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ABSTRACT. The k-Hessian is the k-trace, or the kth elementary sym-
metric polynomial of eigenvalues of the Hessian matrix. When k > 2,
the k-Hessian equation is a fully nonlinear partial differential equations.
It is elliptic when restricted to k-admissible functions. In this paper we
establish the existence and regularity of k-admissible solutions to the
Dirichlet problem of the k-Hessian equation. By a gradient flow method
we prove a Sobolev type inequality for k-admissible functions vanishing
on the boundary, and study the corresponding variational problems. We
also extend the definition of k-admissibility to non-smooth functions and
prove a weak continuity of the k-Hessian operator. The weak continuity
enables us to deduce a Wolff potential estimate. As an application we
prove the Holder continuity of weak solutions to the k-Hessian equation.
These results are mainly from the papers [CNS2, W2, CW1, TW2, Ld]
in the references of the paper.
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1. INTRODUCTION

Let © be a bounded, smooth domain in the Euclidean space R". In this
note we study the k-Hessian equation

(1.1) Sglu] = f in Q,

where 1 < k <mn, Sg[u] = or(A), A = (A1,---, \) are the eigenvalues of the
Hessian matrix (D?u), and

(1.2) or(\) = Z Aiy - Ay
i< <ip

is the k-th elementary symmetric polynomial. The k-Hessian equation in-
cludes the Poisson equation (k = 1)

(1.3) —Au = f,
and the Monge-Ampere equation (k = n)
(1.4) detD?u = f,
as special examples.
We say a second order partial differential equation
(1.5) F(D?u, Du,u,z) =0

is fully nonlinear if F(r,p, z, ) is nonlinear in r. The k-Hessian equation is
fully nonlinear when k > 2. We say F'is elliptic (or degenerate elliptic) with
respect to a solution w if the matrix {Fj;} is positive definite (or positive

semi-definite) at (r,p, z,2) = (D*u(z), Du(z),u(z), ), where F;; = {gfjj}.
We say F' is uniformly elliptic if there exist positive constants A and A such

that
(1.6) M < {F9} < AT

where [ is the unit matrix. We also say F is elliptic if —F is.

The Monge-Ampere equation (1.4) is elliptic if and only if the function
u is uniformly convex or concave. For the k-Hessian equation, it is elliptic
when u is k-admissible [CNS2], namely the eigenvalues A(D?u) lie in the
convex cone 'y, which will be introduced in Section 2 below. Fully nonlinear
equations of mixed type are very difficult. In this note we restrict ourself to
k-admissible solutions to the k-Hessian equation.

There are many other important fully nonlinear equations, see §11 below
for examples. But the k-Hessian equation (1.1) is variational, and when
restricted to k-admissible solutions, it enjoys many nice properties which
are similar to those of the Poisson equation. In this paper we discuss the
regularity, variational properties, and local behaviors of solutions to the
k-Hessian equation.

We divide this note into a number of sections.
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In §2 we introduce the notion of k-admissible functions, and show that
the k-Hessian equation is elliptic at k-admissible functions. We also collect
some inequalities related to the polynomial oy.

In §3 we establish the global a priori estimates and prove the existence of
solutions to the Dirichlet problem.

In §4 we establish the interior gradient and second derivative estimates.
From the interior gradient estimate we also deduce a Harnack inequality.

In §5 we use gradient flow to prove Sobolev type inequalities for k-
admissible functions which vanish on the boundary. That is

1/(k+1)
(1.7 lullsoy < €| [
where C' depends only on n, k,Q; p = n:fg;) if k<3, p<ocifk=3;and

p = oo if k > 5. Moreover, the corresponding embedding of k-admissible
functions into LP space is compact when p is below the critical exponent.
As an application we give an L*° estimate for solutions to the k-Hessian
equation (1.1) when f € LP(Q) withp > g if k < G, orp=11if k> 7.

In §6 we use the Sobolev type inequality (1.7) to study variational prob-
lems of the k-Hessian equation. We prove the existence of a min-max solu-
tion to the Hessian equation in the sub-critical and critical growth cases.

