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Abstract. By making use of duality mappings and the Bregman distance, we propose a regu-
larizing Levenberg-Marquardt scheme to solve nonlinear inverse problems in Banach spaces, which
is an extension of the one proposed in [6] in Hilbert space setting. The method consists of two
components: an outer Newton iteration and an inner scheme. The inner scheme involves a family
of convex minimization problems in Banach spaces from which a suitable criterion is used to select
one to produce the increments. The outer iteration is then terminated by a discrepancy principle.
Under certain conditions, we establish the convergence of the method.
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1. Introduction. In this paper we consider the nonlinear operator equations

F (x) = y (1.1)

arising from nonlinear inverse problems in Banach spaces, where F : D(F ) ⊂ X → Y
is a nonlinear Fréchet differentiable operator between two Banach spaces X and Y
with domain D(F ). A characteristic property of such equations is their ill-posedness
in the sense that their solutions are not stable with respect to the perturbation of
data. Due to errors in measurement, one never has exact data but only noisy data
are available in practical applications. Therefore, it is an important issue to construct
stable approximate solutions of (1.1) from noisy data.

Many methods have been developed for solving nonlinear inverse problems in
Hilbert spaces, see [1, 6, 7, 10, 11, 14, 16] and the references therein. However,
methods in Hilbert spaces may not produce good results since they tend to smooth
the solutions and thus destroy the special structure in the exact solution. On the other
hand, formulating inverse problems in Hilbert spaces may restrict the consideration
to smaller spaces which place extra constraints on the exact solution. Thus, in some
applications, it is more natural to formulate inverse problems and develop stable
algorithms in the framework of Banach spaces.

Due to its variational formulation, Tikhonov regularization can be easily adapted
to solve nonlinear inverse problems in Banach spaces and some convergence analysis,
including the derivation of convergence rates, has been carried out, see [15] and the
references therein. Since the numerical realization requires to solve several non-convex
minimization problems, Tikhonov regularization in general is rather expensive. Due
to their straightforward implementation, the development of iterative regularization
methods in Banach spaces has received more and more attention in recent years. By
making use of duality mappings and the Bregman distance, several iterative regular-
ization methods in Hilbert spaces, including the iteratively regularized Gauss-Newton
method, the nonlinear Landweber iteration and some variants, have been extended in
[8, 12, 13] to the Banach space setting.

Motivated by the inexact Newton methods in [4] for well-posed problems, Hanke
proposed in [6] his regularizing Levenberg-Marquardt scheme to solve nonlinear inverse
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problems in Hilbert spaces. His scheme has been proved to be an efficient method
and has stimulated a lot of successive work; in particular, a family of inexact Newton
regularizations have been proposed in [16] in Hilbert space setting. In this paper, by
using the duality mappings and the Bregman distance, we will propose an extension
of the regularizing Levenberg-Marquardt scheme to the Banach space setting. The
method consists of two components: an outer Newton iteration and an inner scheme
providing increments. The inner scheme involves a family of convex minimization
problems in Banach spaces from which we can select one by a suitable criterion to
produce the increment. The outer iteration is then terminated by a discrepancy
principle.

This paper is organized as follows. In Section 2 we will briefly review some basic
geometric aspects of Banach spaces. In Section 3, by making use of duality map-
pings and Bregman distance, we will formulate the regularizing Levenberg-Marquardt
scheme in Banach spaces and show that the method is well-defined. Finally in Section
4 we will show that our method indeed is a regularization method by establishing the
convergence result.

2. Preliminaries. Let X and Y be two Banach spaces whose norms are denoted
by ∥ · ∥. We will use X ∗ and Y∗ to denote their dual spaces respectively. Given x ∈ X
and x∗ ∈ X ∗ we will write ⟨x∗, x⟩ = x∗(x) for the duality pair. We will use “→”
and “⇀” to denote the strong convergence and the weak convergence respectively.
By L(X ,Y) we will denote for the space of all continuous linear operators from X
to Y. For any T ∈ L(X ,Y), we will use T ∗ : Y∗ → X ∗ to denote its dual, i.e.
⟨T ∗y∗, x⟩ = ⟨y∗, Tx⟩ for any x ∈ X and y∗ ∈ Y∗.

We first review some geometric aspects of Banach spaces . A Banach space X is
called strictly convex if for any x1, x2 ∈ X with x1 ̸= x2 and ∥x1∥ = ∥x2∥ = 1 there
holds ∥x1 + x2∥ < 2, and it is called uniformly convex if δX (ϵ) > 0 for all 0 < ϵ ≤ 2,
where δX (ϵ) is the the modulus of convexity of X defined by

δX (ϵ) := inf {2− ∥x+ x̄∥ : ∥x∥ = ∥x̄∥ = 1, ∥x− x̄∥ ≥ ϵ} .

