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I have a feeling, however, that it is
somehow silly to take a random
number and put it elaborately into a
power series · · ·
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Summary

I will describe von Neumann’s elegant idea for
sampling from the exponential distribution,
Forsythe’s generalization for sampling from a
probability distribution whose density has the
form exp(−G(x)), where G(x) is easy to
compute (e.g. a polynomial), and my refinement
of these ideas to give an efficient algorithm for
generating pseudo-random numbers with a
normal distribution. Later developments will
also be mentioned.
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Background

Roger Hockney and I are the only people who
were lucky enough to have both George
Forsythe and Gene Golub as PhD advisors
(see the Mathematics Genealogy Project).

In my case this came about because Gene went
on sabbatical to the UK, and George took over
while he was away. However, I managed to
finish before Gene returned to Stanford. That
was in the days before email, and there was a
mail strike in UK, so communication with Gene
was difficult. Perhaps that helped me to finish
quickly, because if Gene had been at Stanford
he probably would have asked me to do more
work on the last chapter!

Most of you here today know Gene, but only the
older ones will remember George and Sandra
Forsythe, so today I will talk about George
Forsythe and an interesting link back to John
von Neumann and the early days of computers.
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History

In summer 1949 Forsythe attended some
lectures at UCLA by John von Neumann on the
topic of random number generation. The
lectures were part of a Symposium on the
(then new) Monte Carlo method. It seems that
von Neumann never wrote up the lectures, but
a fascinating 3-page summary was written by
Forsythe and published in 1951.

Forsythe must have continued to think about
the topic because, shortly before he died, he
wrote a Stanford report Von Neumann’s
comparison method for random sampling from
the normal and other distributions
(STAN-CS-72-254, dated February 9, 1972).

This expanded on a brief comment by von
Neumann that his

method [for the exponential
distribution] can be modified to yield
a distribution satisfying any
first-order differential equation.

Collected Works 5, 770.
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Ahrens, Dieter and Knuth

Forsythe intended that his Stanford report
would form the basis of a joint paper with
J. H. Ahrens and U. Dieter, who had discovered
related results independently, and had
presented them at Stanford in October 1971.

After Forsythe died in April 1972, Don Knuth
submitted the Stanford report to Mathematics
of Computation, and it was published with only
minor changes in the October 1972 issue.

This was Forsythe’s last published paper, with
the possible exception of a paper by E. H. Lee
and Forsythe in SIAM Review (submitted in
October 1971 and published in January 1973).

Ahrens and Dieter published a follow-up
paper in Math. Comp. (1973), and I published
an implementation GRAND of my improvement
of the Forsythe – von Neumann method in
Comm. ACM (1974).

That was in the days before TOMS, when
interesting algorithms were still published in
Communications.
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The problem

Suppose we want to sample a probability
distribution with density

f(x) = e−G(x) ,

where G(x) is some simple function, e.g. a
polynomial. Von Neumann illustrated his idea
for the exponential distribution

G(x) = x, (x ≥ 0) ,

but it also applies to the normal distribution

G(x) = x2/2 + ln(2π)/2 .

The function f(x) satisfies a first-order linear
differential equation

f ′ + G′(x)f = 0 ,

and conversely. That is why Von Neumann
made the remark about first-order differential
equations.
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Von Neumann’s insight

The obvious way to generate a sample from the
exponential distribution is to generate a sample
u ∈ (0, 1] from the uniform distribution and
then take

x = − ln(u) .

However, the evaluation of ln(u) is expensive
(relative to the cost of generating u by an
efficient uniform random number generator).
Also, this method does not generalize well to
the normal distribution, where we would need
to evaluate the inverse of the normal
distribution function

1√
2π

∫ x

−∞

exp(−t2/2) dt .

Von Neumann’s insight was that we can
generate a random sample using a small number
(on average) of samples from a uniform
distribution, and evaluation of G(x) at a small
number of points. There is no need to compute
any expensive special functions!
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Probability of a run

Suppose for the moment that 0 ≤ u1 = G ≤ 1.
Generate samples u2, u3, . . . from the uniform
distribution so long as the numbers are
decreasing, and then stop. In other words,
find n ≥ 1 such that

G = u1 > u2 > u3 > · · · > un ≤ un+1 . (1)

The probability that

G > u2 > u3 > · · · > un > un+1 is

Gn

n!
=

Prob(max(u2, . . . , un+1) < G)

n!
,

so the probability of (1) is

pn =
Gn−1

(n− 1)!
− Gn

n!
.

Check: p1 + p2 + · · · = 1 by telescoping series,
so the algorithm terminates with probability 1.

Exercise: The expected value of n is exp(G).
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The power series for exp(−G)

What is the probability that our final n is odd?
It is just

p1+p3+· · · = 1−G+
G2

2!
−G3

3!
+· · · = exp(−G) .

This suggests a rejection method for generating
a sample from the distribution with density
exp(−G(x)) on some interval [a, b]:

1. Generate uniform w ∈ [a, b] and set
u1 ← G(w).

2. Generate uniform u2, u3, . . . ∈ [0, 1] until
condition (1) is satisfied (un ≤ un+1).

3. If n is even, return to step 1 (i.e. reject w).

4. Return w (i.e. accept w).

This works because the probability that w is
accepted, i.e. the probability that n is odd at
step 3, is exactly exp(−G(w)).