In §7 we present some local integral estimates. In particular we show that
a k-admissible function belongs to Wlif(Q) for any p < n”—_kk

In §8 we extend the notion of k-admissible functions to nonsmooth func-
tions; and prove that for any k-admissible function u, we can assign a mea-
sure puu] to u such that if a sequence of k-admissible functions {u;} con-
verges to u almost everywhere, then py[u;] converges to pylu] weakly as
measures. As an application we prove the existence of weak solutions to the
k-Hessian equation.

This weak continuity has many other applications as well, in particular it
enables us to establish various potential theoretical results for k-admissible
functions. In §9 we prove a Wolff potential estimate, and deduce a necessary
and sufficient condition for a weak solution to be Hélder continuous.

In §10, we include some a priori estimates for the parabolic Hessian equa-
tions used in previous sections.

In the last Section 11, we give more examples of fully nonlinear elliptic
equations.

Main references for this note are [CNS2, W2, CW1, TW2, Ld]. There are
many other works on the k-Hessian equations. The materials in §2 and §3 are
mostly taken from [CNS2], but for the key double normal derivative estimate
we adapt the approach from [T1]. See also [I] for the k-Hessian equation
for some k. The interior derivative estimates in §4 are from [CW1], but for
the Monge-Ampere equation they were first established by Pogorelov [P].
The Sobolev type inequalities in §5 were proved by K.S. Chou for convex
functions, and in [W2] for general k-admissible functions by a gradient flow
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method. The existence of min-max solutions in §6 was first obtained by
K.S. Chou [Chl] for the Monge-Ampeére equation and later in [CW1] for
2 <k < 4. See also [W1] for the Monge-Ampere equation by a degree
theory method, which also applies to the case § < k < n by the embedding
in Theorem 5.1. The local integral estimates in §7 and weak continuity in §8
can be found in [TW2]. The Wolff potential estimate and Hélder continuity
of k-admissible solutions in §9 were proved in [Ld].

The result in §6.4 on the variational problem in the critical growth case
was not published before, it was included in the preprint [CW2]. The proof
of the weak continuity in §8, which uses ideas from [TW1,TW5], is different
from that in [TW2]. As the reader will see below, most results in the note
are generalization of the counterparts for the Poisson equation. But the
study of fully nonlinear equations requires new techniques and is usually
more complicated, in particular for estimates near the boundary. These
results and techniques can also be used in other problems. See e.g., [FZ,

KT, STW].

2. ADMISSIBLE FUNCTIONS

2.1. Admissible functions. We say a function u € C?(Q) N C°(Q) is k-
admissible if
(2.1) MND?u) € T,
where I'y, is an open symmetric convex cone in R", with vertex at the origin,
given by
(2.2) Ip={(\1,--, M) eR" |ogj(A\) >0V j=1,--- k}.
Clearly o;(\) =0 for A € 'y,
ry.c---cIyc---crly,

I',, is the positive cone,

Fp={( A\, A) €R" | A1 >0,---, A\, >0},

and I'; is the half space {A € R" | ¥\; > 0}. A function is l-admissible if
and only if it is sub-harmonic, and an n-admissible function must be convex.
For any 2 < k < n, a k-admissible function is sub-harmonic, and the set of
all k-admissible functions is a convex cone in C%(12).

The cone I'y, may also be equivalently defined as the component {\ €
RN | 1(\) > 0} containing the vector (1,---,1), and characterized as

(2.3) Iy ={AeR"|0<oi(A) <op(A+n) foralln >0, € R}

We note that the k-Hessian operator Sj is also elliptic or degenerate
elliptic if A(D?u) € —T}. But by making the change v — —u it suffices
to consider functions with eigenvalues A\ € I'x. In this note we consider
functions with eigenvalues in I'y only.
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2.2. Admissible solution is elliptic. We show that if u is k-admissible,
the matrix

(2.4) {%mn:g;wwmnzo

is positive semi-definite at A = D?u and so the k-Hessian operator is (de-
generate) elliptic. To prove (2.4), note that the k-Hessian operator can also
be written in the form

(2.5) Sk[u] = [DQu]k,

where for a matrix A = (a;;), [A]x denotes the sum of the k' principal
minors. Therefore

(2.6) Si"[u] = [D*ul}_y,

where [D?u)’ = {ug,4, }1<ij<n—1. Denote

D2u — [DQU:I/7 0
07 unn '
One easily verifies that

[D?*u)y > [D*u)yy, ¥V 1< m <k
Hence by (2.2), A(D?u) € Ty. By (2.3) it follows that

@1 S = D = 5

Note that (2.7) also holds after a rotation of coordinates, so the k-Hessian
equation is (degenerate) elliptic if u is k-admissible.

or(N) >0 (A= A(Du)).