A Banach space X is called smooth if for every x ̸= 0 there is a unique x∗ ∈ X∗ such

that ∥x∗∥ = 1 and ⟨x∗, x⟩ = ∥x∥, and it is called uniformly smooth if limτ→0
ρX (τ)

τ = 0,
where ρX (τ) is the the modulus of smoothness of X defined by

ρX (τ) := sup {∥x+ x̄∥+ ∥x− x̄∥ − 2 : ∥x∥ = 1, ∥x̄∥ ≤ τ} , τ ≥ 0

It is clear that a uniformly convex Banach space must be strictly convex and a uni-
formly smooth Banach space must be smooth. Moreover, uniformly smooth or uni-
formly convex Banach spaces are reflexive.

Given 1 < p < ∞, the set-valued mapping Jp : X → 2X
∗
defined by

Jp(x) = {x∗ ∈ X ∗ : ∥x∗∥ = ∥x∥p−1 and ⟨x∗, x⟩ = ∥x∥p}

is called the duality mapping with gauge function t → tp−1. Jp in general is multi-
valued and equals the subdifferential of the convex functional x → ∥x∥p/p. However,
in certain Banach spaces, Jp can be single-valued and admit some nice properties.
The following lemma collects some important facts which will be used in this paper.

Lemma 2.1. Let X be a Banach space.
(a) If X is strictly convex, then every duality mapping Jp of X is strictly mono-

tone, i.e. ⟨x∗
1 − x∗

2, x1 − x2⟩ > 0 for all x1, x2 ∈ X with x1 ̸= x2 and x∗
1 ∈ Jp(x1),

x∗
2 ∈ Jp(x2).
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(b) If X is uniformly convex, then for any sequence {xn} ⊂ X satisfying xn ⇀ x
and ∥xn∥ → ∥x∥ there holds ∥xn − x∥ → 0 as n → ∞.

(c) If X is smooth, then every duality mapping Jp of X is single valued.
(d) If X is uniformly smooth, then every Jp is uniformly continuous on bounded

subsets of X .
The proof of these results can be found in [2] where one can find more interesting

facts on the duality mappings together with examples of uniformly smooth and uni-
formly convex Banach spaces including the sequence spaces lp, the Lebesgue spaces
Lp and the Sobolev spaces W k,p with 1 < p < ∞.

In order to formulate the method in Banach spaces and study the convergence
property, instead of the norm it is more convenient to use the Bregman distance.
When X is smooth, the Bregman distance is defined as

∆p(x̄, x) :=
1

p
∥x̄∥p − 1

p
∥x∥p − ⟨Jp(x), x̄− x⟩. (2.1)

It is easy to show for any x, x1, x2 ∈ X that

∆p(x, x1)−∆p(x, x2) = −∆p(x1, x2) + ⟨Jp(x1)− Jp(x2), x1 − x⟩. (2.2)

Let q be the number conjugate to p, i.e. 1/p+1/q = 1. Then, by using the properties
of the duality mapping Jp and the Young’s inequality we have

∆p(x̄, x) ≥
1

p
∥x̄∥p + 1

q
∥x∥p − ∥x∥p−1∥x̄∥ ≥ 0.

Thus the Bregman distance is nonnegative. The Bregman distance is in general not a
metric since it does not satisfy the symmetry and the triangle inequality. However, in
a smooth and uniformly convex Banach space the Bregman distance can be used to
get information with respect to the the norm. By making use of the characterization
of uniformly convex Banach spaces in [18], the following result has been proved in
[17].

Lemma 2.2. Let X be a smooth and uniformly convex Banach space. Then for
any x ∈ X and sequence {xn} ⊂ X the following hold:

(a) The boundedness of {∆p(xn, x)} implies the boundedness of {∥xn∥}.
(b) limn→∞ ∥xn−x∥ = 0 ⇐⇒ limn→∞ ∆p(x, xn) = 0 ⇐⇒ limn→∞ ∆p(xn, x) = 0.
(c) {xn} is a Cauchy sequence if and only if ∆p(xm, xn) → 0 as m,n → ∞.

3. The method. We consider the equation (1.1) arising from nonlinear inverse
problems in Banach spaces, where F : D(F ) ⊂ X → Y is a nonlinear operator
between two Banach spaces X and Y with domain D(F ). Such equations are ill-
posed in general. Due to the error in measurements, instead of y the only available
data is an approximation yδ satisfying

∥yδ − y∥ ≤ δ (3.1)

with a given small noise level δ > 0. We will use the noisy data yδ to construct a
stable approximate solution to the equation (1.1). We will work under the following
conditions.

Assumption 3.1. (a) X and Y are Banach spaces with X being uniformly convex
and uniformly smooth and Y being smooth.

