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1. Consider the equation
y(2x2y + 1) dx+ x(4x2y − 1) dy = 0

(a) (1 point) Is this equation exact?

Solution: No. If P = y(2x2y + 1) and Q = x(4x2y − 1) then

∂yP = 4x2y + 1 ̸= ∂xQ = 12x2y − 1

(b) (3 points) Show that 1
x2 is an integrating factor.

Solution: We can look for an integrating factor only involving x.

1

Q
(∂yP − ∂xQ) =

−8x2y + 2

x(4x2y − 1)
= − 2

x

so we have an integrating factor of 1
x2 .

(c) (3 points) Use the integrating factor to find an implicit solution to the equation if y(1) = 1 (you
do not need to solve for y).

Solution: Multiplying through by the integrating factor, the new equation is

(2y2 +
y

x2
) dx+ (4xy − 1

x
) dy

We are looking for a solution where u(t, y) = 0 where

u =

∫
4xy − 1

x
dy + k(x) = 2xy2 − y

x
+ k(x)

Noting that ∂xu = 2y2 + y
x2 and so k′(x) = 0 i.e. k(x) = c, a constant. Thus

2xy2 − y

x
+ c = 0

Subbing in y(1) = 1 we see that 2− 1 + c = 0 so c = −1 and the implicit solution is

2xy2 − y

x
− 1 = 0
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2. (4 points) MATLAB code: Here is some MATLAB code. Describe what this code does indicating
what equation it solves (including initial condition) and what it prints to the screen (One sentance is
fine).

In a file ydot.m:

function out = ydot ( t , y )
out = t ∗y+1;

end

In a file main.m:

y0 = 1 ;
t s = [ 0 : 0 . 0 1 : 3 ] ;
[ t , y ] = ode45 (@ydot , ts , y0 ) ;
plot ( t , y ) ;

Solution: The code sets up a differential equation y; = ty+1 and solves it over the interval 0 ≤ t ≤ 3
with the initial condition y(0) = 1. The code then prints out a plot of this solution.

3. Spring system: A mass of 2 kg is attached to the bottom of a spring. This stretches the spring by 2m.

(a) (1 point) What is the spring constant k of the spring? You should assume that the accelleration
due to gravity is g = 10.

Solution: We use the equation kl = mg i.e. 2k = 10 · 2 so k = 10

(b) (4 points) The spring and mass system is placed in water, which acts on the mass with a damping
force equal to 4 times it’s velocity. Let y(t) be the position of the mass below it’s equillibrium
point at time t (so y increases as we go down). Write down a differential equation that governs the
motion of the mass.

Solution: We use Newton’s second law and Hooke’s law

my′′ = mg − k(y + l)− 4y′

Noting that mg = kl, the equation becomes

y′′ + 2y′ + 5y = 0
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(c) (4 points) If the mass is initially pulled down 1 metre (so y(0) = 1) and then let go (zero initial
velocity), solve this differential equation.

Solution: The ODE has characteristic polynomial λ2 + 2λ + 5 = 0 which has two complex
conjugate solutions

λ1 = −1 + 2i and λ2 = −1− 2i

So α = −1 and ω = 2. Thus the general solution is

y(t) = e−t (A sin(2t) +B(cos(2t)))

We use the initial conditions and get the equations

1 = B

0 = 2A−B so A =
1

2

and the solution is

y(t) = e−t(
1

2
sin(2t)− cos(t))

(d) (3 points) Is the spring system under-damped, over-damped or critically damped? How strong
should the damping force be in order for the system to be critically damped?

Solution: Under-damped. In order to be critically damped we would need the characteristic
polynomial to have a single real root. Suppose the damping force is −αy′. Then the equation
is

y′′ +
1

2
αy′ + 5y = 0

so the characteristic polynomial is λ2 + 1
2αλ+ 5 which has discriminant

∆ =
1

4
α2 − 20

If we set this equal to zero we get α = 4
√
5.
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4. Half-life: A solution of 4 mg/L of a radioactive substance, Fluorine-18, is being pumped into a tank at
a rate of 3 L/hour. It is known that the Fluorine-18 has a half-life of 4 ln 2 hours.