When u is k-admissible, Si[u] is nonnegative. Therefore in our investiga-
tion of the k-Hessian equation, we always assume that f is nonnegative. If
f is positive and u € C?(£2), Sk[u] is elliptic. Note that we allow that the
eigenvalues A(D?u) lie on the boundary of 'y, and in such case the k-Hessian
equation may become degenerate elliptic.

2.3. Concavity. When u is k-admissible,
1/k 1/k
S/ [l = [oeA(D*w)] ",
is concave when regarded as a function of r = D?u. In other words,
(2.8) S agax 82,5 ul <0

for any symmetric matrix {a;;}. This property follows from the concavity
of a;/k()\) in Iy, (see (xii) in §2.5 below). Indeed, when u;; is diagonal, one
can verify (2.8) directly by the expression (2.5). When u;; is not diagonal,
by a rotation of coordinates y, = cq;x; such that u,g is diagonal, one has

1/k * % 1/k
Z Qi Qst 85ijustsk/ [U] = Z Aol agaguw; Sk/ [’LL] <0,
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where azﬂ = ajjcaiCgj, subscripts i, j,s,t mean derivatives in x and sub-
scripts «, (3,7, 0 mean derivatives in y. The concavity is needed in establish-
ing the regularity of fully nonlinear elliptic equations.

2.4. A geometric assumption on the boundary. In order that there
exists a smooth k-admissible function which vanishes on 0, the boundary
0f) must satisfy a geometric condition, that is

(2.9) okp—1(k) > o >0 on 0N

for some positive constant ¢y, where kK = (K1, - , kp—1) denote the principal
curvatures of 9 with respect to its inner normal. Indeed, let u € C?(2) be
a k-admissible function which vanishes on 0€2. For any fixed point xg € 912,
by a translation and rotation of coordinates, we may assume that zg is the
origin and locally 99 is given by x, = p(2’) such that e, = (0,---,0,1) is
the inner normal of 92 at z¢, where 2’ = (x1,--- ,x,—1). Differentiating the
boundary condition u(z’, p(z')) = 0, we get

(2.10) i3 (0) + i3 (0) = 0.

By our choice of coordinates, the principal curvatures of 002 at xg are the
eigenvalues of {p;;(0)}1<i j<n—1. When u is k-admissible, it is subharmonic
and so up(zg) < 0. We obtain

(2.11) S [u] = |un|*Lop_1 (k).

Hence (2.9) follows from (2.4) provided A(D?u) € T'.

In this note we call a domain whose boundary satisfies (2.9) (k—1)-convez.
When k = n, it is equivalent to the usual convexity. In the following we
always assume that € is (k — 1)-convex.

If Qis (k — 1)-convex, then for any smooth function ¢ on 9, there is
a function u, which is k-admissible in a neighborhood of 92 and satisfies
u = o on 9. Indeed, if ¢ = 0, let u(z) = —d, + td%, where x € Q and
d, is distance from x to 0€2. Then w is k-admissible near J€) provided t is
sufficiently large. We refer the reader to [GT] for the computation of the
second derivatives of the distance function. For a general boundary value ¢,
extend ¢ to €2 such that it is harmonic in €. Then ¢ + ou is k-admissible
near 0f) for large o, and Si[p + ou] can be as large as we want provided o
is sufficiently large.

Note that the function u is defined only in a neighborhood of 0€2. But it
suffices for the a priori estimates in §3. By the existence of solutions to the
Dirichlet problem (Theorem 3.4), there is a k-admissible function u defined
in the whole domain €2 such that © = ¢ on 0.