(b) F is Fréchet differentiable over D(F ) and the map x → F ′(x) is continuous
from D(F ) ⊂ X to L(X ,Y), where F ′(x) denotes the Fréchet derivative of F at x.
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(c) The equation (1.1) has a solution x†. There is a number ρ > 0 such that

Bρ(x
†,∆p) := {x ∈ X : ∆p(x, x

†) ≤ ρ} ⊂ D(F )

and there is a constant 0 ≤ η < 1 such that

∥F (x̄)− F (x)− F ′(x)(x̄− x)∥ ≤ η∥F (x̄)− F (x)∥

for all x, x̄ ∈ Bρ(x
†,∆p).

Now we are ready to formulate the method for solving (1.1) stably. We first take
an initial guess xδ

0 := x0 ∈ Bρ(x
†,∆p). Assume that xδ

n is the current iterate. Then
the linearized equation around xδ

n is

F ′(xδ
n)(x− xδ

n) = yδ − F (xδ
n).

For each α > 0 we define xn(α, y
δ) to be the minimizer of the convex minimization

problem

min
x∈X

{
1

r
∥yδ − F (xδ

n)− F ′(xδ
n)(x− xδ

n)∥r + α∆p(x, x
δ
n)

}
, (3.2)

where 1 < p, r < ∞. We then define αn(y
δ) > 0 to be the root of the equation

∥yδ − F (xδ
n)− F ′(xδ

n)(xn(α, y
δ)− xδ

n)∥ = µ∥yδ − F (xδ
n)∥ (3.3)

with some 0 < µ < 1 and define xδ
n+1 := xn(αn(y

δ), yδ). The iteration is then
terminated by the discrepancy principle

∥yδ − F (xδ
nδ
)∥ ≤ τδ < ∥yδ − F (xδ

n)∥

for some τ > 1, which outputs an integer nδ. We will use xδ
nδ

to approximate a
solution of (1.1).

We remark that when X and Y are Hilbert spaces and p = r = 2, our method
reduces to the regularizing Levenberg-Marquardt scheme proposed in [6] and each
minimizer xn(α, y

δ) can be written explicitly. In the general Banach space setting,
xn(α, y

δ) does not have an explicit formula. This increases the difficulty in conver-
gence analysis. By making use of the duality mapping and the Bregman distance, in
this section we will show that our method is well-defined, and in Section 4 we will
show that xδ

nδ
indeed converges to a solution of (1.1) as δ → 0.

Lemma 3.1. Let Assumption 3.1 (a) and (b) hold. Then for each α > 0, xn(α, y
δ)

is uniquely determined and satisfies the equation

α
(
Jp(xn(α, y

δ))− Jp(x
δ
n)
)

= F ′(xδ
n)

∗Jr
(
yδ − F (xδ

n)− F ′(xδ
n)(xn(α, y

δ)− xδ
n)
)
, (3.4)

where Jr : Y → Y∗ denotes the duality mapping with the gauge function t → tr−1.
Moreover, the map α → xn(α, y

δ) is continuous over (0,∞), and the function

α → ∥yδ − F (xδ
n)− F ′(xδ

n)(xn(α, y
δ)− xδ

n)∥ (3.5)

is continuous and monotonically increasing over (0,∞).
Proof. Recall that any bounded sequence in a reflexive Banach space has a weak

convergent subsequence. By using the weak lower semi-continuity of the norms in
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Banach spaces, it is easy to show the existence of xn(α, y
δ) for each α > 0. Since

the smoothness of X and Y guarantees the differentiability of the functionals x →
∥x∥p/p and y → ∥y∥r/r over X and Y respectively, as a minimizer xn(α, y

δ) must
satisfy the equation (3.4). In view of the uniformly convexity of X , the uniqueness
of xn(α, y

δ) follows easily. The continuity of the map α → xn(α, y
δ) follows from

the same argument in [9, Section 2]. Finally the monotonicity of (3.5) follows from a
standard argument in [3].

Lemma 3.2. Let Assumption 3.1 hold with 0 ≤ η < 1. Let η < µ < 1 and
τ > (1 + η)/(µ − η). Assume that xδ

n ∈ Bρ(x
†,∆p) is well-defined with 0 ≤ n < nδ.

Then for any α > 0 such that

∥yδ − F (xδ
n)− F ′(xδ

n)(xn(α, y
δ)− xδ

n)∥ ≥ µ∥yδ − F (xδ
n)∥ (3.6)

there hold

∆p(x∗, xn(α, y
δ)) ≤ ∆p(x∗, x

δ
n) (3.7)

and

1

α
∥yδ − F (xδ

n)∥r ≤ C0

(
∆p(x∗, x

δ
n)−∆p(x∗, xn(α, y

δ))
)
, (3.8)

where x∗ denotes any solution of (1.1) in Bρ(x
†,∆p) and C0 = τ/[τµ− (1+η+τη)].

