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Introduction

In 2011 we1 published The Great Trinomial Hunt. In this talk I
will bring you up to date with recent results of the “hunt”.
Questions about the integers often suggest analogous (but in
many cases easier) questions about polynomials over finite
fields.
For example, the unique prime factorisation theorem for positive
integers corresponds to unique factorisation of polynomials into
irreducible polynomials (modulo multiplication by units).
There is a polynomial-time factorisation algorithm for
polynomials over finite fields, but no such polynomial-time
factorisation algorithm is known for the integers.

1Brent & Zimmermann, Notices of the AMS 58 (2011), 233–239.
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Polynomials over finite fields

We consider univariate polynomials P(x) over a finite field F .
The algorithms apply, with minor changes, for any small
positive characteristic, but in this talk we assume that the
characteristic is 2, and F = Z/2Z = GF(2).

P(x) is irreducible if it has no nontrivial factors. If P(x) is
irreducible of degree r , then [Gauss]

x2r
= x mod P(x).

Thus P(x) divides the polynomial Pr (x) = x2r − x . In fact,
Pr (x) is the product of all irreducible polynomials of degree d ,
where d runs over the divisors of r .
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Counting irreducible polynomials
Let N(d) be the number of irreducible polynomials of degree d .
Thus ∑

d |r

dN(d) = deg(Pr ) = 2r .

By Möbius inversion we see that

rN(r) =
∑
d |r

µ(d)2r/d .

Thus, the number of irreducible polynomials of degree r is

N(r) =
2r

r
+ O

(
2r/2

r

)
.

Since there are 2r polynomials of degree r , the probability that
a randomly selected polynomial is irreducible is ∼ 1/r → 0 as
r → +∞. Almost all polynomials over (fixed) finite fields are
reducible (unlike polynomials over the integers).
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Analogy

Irreducible polynomials are analogous to primes.
Polynomials of degree r are analogous to integers of r digits.
By the prime number theorem, the number of r -digit primes in
base 2 is about ∫ 2r

2r−1

dt
ln t

.

The Riemann Hypothesis implies an error term O(r2r/2) as
r → +∞ [von Koch].
On the other hand, we saw on the previous slide an
easily-proved error term O(r−12r/2) in the polynomial case.
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Representing finite fields, and primitive polynomials

Irreducible polynomials over finite fields are useful in several
applications. As one example, observe that, if P(x) is an
irreducible polynomial of degree r over GF(2), then

GF(2)[x ]/P(x) ∼= GF(2r ).

In other words, the ring of polynomials mod P(x) gives a
representation of the finite field with 2r elements.
If, in addition, x is a generator of the multiplicative group, that is
if every nonzero element of GF(2)[x ]/P(x) can be represented
as a power of x , then P(x) is said to be primitive.
Warning: there are several different meanings of “primitive” in
the literature. In the context of polynomials over GF(2) this
meaning seems to be standard.
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Primitive polynomials and shift registers

Primitive polynomials can be used to obtain linear feedback
shift registers (LFSRs) with maximal period 2r − 1, where r is
the degree of the polynomial. These have applications to
stream ciphers and pseudo-random number generators.

Testing primitivity can be difficult, because we need to know the
prime factorisation of 2r − 1. Of course, this is trivial if 2r − 1 is
prime (a Mersenne prime).

The number of primitive polynomials of degree r over GF(2) is

φ(2r − 1)

r
≤ N(r) ≤ 2r − 2

r
,

with equality when 2r − 1 is prime.
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Sparsity

In applications we usually want P(x) to be sparse, that is to
have only a small number of nonzero coefficients, for reasons
of efficiency. The binomial case is usually trivial, so in most
cases we want P(x) to be a trinomial

x r + xs + 1 , r > s > 0 .

In stating computational results we always assume that
s ≤ r/2, since for any trinomial T (x) = x r + xs + 1 there is a
“reciprocal” trinomial x r T (1/x) = x r + x r−s + 1 with the same
reducibility/primitivity properties as T (x).

Richard Brent Trinomials



Mersenne primes

A Mersenne prime is a prime of the form 2n − 1, for example
3,7,31,127,8191, . . .

There are conjectured to be infinitely many Mersenne primes,
and the number for n ≤ N is conjectured to be of order log N.

The GIMPS project is searching systematically for Mersenne
primes. So far 49 Mersenne primes are known, the largest
being

274207281 − 1 .