2.5. Some algebraic inequalities. We collect some inequalities related to
the polynomial oy (\), which are needed in our investigation of the k-Hessian
equation.
Denote 0g = 1 and o = 0 for K > n. Assume A € ['x. Arrange \ =
(A1,--,Ay) in descending order, namely A\; > --- > \,. Denote oy, =
6



0%(A)|r,=0, SO that %ak()\) = 0k-1,i(A). The following ones are easy to
verify

Q

i) ok(A) = ori(N) + Niok—1,(N),

(i) D oki(N) = (n—k)ox(N),

(4ii) op—10(A) >+ > 0k_11(A) >0,
)

(tw) A >0 and ox(A) < CppAi--- A

We also have
(W) ok(N)ap—a(N) < Crilor—1 (V)]
(i) or(N) < CurlorVIF, 1< <E.
Furthermore we have
(vii) )\1ka1,1()\) 2 Cn,kak()\)-
(viid) ox14(N) = Cupd . ok14(N),
(i)  op—1.6(A) > Chror—1(N),
(z) Hizlak;i()‘) > C iloe(N)]"F1/E,

In the above the constant C, ;, may change from line to line. There are more
inequalities useful in the study of the k-Hessian equation. For example, we
have

(i) Zﬂiakq,i > klon ()] Floe(V)]YF VA pe Iy,

g 0*
(xit) {8)\1-8)\]-0

k(A)}SO Vel

the last inequality means that 0;/ k()\) is concave in I'y,. We refer the reader
to [CNS2, LT, Lg] for these and more inequalities related to oy.

3. THE DIRICHLET PROBLEM

In this section we study the existence and regularity of solutions to the
Dirichlet problem of the k-Hessian equation,

(3.1) Sklul = f(z) in Q,
u =@ on O0f),

where Q is a bounded, (k — 1)-convex domain in R™ with C3! boundary,
p € C31(09), f >0, f e CHH(Q).

3.1. A priori estimates. First we establish the global estimate for the
second derivatives.
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Theorem 3.1 (CNS2, T1). Let u € C31(Q) be a k-admissible solution to
the Dirichlet problem (3.1). Assume that Q2 is (k — 1)-convex, 0Q € C3!,
0 € C3AN), f> fo>0, and fY/* € CYY(Q). Then we have the a priori
estimate

(3:2) lull ey < .

where C' depends only on n, k, Q, fo, [|¢lcs1a0) and ||f||01,1(§).

Proof. First consider the L estimate. Let w = 3a|z|?> — b, where the
constants a,b are chosen large such that Sijw] > f in Q and w < ¢ on
0. Then w — u satisfies the elliptic equation ) a;;(w — u);; > 0 in Q and
w—u < 0 on 0N, where a;; = fol S,ij [u+ t(w — u)]dt. It follows that w < u
in . Extend ¢ to §2 such that it is harmonic. By the comparison principle
we have w < u < ¢ in Q.

Next consider the gradient estimate. Denote F[u] = S;/ k[u], f= fuk
Differentiating the equation

(3.3) Flu] = f

in direction x;, one obtains
Llw] = fi,
where L = F;;0;; is the linearized equation of F, F; = F,,.. So |L[u]| < C.
Let w = jalz|>. By (ii) and (vi) above, L{w] > cja > 0 for some positive
constant ¢; > 0 depends only on n, k. Hence L{w %+ w;] > 0, provided a is
chosen suitably large. It follows that w + w; attains its maximum on the
boundary 0f2. Hence
(3.4) sup |Du(z)| < C(1+ sup |Du(x)]).
z€N €N

Next let 1 = ¢ +ou be the function in §2.4. Denote N’ = {x € Q | w(x) >
w(z)}. Then when o is sufficiently large, N is a neighborhood of 92, and
Silw] > f in N. Therefore by the comparison principle, w < u < ¢ in
N. Hence by the boundary condition @w = u = ¢ on 952, we infer that
Oyp < 0yu < 0,0, where « is the unit outer normal to 0€2. Hence Du is
bounded on 92.