Proof. For simplicity of presentaton, we write xn(α) := xn(α, y
δ) and Tn :=

F ′(xδ
n). By using the identity (2.2) and the nonnegativity of the Bregman distance,

we obtain

∆p(x∗, xn(α))−∆p(x∗, x
δ
n) ≤ ⟨Jp(xn(α))− Jp(x

δ
n), xn(α)− x∗⟩.

Since xn(α) satisfies the equation (3.4), we have

∆p(x∗, xn(α))−∆p(x∗, x
δ
n)

≤ 1

α
⟨Jr(yδ − F (xδ

n)− Tn(xn(α)− xδ
n)), Tn(xn(α)− x∗)⟩.

We can write

Tn(xn(α)− x∗) = [yδ − F (xδ
n)− Tn(x∗ − xδ

n)]− [yδ − F (xδ
n)− Tn(xn(α)− xδ

n)].

Then, by using the property of the duality mapping Jr, we obtain

∆p(x∗, xn(α))−∆p(x∗, x
δ
n)

≤ 1

α
∥yδ − F (xδ

n)− Tn(xn(α)− xδ
n)∥r−1∥yδ − F (xδ

n)− Tn(x∗ − xδ
n)∥

− 1

α
∥yδ − F (xδ

n)− Tn(xn(α)− xδ
n)∥r.

By using (3.1) and Assumption 3.1 (c), we have

∥yδ − F (xδ
n)− Tn(x∗ − xδ

n)∥ ≤ (1 + η)δ + η∥yδ − F (xδ
n)∥.

Since n < nδ, we have ∥yδ − F (xδ
n)∥ > τδ. Thus

∥yδ − F (xδ
n)− Tn(x∗ − xδ

n)∥ ≤ 1 + η + τη

τ
∥yδ − F (xδ

n)∥.
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Therefore

∆p(x∗,xn(α))−∆p(x∗, x
δ
n)

≤ 1 + η + τη

τα
∥yδ − F (xδ

n)− Tn(xn(α)− xδ
n)∥r−1∥yδ − F (xδ

n)∥

− 1

α
∥yδ − F (xδ

n)− Tn(xn(α)− xδ
n)∥r.

In view of the inequality (3.6), we thus obtain

∆p(x∗, xn(α))−∆p(x∗, x
δ
n) ≤ −c0

α
∥yδ − F (xδ

n)− Tn(xn(α)− xδ
n)∥r.

where c0 := 1− (1 + η + τη)/(τµ). According to the conditions on µ and τ , we have
c0 > 0. Thus, in view of (3.6) again, it follows that

∆p(x∗, xn(α))−∆p(x∗, x
δ
n) ≤ −c0µ

α
∥yδ − F (xδ

n)∥r.

This implies (3.7) and (3.8) immediately.
Lemma 3.3. Let Assumption 3.1 hold with 0 ≤ η < 1/3. Let η < µ < 1 − 2η

and τ > (1 + η)/(µ − η). Then xδ
n are well-defined for all 0 ≤ n ≤ nδ and the

method terminates after nδ < ∞ iterations with nδ = O(1 + | log δ|). Moreover, for
any solution x∗ of (1.1) in Bρ(x

†,∆p) there hold

∆p(x∗, x
δ
n+1) ≤ ∆p(x∗, x

δ
n) (3.9)

and

1

αn(yδ)
∥yδ − F (xδ

n)∥r ≤ C0

(
∆p(x∗, x

δ
n)−∆p(x∗, x

δ
n+1)

)
(3.10)

for all 0 ≤ n < nδ.
Proof. We will show by induction that xδ

n are well-defined for all 0 ≤ n ≤ nδ.
The case n = 0 is trivial. Now we assume that xδ

n is well-defined for some 0 ≤ n < nδ

and show that xδ
n+1 is also well-defined.

We first show the existence of αn := αn(y
δ). By the minimality of xn(α, y

δ) it is
easy to see that ∆p(xn(α, y

δ), xδ
n) → 0 as α → ∞. This and Lemma 2.2 (b) imply

that xn(α, y
δ) → xδ

n as α → ∞. Consequently, the left hand side of (3.3) is greater
than its right hand side for large α. If (3.3) does not have a positive root, then (3.6)
holds for all α > 0. Consequently, it follows from (3.8) that

∥yδ − F (xδ
n)∥r ≤ C0α∆p(x∗, x

δ
n)

for all α > 0. Taking α → 0 yields yδ = F (xδ
n) which is absurd since n < nδ implies

∥yδ − F (xδ
n)∥ > τδ.