If 2n − 1 is prime we say that n is a Mersenne exponent. A
Mersenne exponent is necessarily prime, but not conversely
(e.g. 211 − 1 = 23× 89 so 11 is not a Mersenne exponent).
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Trinomials whose degree is a Mersenne exponent

In the following we consider mainly trinomials

T (x) = x r + xs + 1

where r > s > 0 and r is a Mersenne exponent (so 2r − 1 is
prime). If T (x) is irreducible it is necessarily primitive.
Primitive trinomials are analogous to primes of a special form.
Various properties can be conjectured using probabilistic
models, but nontrivial properties that can currently be proved
are rare.
A useful and nontrivial result on trinomials is Swan’s theorem.
Historical note: Swan (1962) rediscovered results of
Pellet (1878) and Stickelberger (1897), so the name of the
theorem depends on your nationality.
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Theorem 1 [Swan]

Let r > s > 0, and assume r + s is odd. Then
Tr ,s(x) = x r + xs + 1 has an even number of irreducible factors
over GF(2) in the following cases:
a) r even, r 6= 2s, rs/2 = 0 or 1 mod 4.
b) r odd, s not a divisor of 2r , r = ±3 mod 8.
c) r odd, s a divisor of 2r , r = ±1 mod 8.
In all other cases x r + xs + 1 has an odd number of irreducible
factors.

Remark
If both r and s are even, then Tr ,s is a square. If both r and s
are odd, we can apply the theorem to Tr ,r−s. Thus, Theorem 1
tells us the parity of the number of irreducible factors of any
trinomial over GF(2).
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Application of Swan’s theorem

For r an odd prime, and excluding the easily-checked cases
s = 2 or r − 2, case (b) of Swan’s theorem says that the
trinomial has an even number of irreducible factors, and hence
must be reducible, if r = ±3 mod 8.
Thus, we only need to consider those Mersenne exponents r
with r = ±1 mod 8.
Of the 48 known Mersenne exponents other than 2, there are
29 with r = ±1 mod 8 and 19 with r = ±3 mod 8.
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A condition for irreducibility

P(x) of degree r > 1 is irreducible iff

x2r
= x mod P(x)

and, for all prime divisors d of r , we have

GCD
(

x2r/d − x ,P(x)
)

= 1 .

The second condition is required to rule out the possibility that
P(x) is a product of irreducible factors of some degree(s)
k = r/d , where d > 1 and d |r .
In our examples r is a Mersenne exponent, hence prime, so the
second condition can be omitted, and P(x) is irreducible iff

x2r
= x mod P(x).
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A brief comment on algorithms

Unfortunately, there is no time to discuss algorithms for testing
irreducibility and factoring (reducible) polynomials over GF(2).
If you are interested in such algorithms, see the bibliography at
the end of this talk, and the slides related to “The Great
Trinomial Hunt” on my website http://maths-people.anu.
edu.au/~brent/talks.html#CARMA1

Our algorithms do not depend on the assumption that the
degree r is a Mersenne exponent. This assumption is only
required to deduce that an irreducible factor is primititive.
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Irreducible and primitive trinomials
We have given formulas for the number of irreducible or
primitive polynomials of degree r over GF(2), but there is no
known formula for the number of irreducible or primitive
trinomials.

Since the number of irreducible polynomials N(r) ≈ 2r/r , the
probability that a randomly chosen polynomial of degree r will
be irreducible is about 1/r .

It is plausible to assume that the same applies to trinomials.
There are r − 1 trinomials of degree r , so we might expect O(1)
of them to be irreducible. More precisely, we might expect a
Poisson distribution with some constant mean µ.

This plausible argument is too simplistic, as shown by Swan’s
theorem. However, we might expect a Poisson distribution in
the cases that are not ruled out by Swan’s theorem (i.e. the
cases r = ±1 mod 8).
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Implications of Swan’s Theorem

For r an odd prime, case (b) of Swan’s Theorem says that the
trinomial has an even number of irreducible factors, and hence
must be reducible, if r = ±3 mod 8, provided we exclude the
special cases s = 2 and r − s = 2.

For prime r = ±1 mod 8, the heuristic Poisson distribution
seems to apply [based on computations for prime r < 1000],
with mean µ ≈ 3. Similarly for primitive trinomials, with a
correction factor φ(2r − 1)/(2r − 2).
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Recent computational results

The history of the search for primitive trinomials is described in
our 2011 AMS Notices paper. Here we give new results for the
two Mersenne exponents found by GIMPS in 2013 and 2016.

r s date
57 885 161 none 25/1-3/4/2013
74 207 281 9 156 813, 9 999 621, 30 684 570 28/1-23/3/2016

Table: Three new primitive trinomials x r + xs + 1, s ≤ r/2.