Finally consider the second derivative estimate. Since u is sub-harmonic,
it suffices to prove that uee < C for any unit vector {. Differentiating
equation (3.3) twice in direction &, we obtain, by the concavity of F,

Lluge] 2 fee-
Hence L{Cw + uge] > 0 for a suitably large constant C' and so
(3.5) sup uge < C' + sup uge.
Q o

Therefore we reduce the estimate to the boundary.
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For any given boundary point ¢ € 0€2, by a translation and a rotation of
the coordinates we assume that x( is the origin and locally 0f2 is given by

(3.6) 20 = pla’)

such that Dp(0) = 0, where 2’ = (z1,--- ,x,—1). Differentiating the bound-
ary condition u = ¢ on 9f) twice, we have, for 1 <i,j <n—1,

(3.7) uij(0) + un(0)pi;(0) = 0i;(0) + ©5(0)pi;(0).
Hence
(3.8) |Diju(0)| <C i,j <n-—1.
Next we establish
(3.9) luin(0)| < C i <n.
By a rotation of the x1,--- ,x,_1 axes, we assume that x1,--- ,x,_1 are the

principal directions of 9 at the origin. Let T' = 0; + k;(0)(z;0, — x,0;),
where r; is the principal curvature of 9€) in direction z;, 1 <i <n—1. One
can verify that

T(u— )| < Cla' P9y (u — )| < Cla'[’| on .

Next observing that Sy, is invariant under rotation of coordinates and (x;0,,—
xp0;) is an infinitesimal generator of a rotation, we have T'F[u] = L[T'(u)].
Hence

IL(T (u — )| < C(1 + X Fi).
Let
(3.10) w = p(2') — x, — |2’ |* + K2,

where K > 1 large and § > 0 small are constants. By the assumption that
2 is (k — 1)-convex, the function w is k-admissible in B.(0) N Q for small
€ > 0. By the concavity of F',

Liw] > Flu+w]— Flu| > Flw] — Flu]
> ClKl/k —-C> %ClKl/k

for some constants ¢; depending on n, k, and 9§, provided K is sufficiently
large. Choose a K’ large such that L[K'w £+ T(u — ¢)] > 0. It follows that
the maximum of K'w + T'(u — ¢) in B: N is attained on the boundary
J(B: N ). But on the boundary 9(B. N ), it is easy to see that

1
w < —§5|x/|2 on 00N B(0),
w<0 on QNJIB(0).

Hence K'w + T'(u — ¢) < 0 provided K’ is chosen large enough. Hence
K'w £ T(u — ¢) attains its maximum 0 at the origin and we obtain

10n(T(u = )| < K'|Onw] < C,
9



from which (3.9) follows.

Finally we consider the double normal derivative estimate
(3.11) unn(0) < C.
If ¢ =0, by (3.7) we have u;;(0) = (—uy)pij. By the geometric assumption
(2.9), we have

St [u] = o1 [MD*u)] = |un|*Lop_1(k) > 0,

where (D%u)" = (wij)1<i,j<n—1. Note that
(3.12) Selu] = Unnop_1{\[(D*u)']} + R = f,

where R is the rest terms which do not involve u,,, and so is bounded by
(3.8) and (3.9). Hence uy,,(0) must be bounded.

For general boundary function ¢, we adapt the approach from [T1]. By
(3.12) it suffices to prove oj_1{A[(D?u)"]} > 0 on 9. For any boundary
point = € 01, let €M ... ¢=1) be an orthogonal vector field on 9. De-

note V; = 5%)Dmu,
Viju = D67 Dyyu,  Cij = €06 Doy,

and V2u = {V,ju}, C = {C;;}, where v is the unit inner normal of 99 at z.
Then we have

AM(D?*u)] = N[ V2u)(x).

Similar to (3.7) we have

(3.13) VZu = D (u — )C + V3p.