Next we will show that αn is uniquely determined. Let α′
n > 0 be another root

of (3.3). Then

∥yδ − F (xδ
n)− F ′(xδ

n)(xn(α, y
δ)− xδ

n)∥ = µ∥yδ − F (xδ
n)∥ (3.11)

for α = α′
n and αn. This together with the minimality of xn(αn, y

δ) and xn(α
′
n, y

δ)
implies that

∆p(xn(αn, y
δ), xδ

n) = ∆p(xn(α
′
n, y

δ), xδ
n). (3.12)
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In view of (3.11) and (3.12), it follows that xn(αn, y
δ) is the minimizer of the mini-

mization problem (3.2) with α = αn and α′
n. Therefore we have from (3.4) that

α
(
Jp(xn(αn, y

δ))− Jp(x
δ
n)
)
= F ′(xδ

n)
∗Jr

(
yδ − F (xδ

n)− F ′(xδ
n)(xn(αn, y

δ)− xδ
n)
)

for α = αn and α′
n, which implies that Jp(xn(αn, y

δ)) − Jp(x
δ
n) = 0. Since X is

strictly convex, it follows from Lemma 2.1 (a) that the duality mapping Jp is strictly
monotone. Therefore xn(αn, y

δ) = xδ
n and thus it follows from (3.11) that

∥yδ − F (xδ
n)∥ = µ∥yδ − F (xδ

n)∥.

Since 0 < µ < 1, this forces yδ = F (xδ
n) which is a contradiction.

Since αn := αn(y
δ) > 0 is uniquely determined, xδ

n+1 is therefore well-defined.
The inequalities (3.9) and (3.10) follow from Lemma 3.2.

Finally we show that nδ is finite by a standard argument from [6]. By Assumption
3.1 (c) and the definition of xδ

n+1 we have for all 0 ≤ n < nδ that

∥yδ − F (xδ
n+1)∥ ≤ ∥yδ − F (xδ

n)− F ′(xδ
n)(x

δ
n+1 − xδ

n)∥
+ ∥F (xδ

n+1)− F (xδ
n)− F ′(xδ

n)(x
δ
n+1 − xδ

n)∥
≤ µ∥yδ − F (xδ

n)∥+ η∥F (xδ
n+1)− F (xδ

n)∥
≤ (µ+ η)∥yδ − F (xδ

n)∥+ η∥yδ − F (xδ
n+1)∥.

This implies that ∥yδ − F (xδ
n+1)∥ ≤ µ+η

1−η ∥y
δ − F (xδ

n)∥ and hence

∥yδ − F (xδ
n)∥ ≤

(
µ+ η

1− η

)n

∥yδ − F (x0)∥, 0 ≤ n < nδ. (3.13)

If nδ = ∞, then we must have ∥yδ − F (xδ
n)∥ > τδ for all n. But the inequality (3.13)

implies ∥yδ − F (xδ
n)∥ → 0 as n → ∞ since (µ + η)/(1 − η) < 1. Therefore nδ < ∞.

Now we take n = nδ − 1 in (3.13) and obtain (µ+η
1−η )

nδ−1∥yδ − F (x0)∥ > τδ. This

implies nδ = O(1 + | log δ|).

4. Convergence analysis. In this section we will show that xδ
nδ

converges to
a solution of (1.1) as δ → 0. We start with the consideration on the approximate
solutions {xn} corresponding to the noise-free case which are defined as follows: We
take the same x0 as the initial guess. Assume xn is the current iterate. If F (xn) = y,
then we define xn+1 := xn; otherwise, for each α > 0 we define xn(α, y) to be the
minimizer of the minimization problem

min
x∈X

{
1

r
∥y − F (xn)− F ′(xn)(x− xn)∥r + α∆p(x, xn)

}
,

take αn(y) to be the root of the equation

∥y − F (xn)− F ′(xn)(xn(α, y)− xn)∥ = µ∥y − F (xn)∥

and define xn+1 := xn(αn(y), y). We will show that {xn} converges to a solution of
(1.1) as n → ∞.

Lemma 4.1. Let Assumption 3.1 hold with 0 ≤ η < 1/3 and let η < µ < 1− 2η.
Then xn is well-defined for all n and converges to a solution x∗ of (1.1) in Bρ(x

†,∆p)
as n → ∞. If x† is the unique solution of (1.1) in Bρ(x

†,∆p), then xn → x† as
n → ∞.
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Proof. By the similar proof of Lemma 3.3, it is easy to show that {xn} is well-
defined and for all n there hold

∆p(x
†, xn+1) ≤ ∆p(x

†, xn), (4.1)

1

αn(y)
∥y − F (xn)∥r ≤ 1

µ− η

(
∆p(x

†, xn)−∆p(x
†, xn+1)

)
(4.2)

and

∥y − F (xn+1)∥ ≤ µ+ η

1− η
∥y − F (xn)∥. (4.3)

Now we show that {xn} is a Cauchy sequence. For 0 ≤ l < m < ∞ we have from
(2.2) that

∆p(xm, xl) = ∆p(x
†, xl)−∆p(x

†, xm) + ⟨Jp(xm)− Jp(xl), xm − x†⟩. (4.4)