Note that 57885161 ≡ 1 mod 8 so this exponent is not ruled out
by Swan’s theorem. This is the only known Mersenne exponent
for which Swan’s theorem permits a primitive trinomial but none
exists. This should not have been a surprise, because the
phenomenon occurs for other prime exponents, e.g. 311.
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Reproducibility — aka quality assurance

How can we be sure that we have found all the primitive
trinomials of a given degree r? In particular, how can we be
sure that there are no primitive trinomals of degree 57885161?
Our programs produce an easily-verified “certificate” for each
reducible trinomial T (x) = x r + xs + 1. The certificate is just an
encoding of a smallest nontrivial factor of T (x). To ensure
uniqueness (which is useful for program debugging), the
lexicographically least such factor is given if there are several
factors of equal smallest degree.
The certificates can be verified (much faster than the original
computation) using an independent NTL or Magma program.
We remark that earlier authors did not go to the trouble of
producing certificates of reducibility, and in at least one case a
primitive trinomial was missed because of a software error.

Richard Brent Quality assurance



The number of primitive trinomials of given degree
The table gives the precise number of primitive trinomials
x r + xs + 1 for given (Mersenne exponent) r and s ≤ r/2.
The known Mersenne exponents r > 3× 106 are listed.

degree r number notes
3 021 377 2
6 972 593 1

13 466 917 0 Swan’s thm
20 996 011 0 Swan’s thm
24 036 583 2
25 964 951 4
30 402 457 1
32 582 657 3
37 156 667 0 Swan’s thm
42 643 801 5
43 112 609 4
57 885 161 0 exceptional
74 207 281 3

Table: Counts of primitive trinomials of degree r
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Distribution of degrees of factors

In order to predict the expected behaviour of our algorithms, we
need to know the expected distribution of degrees of irreducible
factors. Our complexity estimates are based on the assumption
that trinomials of degree r behave like the set of all polynomials
of the same degree, up to a constant factor:

Assumption 1. Over all trinomials x r + xs + 1 of degree r over
GF(2), the probability πd that a trinomial has no nontrivial factor
of degree ≤ d is at most c/d , where c is a constant and
1 < d ≤ r/ ln r .

This assumption is plausible and in agreement with
experiments, though not proven.
Some empirical evidence for Assumption 1 in the case
r = 6 972 593 is given on the next slide. Results for other large
Mersenne exponents are similar.
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Statistics for r = 6972593

d dπd

2 1.33
3 1.43
4 1.52
5 1.54
6 1.60
7 1.60
8 1.67
9 1.64

10 1.65
100 1.77

1000 1.76
10000 1.88
100000 1.62
226887 2.08 (max)

r − 1 2.00
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Analogies

The following have similar distributions in the limit as n→∞:

1. Degree of smallest irreducible factor of a random monic
polynomial of degree n over a finite field (say GF(2)).

2. Size of smallest cycle in a random permutation of n
objects.

3. Size (in base-b digits) of smallest prime factor in a random
integer of n digits.
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Analogies — more details

More precisely, let Pd be the limiting probability that the
smallest irreducible factor has degree > d , that the smallest
cycle has length > d , or that the smallest prime factor has > d
digits, in cases 1–3 respectively. Then

Pd ∼ c/d as d →∞

(the constant c is different in each case).

For example, in case 3, let x = bd ; then

Pd =
∏

prime p<x

(
1− 1

p

)
∼ e−γ

ln x
=

(
e−γ

ln b

)
1
d

by the theorem of Mertens.
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Remarks on complexity

Using Assumption 1, we can show that the search for primitive
trinomials of Mersenne exponent degree r takes time

Õ(r2),

where the tilde indicates that logarithmic factors are neglected.
This is the same complexity (up to logarithmic factors) as the
verification of a single Mersenne exponent r . Thus GIMPS has
a harder task than we do. Whenever GIMPS finds a new
Mersenne exponent, we should be able to find the primitive
trinomials of that degree within a few months.
We remark that the correctness of our algorithms is
independent of Assumption 1. The assumption only affects the
expected running time of the algorithms.
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The largest smallest factor

For each of the 37 103 637 reducible trinomials of degree
r = 74 207 281, we know a smallest factor, and these factors
have been verified using Magma.
The largest smallest factor F is a factor of degree
d = 19 865 299 of the trinomial T = x r + xs + 1 with
s = 9 788 851.
We can not display F explicitly, since it is a dense polynomial of
degree d .
Since 5d > r , it follows from Swan’s theorem that T has
precisely three irreducible factors. We are currently searching
for the second-largest factor, which will suffice to give the
complete factorisation of T .
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