For any (n — 1) x (n — 1)-matrix r with eigenvalues (A,---,\,—1), denote
G(r) = [ora ()] *D.

and G = 2% Assume that infyego G(V?u) is attained at zg. Then by

T Oryy

(3.13) and the concavity of G,
G [Dy (1 = 9)Cig(w) + Vigip(w)] = G [Dy(u = ¢)Cij (w0) + Vijeo(wo)]
for any = € 012, where Géj = G¥(V?u(xg)). We can also write the above
formula in the form
G Cij(w0)[Ds (u = 9) () = Do (= ) (o))

> GiH{[Dy(u = @) (@) = Dy(u = ¢)(20)][Cij(x0) — Cij ()]

+Dy (u = ¢)(20)][Cij(w0) — Cij(2)] = [Vijeo(z) = Vije(zo)]}
Assume that near zg, 0f2 is given by (3.6) with

1

n_ n=l o "3
o) = 13" ka1 O’
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Then we have C;j(zo) = 0;y; = Kidij. Recall that Q is (k — 1)-convex. The
eigenvalues of {C;; — c18;;} (as a vector in R"™1) lies in I'y_1, provided ¢; is
sufficiently small. Hence G (Cij — ¢18;5) > 0 at zo, and so

G Cij(w0) > e1 Y G > 60> 0.

Therefore we obtain

Dy(u— ¢)(x) = Du(u — ¢)(wo) < £(a”) + Cla'?,
where £ is a linear function of 2’ with £(0) = 0. Denote

v(x) = Dn(u = ¢)(x) = Dn(u — ¢)(z0) — ().
We have
(3.14) v(z) < Cla'|* V€ 0.
Differentiating equation (3.3) we have
(3.15) IL(v)| < C(1+ ) F%),

where L = Y~ F79;; is the linearized operator of F.

Let w be the function given in (3.10). Then by (3.15) we can choose K’
sufficiently large such that L(K'w) > £L(v) in B. N Q. By (3.14), we can
also choose K’ large such that K'w+v < 0 on 9(B:.N). By the comparison
principle it follows that K'w +v < 0 in B- N Q. Hence K'w + v attains its
maximum at z9. We obtain 9, (K'w + v) < 0 at zg, namely u,,(z9) < C.

To complete the proof, one observes that in (3.12),

82
R=— 2_ - < 0.
Z Uy; aullauii Sk[u] = 0
Hence

Jo

Unn (xO) )

(3.16) or 1 {A[(D0) [} (0) > —— (o) >

S
unn
Recall that oj,_1{A\[(D?u)’]} attains its minimum at x. Hence by (3.12) we
obtain u,~(z) < C at any boundary point z € 0S. O

By the a priori estimate (3.2), equation (3.1) becomes uniformly elliptic if
f is strictly positive. The uniform ellipticity follows from inequality (iii) in
§2.5. To get the higher order derivative estimates, we employ the regularity
theory of fully nonlinear, uniformly elliptic equations.
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3.2. Regularity for fully nonlinear, uniformly elliptic equation. We
say a fully nonlinear elliptic operator F' is concave if F', as a function of
r = D?u, is a concave function. From §2.3, the k-Hessian equation is concave
when u is k-admissible and the equation is written in the form (3.3).

The regularity theory of fully nonlinear elliptic equations was established
by Evans and Krylov independently. Their proof is based on Krylov-Safonov’s
Holder estimates for linear, uniformly elliptic equation of non-divergent
form.

Theorem 3.2. Consider the fully nonlinear, uniformly elliptic equation
(3.17) F(D*u) = f(z) in Q.
u = ¢ on 0L,

Suppose F is concave, F € OV, f € CV1(Q), and u € WA™(Q) is a solu-
tion of (3.17). Then there exists o € (0,1) depending only on n,\, A (the
constants in (1.6)) such that for any Q' CC Q,
(3.18) Jull 2@y < C,
where C depends only onn, \, A, a, Q, dist(Q',09Q), || fllcr1(q), and supg |ul.

If furthermore p € C31(Q), 902 € C3L, and f € CT1(Q), then
(3.19) [ullgze@) < C,

where C depends only on n, A\, A, o, 0Q, || fllc11(q), [[ellesi ) and supg |ul.

From (3.19) one also obtains C*® estimates by differentiating the equation
(3.17) and apply the Schauder theory for linear, uniformly elliptic equations.
Theorem 3.2 also extends to more general equations of the form (1.1) pro-
vided F' satisfies certain structural conditions. We refer the readers to [E,
K1, GT] for details.