Let Tn := F ′(xn) and recall that xn+1 satisfies the equation

αn(y) (Jp(xn+1)− Jp(xn)) = T ∗
nJr (y − F (xn)− Tn(xn+1 − xn)) ,

we have, with the help of the property of the duality mapping Jr, that

⟨Jp(xm)− Jp(xl), xm − x†⟩ =
m−1∑
n=l

⟨Jp(xn+1)− Jp(xn), xm − x†⟩

=

m−1∑
n=l

1

αn(y)
⟨Jr(y − F (xn)− Tn(xn+1 − xn)), Tn(xm − x†)⟩

≤
m−1∑
n=l

1

αn(y)
∥y − F (xn)− Tn(xn+1 − xn)∥r−1∥Tn(xm − x†)∥.

By the triangle inequality ∥Tn(xm − x†)∥ ≤ ∥Tn(xn − x†)∥ + ∥Tn(xm − xn)∥ and
Assumption 3.1 (c), we have

∥Tn(xm − x†)∥ ≤ (1 + η) (∥y − F (xn)∥+ ∥F (xn)− F (xm)∥)
≤ (1 + η) (2∥y − F (xn)∥+ ∥y − F (xm)∥) .

Since (µ+η)/(1−η) < 1, the inequality (4.3) implies that {∥y−F (xn)∥}monotonically
decreases to 0. Thus

∥Tn(xm − x†)∥ ≤ 3(1 + η)∥y − F (xn)∥, 0 ≤ n ≤ m.

Therefore

⟨Jp(xm)− Jp(xl), xm − x†⟩

≤ 3(1 + η)

m−1∑
n=l

1

αn(y)
∥y − F (xn)− Tn(xn+1 − xn)∥r−1∥y − F (xn)∥

= 3(1 + η)µr−1
m−1∑
n=l

1

αn(y)
∥y − F (xn)∥r.
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In view of (4.2), we obtain with c1 := 3(1 + η)µr−1/(µ− η) that

⟨Jp(xm)− Jp(xl), xm − x†⟩ ≤ c1(∆p(x
†, xl)−∆p(x

†, xm)).

Hence, in view of (4.4), it follows

∆p(xm, xl) ≤ (1 + c2)
(
∆p(x

†, xl)−∆p(x
†, xm)

)
.

This together with the monotonicity result (4.1) implies that ∆p(xm, xl) → 0 as
l,m → ∞. Therefore, it follows from Lemma 2.2 (c) that {xn} is a Cauchy sequence
and thus xn → x∗ as n → ∞ for some x∗ ∈ Bρ(x

†,∆p) ⊂ X . Since F (xn) → y as
n → ∞ and F is continuous, we have F (x∗) = y. The proof is therefore complete.

We define n∗ to be the first integer such that F (xn∗) = y; if such an integer does
not exist, we take n∗ = ∞. If n∗ < ∞, then the definition of {xn} implies xn = xn∗

for all n ≥ n∗, and thus xn∗ = x∗, where x∗ is the solution of (1.1) given by Lemma
3.3.

Lemma 4.2. Let the conditions in Lemma 3.3 hold. Then for each fixed 0 ≤ n ≤
n∗ there holds xδ

n → xn as yδ → y.

Proof. We will show this result by induction. It is trivial when n = 0 since
xδ
0 = x0. Now we assume that the conclusion holds for some n < n∗ and show that

the conclusion holds also for n+ 1.

As the first step, we will show that xn(α, y
δ) → xn(α0, y) if α → α0 and yδ → y

for some α0 > 0. We will adapt the arguments from [5, 9]. For simplicity of exposition,
we set gδn := yδ − F (xδ

n) and gn := y − F (xn). Then by the induction hypothesis
xδ
n → xn and the continuity of F we have gδn → gn as yδ → y. By the minimality of

xn(α, y
δ) we have

α∆p(xn(α, y
δ), xδ

n) ≤
1

r
∥yδ − F (xδ

n)∥r.

This implies the boundedness of {∆p(xn(α, y
δ), xδ

n)} and hence the boundedness of
{∥xn(α, y

δ)∥} by Lemma 2.2 (a). Since X is reflexive, by taking a subsequence if
necessary, we may assume that xn(α, y

δ) ⇀ x̄n as α → α0 and yδ → y for some
x̄n ∈ X . Since xδ

n → xn and x → F ′(x) is continuous, we have F ′(xδ
n) → F ′(xn).