(a) (4 points) Let y(t) be the total amount of Fluorine-18 in the tank at time t. Write a differential
equation modelling y(t). Hint: the change in y is equal to the rate being pumped in, minus the rate
leaving due to the half life.

Solution: Let y(t) be the amount of Fluorine-18 at time t. There is 12 mg/hour entering the
tank. Due to half-life there is y/4 mg/hour leaving the tank. Thus

dy

dt
= 12− 1

4
y.

(b) (4 points) If, initially, the tank contains only water with no Fluorine-18 solve the differential equa-
tion. Use the method of exact equations and integrating factors. Do not use separation of variables

Solution: The equation is rearranged to

(y − 48) dt+ 4 dy = 0

Which is not exact, but we can find an integrating factor depending only on t

1

Q
(∂yP = ∂tQ) =

1

4

So the integrating factor is e
1
4 t and the equation becomes

(y − 48)e
1
4 t dt+ 4e

1
4 t dy = 0

and we can integrate one term to get

u(t, y) =

∫
(y − 48)e

1
4 t dt+ k(y) = 4(y − 48)e

1
4 t + k(y)

we see that 4e
1
4 t + k′(y) = 4e

1
4 t so k(y) = c is a constant. Thus 4(y − 48)e

1
4 t + c = 0 and

rearranging we get
y(t) = 48− Ce−

1
4 t

and since y(0) = 0 we have C = 12. So

y(t) = 48
(
1− e−t/4

)
.

(c) (2 points) How many milligrams of the Fluorine-18 is in the tank after 24 hours? You may leave
your answer in terms of e.

Solution: When t = 24 there are

y(24) = 48
(
1− e−6

)
milligrams.
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5. Challenge: Consider the equation

(t+ 1)2y′′ + (t+ 1)y′ − y = 0

(a) (2 points) If you assume that y′′ = 0, does this equation have a solution?

Solution: If we assume that y′′ = 0 then the equation is separable, and we instead solve

dy

y
=

dt

t+ 1∫
dy

y
=

∫
dt

t+ 1

ln y = ln(t+ 1) + C

y = C ′(t+ 1)

So for example, y = t+1 is a solution. This indeed does have y′′ = 0 so it is in fact a solution.

(b) (4 points) Find the solution if y(0) = 1 and y′(0) = 3.

Solution: We can use the solution t + 1 for a reduction of order argument. We assume that
the general solution has the form

y(t) = v(t)(t+ 1)

Putting this into the equation gives

0 = (t+ 1)2(v′′(t+ 1) + 2v′) + (t+ 1)(v′(t+ 1) + v)− v(t+ 1)

= (t+ 1)3v′′ + 3(t+ 1)2v′

Making the substitution w = v′ gives the equation

(t+ 1)w′ + 3w = 0

which we can think about as (t+ 1)dw + 3wdt = 0. This is not exact, but we can quickly find
that (t+ 1)2 is an integrating factor. Thus the solution is given by u(t, w) = 0 where

u =

∫
(t+ 1)3dw + k(t) = (t+ 1)3w + k(t)

Now noting that ∂tu = 3(t+ 1)2w we see that k′(t) = 0 so k(t) is a constant. Thus

w =
c

(t+ 1)3
and therefore v =

c1
(t+ 1)2

+ c2

and so finally we have the general solution

y(t) = (t+ 1)v(t) = A(t+ 1) +
B

t+ 1

We just need to apply the initial conditions which show that A+B = 1 and A−B = 3 which
gives A = 2 and B = −1 so

y(t) = 2(t+ 1)− 1

t+ 1
=

2t2 + 4t+ 1

t+ 1
.
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