9

An important condition

The algorithm only works correctly if
0 ≤ G(w) ≤ 1 on the interval w ∈ [a, b].

To apply the idea to the exponential or normal
distributions we have to split the infinite
interval [0, +∞) or (−∞, +∞) into a union of
finite intervals Ik. Provided the intervals Ik are
small enough, we can use the algorithm to
generate samples from each Ik.

Thus, first select k with the correct probability

∫

Ik

exp(−G(x)) dx ,

then use the Forsythe – von Neumann
algorithm to get a sample from Ik.

Minor detail: The function G(x) has to be
modified by addition of a constant to give the
appropriate function Gk(x) on the interval Ik.
For example, we could use (x2 − a2)/2 for the
normal distribution on [a, b], where 0 ≤ a < b
and b2 − a2 ≤ 2.

10

Exponential and normal distributions

For the exponential distribution, consider the
intervals

Ik = [(k − 1) ln 2, k ln 2) .

For convenience on a binary computer, our
sample should lie in Ik with probability 2−k,
k = 1, 2, . . . We can select k by counting the
leading zero bits in a uniform random number
(giving k − 1). Then we can apply a rejection
method to get a sample with the correct
distribution from Ik.

For the normal distribution, it is convenient to
randomly generate the sign, then consider the
interval [0,∞). We subdivide this interval into
intervals Ik = [ak−1, ak) such that a0 = 0 and

√

2

π

∫ ak

ak−1

exp(−x2/2) dx = 2−k

for k = 1, 2, . . ., w. It is easy to precompute a
table of the constants ak. The table is small,
since we can neglect probabilities 2−k if k is
greater than the wordlength w of the computer.
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Historical notes

For the exponential distribution, von Neumann
took intervals Ik = [k − 1, k) so the probability
of sampling from Ik is (e− 1)/ek. He did this
because he had a trick for combining the trials
with the selection of intervals. However, his
trick does not generalize to other distributions.

For the normal distribution, Forsythe used
intervals defined by a0 = 0 and

ak =
√

2k − 1 for k ≥ 1 .

Presumably he did this because then

a2
k − a2

k−1 = 2 for k ≥ 2 .

This choice of ak is what Sandra Forsythe used
in her implemention of the algorithm:

The correctness of this algorithm · · ·
(has) been confirmed in unpublished
experiments by A. I. Forsythe and
independently by J. H. Ahrens.

George Forsythe
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Comment

It is better to use the intervals that I defined, as
used in GRAND, because then we do not need
to store a table of probabilities (they are just
negative powers of 2). With my choice it can be
shown that

a2
k − a2

k−1 < 2 ln 2 < 1.39 for k ≥ 1 .

As well as reducing the table size, my choice
reduces the expected number of calls to the
uniform random number generator.
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Refinements

The algorithms proposed by Forsythe and von
Neumann were inefficient in the sense that they
used more uniform samples than necessary to
generate one sample from the exponential or
normal distribution.

The algorithm implemented by Sandra Forsythe
requires (on average) 4.04 uniform samples per
normal sample. For von Neumann’s algorithm
the corresponding constant is 5.88.

Ahrens and Dieter (1973) reduced the constant
4.04 to 2.54 (and even further at the expense of
larger tables and more complications).

In my 1974 paper describing GRAND I showed
how 4.04 could be reduced to 1.38 by using a
better subdivision of the infinite interval
[0, +∞) and by not wasting random bits.
For example, after step 2,

un+1 − un

1− un

is uniformly distributed and can be used later.
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Further refinements

In principle, by using larger tables, it is possible
to reduce the constant to 1 + ε for any ε > 0,
but this would not necessarily give a faster
algorithm. In practice 1.38 is small enough.
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Later developments

The idea of rejection methods was developed by
many people to give efficient algorithms for
sampling from a great variety of distributions –
see for example the books by Devroye (now
available online) and Knuth (Vol. 2).

Specifically for the normal distribution,
Forsythe’s method (as improved and
implemented in GRAND) is much faster than
earlier methods, such as the Box-Muller and
Polar methods.

There are now many different algorithms for the
normal distribution, but I think it is fair to say
that none are clearly better than GRAND.

The differences between the best algorithms are
small – often there is a tradeoff between space
and time, and the relative speeds depend on the
machine architecture as well as on the choice of
uniform random number generator.
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Wallace’s method

The only method that is clearly much faster
than GRAND is Wallace’s method, proposed in
1994 by Chris Wallace. It does not use a
uniform random number generator. Instead, a
pool of normally distributed numbers is
maintained and refreshed by performing
orthogonal transformations.

The key observation is that, if x is a vector of n
independent, normally distributed numbers,
then the probability density of x,

(2π)−n/2 exp
(

−(x2
1 + · · ·+ x2

n)/2
)

,

is a function of ||x||2. i.e. the distribution has
spherical symmetry. If follows that, if Q is an
n× n orthogonal matrix, then

y = Qx

is another vector of normally distributed
numbers, because ||y||2 = ||x||2.
Wallace’s method is interesting and fast, but
suffers from some statistical problems: see my
paper in the Wallace memorial, to appear
(available as a preprint).
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