This together with the weak convergence of xn(α, y
δ) to x̄n implies

gδn − F ′(xδ
n)

(
xn(α, y

δ)− xδ
n

)
⇀ gn − F ′(xn)(x̄n − xn)

as α → α0 and yδ → y. Recall that the uniformly smoothness of X implies the
continuity of Jp, see Lemma 2.1 (d), we therefore have ⟨Jp(xδ

n), xn(α, y
δ) − xδ

n⟩ →
⟨Jp(xn), x̄n − xn⟩ as α → α0 and yδ → y. Thus, by the weak lower semi-continuity of
the norms in Banach spaces, we can obtain

∆p(x̄n, xn) ≤ lim inf ∆p

(
xn(α, y

δ), xδ
n

)
(4.5)

and

∥gn − F ′(xn)(x̄n − xn)∥ ≤ lim inf ∥gδn − F ′(xδ
n)

(
xn(α, y

δ)− xδ
n

)
∥. (4.6)

Therefore, in view of the minimality of xn(α, y
δ) and the induction hypothesis xδ

n →
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xn, we obtain

1

r
∥gn − F ′(xn) (x̄n − xn) ∥r + α0∆p(x̄n, xn)

≤ lim inf

{
1

r
∥gδn − F ′(xδ

n)
(
xn(α, y

δ)− xδ
n

)
∥r + α∆p

(
xn(α, y

δ), xδ
n

)}
≤ lim sup

{
1

r
∥gδn − F ′(xδ

n)
(
xn(α0, y)− xδ

n

)
∥r + α∆p

(
xn(α0, y), x

δ
n

)}
=

1

r
∥gn − F ′(xn) (xn(α0, y)− xn) ∥r + α0∆p (xn(α0, y), xn) .

By the minimality of xn(α0, y) and its uniqueness, we must have x̄n = xn(α0, y) and
thus xn(α, y

δ) ⇀ xn(α0, y) as α → α0 and yδ → y.
Next we will show that

∆p

(
xn(α, y

δ), xδ
n

)
→ ∆p(xn(α0, y), xn) (4.7)

as α → α0 and yδ → y. Let

a := lim sup∆p

(
xn(α, y

δ), xδ
n

)
and b := ∆p(xn(α0, y), xn).

According to (4.5), it suffices to show that a ≤ b. Assume to the contrary that a > b.
Then we can find subsequences {αj} and {yδj} with αj → α0 and yδj → y as j → ∞
such that

∆p

(
xn(αj , y

δj ), xδj
n

)
≥ lim sup∆p

(
xn(α, y

δ), xδ
n

)
− a− b

4
(4.8)

and

1

r
∥gδjn − F ′(xδj

n )
(
xn(αj , y

δj )− xδj
n

)
∥r

≥ lim inf
1

r
∥gδn − F ′(xδ

n)(xn(α, y
δ)− xδ

n)∥r −
α0(a− b)

4
. (4.9)

Therefore, by using (4.6), (4.8) and (4.9), we obtain

1

r
∥gn − F ′(xn) (xn(α0, y)− xn) ∥r + αj∆p(xn(α0, y), xn)

≤ lim inf
1

r
∥gδn − F ′(xδ

n)
(
xn(α, y

δ)− xδ
n

)
∥r + αj lim sup∆p

(
xn(α, y

δ), xδ
n

)
− αj(a− b)

≤ 1

r
∥gδjn − F ′(xδj

n )
(
xn(αj , y

δj )− xδj
n

)
∥r + αj∆p

(
xn(αj , y

δj ), xδj
n

)
− (3αj − α0)(a− b)

4

Since x
δj
n → xn, we have for large j that

1

r
∥gδjn − F ′(xδj

n )
(
xn(α0, y)− xδj

n

)
∥r + αj∆p(xn(α0, y), x

δj
n )

≤ 1

r
∥gδjn − F ′(xδj

n )
(
xn(αj , y

δj )− xδj
n

)
∥r + αj∆p

(
xn(αj , y

δj ), xδj
n

)
− α0(a− b)

4
.
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Since α0(a − b) > 0, this contradicts to the minimality of xn(αj , y
δj ). We therefore

obtain (4.7). With the help of xδ
n → xn, the continuity of Jp and the fact xn(α, y

δ) ⇀
xn(α0, y), then we can conclude that ∥xn(α, y

δ)∥ → ∥xn(α0, y)∥ as α → α0 and
yδ → y. Since X is uniformly convex, it follows from Lemma 2.1 (b) that ∥xn(α, y

δ)−
xn(α0, y)∥ → 0 as α → α0 and yδ → y.

As the second step, we will show that αn(y
δ) → αn(y) as y

δ → y. Let

αn := lim inf αn(y
δ), ᾱn := lim supαn(y

δ).

