salamin’s algorithm. We remark that a result
similar to (39) and (40) is given in (7.2.5) of Pi and the AGM, but with an unfortunate
typo (a reciprocal is missing).

So far we have assumed that the initial values a0,b0 in the AGM iteration are real
and positive. There is no difficulty in extending the results that we have used to com-
plex a0,b0, provided that they are nonzero and a0/b0 is not both real and negative. For
simplicity, we assume that a0,b0 ∈H = {z |ℜ(z)> 0}.

In the AGM iteration (and in the definition of the geometric mean) there is an ambi-
guity of sign. We always choose the square root with positive real part. Thus the iterates
an,bn are uniquely defined and remain in the right half-plane H .

When using (40), we may need to apply a rotation to q, say by a multiple of π/3, in
order to ensure that the starting values (θ 2

2 (q
4),θ 2

3 (q
4)) for the AGM lie inH .11

11Alternatively, we could drop the simplifying assumption that a0,b0 ∈H and use the “right
choice” of Cox [25, pg. 284] to implement the AGM correctly.



The Borweins, π and the AGM 21

For z ∈ C\{0}, log(z) = log(|z|)+ iarg(z), provided we use the principal values of
the logarithms. Thus, if x ∈ R, we can use the complex AGM to compute

arctan(x) = ℑ(log(1+ ix)).

arcsin(x),arccos(x) etc can be computed via arctan using elementary trigonometric
identities such as

arccos(x) = arctan(
√

1− x2/x).

Since we can compute log,arctan,arccos,arcsin, we can compute exp, tan,cos,sin
(in suitably restricted domains) using Newton’s method. The trigonometric functions
can also be computed via the complex exponential. Similarly for the hyperbolic func-
tions cosh,sinh, tanh and their inverse functions.

Although computing the elementary functions via the complex AGM is conceptu-
ally straightforward, it introduces the overhead of complex arithmetic. It is possible to
avoid complex arithmetic by the use of Landen transformations (which transform in-
complete elliptic integrals). See exercise 7.3.2 of Pi and the AGM for an outline of this
approach, and [20] for more details.

Whichever approach is used, the bit-complexity of computing n-bit approximations
to any of the elementary functions (log,exp,arctan,sin,cos, tan, etc) in a given compact
set A⊂C that excludes singularities of the relevant function is O(M(n) logn). Here “n-
bit approximation” means with absolute error bounded by 2−n. We could require rela-
tive error bounded by 2−n, but the proof would depend on a Diophantine approximation
result such as Mahler’s well-known result on approximation of π by rationals [38], be-
cause of the difficulty of guaranteeing a small relative error in the neighbourhood of a
zero of the function.12

Certain non-elementary functions can be computed with bit-complexity
O(M(n) logn) via the AGM. For example, we mention complete and incomplete elliptic
integrals, elliptic functions, and the Jacobi theta functions θ2(q),θ3(q),θ4(q). Functions
that appear not to be in this class of “easily computable” functions include the Gamma
function Γ (z) and the Riemann zeta function ζ (s).

Algebraic functions can be computed with bit-complexity O(M(n)), see for example
[14, Thm. 6.4]. It is plausible to conjecture that no elementary transcendental functions
can be computed with bit-complexity O(M(n)) (or even o(M(n) logn)). However, as
usual in complexity theory, nontrivial lower bounds are difficult to prove and depend on
the precise model of computation.

12Mahler’s result is sufficient for the usual elementary functions, whose zeros are rational
multiples of π , but it is not applicable to the problem of computing combinations of these func-
tions, e.g. exp(sinx)+cos(logx), with small relative accuracy. In general, we do not know enough
about the rational approximation of the zeros of such functions to guarantee a small relative error.
However, the result that we stated for computing elementary functions with a small absolute error
extends to finite combinations of elementary functions under the operations of addition, multipli-
cation, composition, etc. Indeed, the set of elementary functions is usually considered to include
such finite combinations, although precise definitions vary. See, for example, §7.3 of Pi and the
AGM, Knopp [35, pp. 96–98], Liouville [37], Ritt [41], and Watson [46, pg. 111].
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