Then 0 ≤ αn ≤ ᾱn ≤ ∞. If αn < αn(y), then there exists a sequence {yδj} satisfying
yδj → y such that αn(y

δj ) ≤ (αn + αn(y))/2. By the monotonicity of the function
(3.5) and the definition of αn(y

δ) we have for all (αn + αn(y))/2 ≤ α ≤ αn(y) that

∥yδj − F (xδj
n )− F ′(xδj

n )(xn(α, y
δj )− xδj

n )∥ ≥ µ∥yδj − F (xδj
n )∥

Now we take j → ∞, use the induction hypothesis xδ
n → xn and the fact xn(α, y

δ) →
xn(α, y). It then follows that

∥y − F (xn)− F ′(xn)(xn(α, y)− xn)∥ ≥ µ∥y − F (xn)∥

for all (αn + αn(y))/2 ≤ α ≤ αn(y). Since the above inequality becomes equality at
α = αn(y), and since the function

α → ∥y − F (xn)− F ′(xn)(xn(α, y)− xn)∥

is monotonically increasing, we must have

∥y − F (xn)− F ′(xn)(xn(α, y)− xn)∥ = µ∥y − F (xn)∥

for all (αn + αn(y))/2 ≤ α ≤ αn(y). This is a contradiction, since F (xn) ̸= y implies
that αn(y) is the unique root of the above equation. Therefore αn ≥ αn(y). By a
similar argument we can show that ᾱn ≤ αn(y). Hence αn = ᾱn = αn(y) which
implies limαn(y

δ) = αn(y).
Combining the above two steps, we therefore obtain xδ

n+1 = xn(αn(y
δ), yδ) →

xn(αn(y), y) = xn+1 as yδ → y. The proof is thus complete.
Now we can conclude this paper by giving the convergence result on the regular-

izing Levenberg-Marquardt scheme in Banach spaces.
Theorem 4.3. Let Assumption 3.1 hold with 0 ≤ η < 1/3. Let η < µ < 1 − 2η

and τ > (1+η)/(µ−η). Then the regularizing Levenberg-Marquardt scheme in Banach
spaces is well-defined and terminates after nδ < ∞ iteration with nδ = O(1+ | log δ|).
Moreover xδ

nδ
converges to a solution of (1.1) in Bρ(x

†,∆p) as δ → 0. If x† is the

unique solution of (1.1) in Bρ(x
†,∆p), then xδ

nδ
→ x† as δ → 0.

Proof. It remains to show the convergence of xδ
nδ

since other parts have been
proved in Lemma 3.3. Let x∗ be the limit of {xn} which exists by Lemma 4.1. We
will show that xδ

nδ
→ x∗ as δ → 0.

Assume first that {yδj} is a sequence satisfying ∥yδj − y∥ ≤ δj with δj → 0 such
that nδj → n0 as j → ∞ for some finite integer n0. We may assume nδj = n0 for all
j. Let n∗ be the first integer such that F (xn∗) = y as we defined before. If n0 < n∗,

then it follows from Lemma 4.2 that x
δj
n0 → xn0 . But from the definition of n0 = nδj

we have

∥F (xδj
n0
)− yδj∥ ≤ τδj .
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Letting j → ∞ gives F (xn0) = y which contradicts the definition of n∗. Therefore
n0 ≥ n∗ and hence F (xn∗) = y. This implies that xn∗ = x∗. Consequently Lemma

4.2 implies x
δj
n∗ → x∗ as j → ∞. By using the monotonicity result in Lemma 3.3 we

obtain

∆p(x∗, x
δj
nδj

) = ∆p(x∗, x
δj
n0
) ≤ ∆p(x∗, x

δj
n∗
)

which together with Lemma 2.2 (b) shows that ∆p(x∗, x
δj
nδj

) → 0 and hence x
δj
nδj

→ x∗
as j → ∞.

Assume next that {yδj} is a sequence satisfying ∥yδj − y∥ ≤ δj with δj → 0
such that nδj → ∞ as j → ∞. If n∗ is finite, we can use the same argument in the

above case to show that x
δj
nδj

→ x∗ as j → ∞. So we may assume that n∗ = ∞.

Let ϵ > 0 be an arbitrary number. Since xn → x∗, we may pick an integer n(ϵ)

such that ∆p(x∗, xn(ϵ)) < ϵ/2. Since Lemma 4.2 implies that x
δj
n(ϵ) → xn(ϵ) and since

the uniformly smoothness of X implies that Jp is continuous, we can take an integer

j(ϵ) such that nδj ≥ n(ϵ) and |∆p(x∗, x
δj
n(ϵ)) − ∆p(x∗, xn(ϵ))| < ϵ/2 for all j ≥ j(ϵ).

Consequently, by using the monotonicity result in Lemma 3.3 it follows that

∆p(x∗, x
δj
nδj

) ≤ ∆p(x∗, x
δj
n(ϵ)) ≤ ∆p(x∗, xn(ϵ)) + |∆p(x∗, x

δj
n(ϵ))−∆p(x∗, xn(ϵ))| < ϵ

for all j ≥ j(ϵ). Since ϵ > 0 is arbitrary, we must have ∆p(x∗, x
δj
nδj

) → 0 as j → ∞.

Consequently, by Lemma 2.2 (b), x
δj
nδj

→ x∗ as j → ∞.
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