As a corollary of Theorem 3.2, we obtain the higher order derivative
estimate for the k-Hessian equation.

Theorem 3.3. Let u € C31(Q) be a k-admissible solution of (3.1). Assume
that Q is (k — 1)-convez, f € CHL(Q), and f > fo > 0 in Q. Then we have
(3.20) ullcse@) < C,

where a € (0,1), C depends only onn, k, o, fo, Q, ||l¢llcs.1(a0), and Hf||Cl,1(§).

3.3. Existence of smooth solutions. By Theorem 3.3 and the continuity
method, we obtain the existence of smooth solutions to the Dirichlet problem
(3.1).

Theorem 3.4. Assume that Q is (k — 1)-conver, 00 € C3>, f € CH1(Q),
and f > fo > 0. Then there is a unique k-admissible solution u € C3(Q)
to the Dirichlet problem (3.1).

12



Proof. We apply the continuity method to the Dirichlet problem

Sk[’ut] = ft in Q,
us = ¢ on Of),

where t € [0,1], fy = CE(1 —t) + tf, ¢ = 5t[x|* + to. Then when t = 0,
ug = %|l‘|2 is the solution to the above Dirichlet problem at t = 0. To apply
the continuity method, we consider solution u = v+ ¢y so that v € C3+%(Q)
with v = 0 on 9€2. Note that the uniqueness of k-admissible solutions follows
from the comparison principle. ([

3.4. Remarks. .

(i) In the proof of Theorem 3.1, the assumption f > f, was used only once
in (3.16). Therefore this assumption can be relaxed to f > 0 for the zero
boundary value problem. By approximation and Theorems 3.1 and 3.4, it
follows that there is a k-admissible solution u € C*!(Q) to the k-Hessian
equation (2.1) which vanishes on 0%, provided €2 is (k — 1)-convex and
fkect@), f=o.

The above results are also true for a general boundary function ¢ €
C31(09). Indeed Krylov [K2] established the a priori estimate (3.2), not
only for solutions to the k-Hessian equation, but also for solutions to the
Dirichlet problem (3.17) for general functions ¢ € C3(Q), provided f >
0 and f € CH1(99). The main difficulty is again the estimation on the
boundary. For the k-Hessian equation, Krylov’s proof was simplified in
ITW].

We also note that the geometric assumption (2.6) can be replaced by the
existence of a subsolution u to (3.1) with u = ¢ [G].

(ii) The estimate (3.2) also extends to the Hessian quotient equation [T1]
_ Sk[u]

(3.21) Skalu] = Sl S

where 0 <[ < k < n and we define S;[u] =1 when [ = 0.

(iii) For the second boundary value problem of the k-Hessian equation, and
some other boundary value problems, we refer the reader to [J,S,U3]

(iv) Much more can be said about the regularity of the Monge-Ampere
equation. The interior regularity was established by Calabi and Pogorelov
[GT, P]. The global regularity for the Dirichlet problem was obtained inde-
pendently by Caffarelli, Nirenberg and Spruck [CNS1], and by Krylov [K1],
assuming all data are smooth enough. Caffarelli [Ca] established the interior
C?® and W?2P estimates for strictly convex solutions, assuming that f € C
and f € CY, respectively. The continuity of f is also necessary for the W?2?
estimate [W3].

The boundary C?® estimate for the Dirichlet problem was established
in [TW6], assuming that f > 0,€ C%(Q2), the boundary 9 is uniformly
convex and C? smooth, and boundary function ¢ € C3. If either 9Q or ¢ is
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only C?!, the solution may not belong to W?2P(Q) for large p, even f is a
positive constant.

4. INTERIOR A PRIORI ESTIMATES

In this section we establish interior gradient and second derivative esti-
mates for the k-Hessian equation

(4.1) Selu] = f(,u).

These estimates were previously proved in [CW1]. The interior gradient
estimate was also established in [T2]. From the interior gradient estimate, we
also deduce a Harnack inequality. Estimates in this section will be repeatedly
used in subsequent sections.

4.1. Interior gradient estimate.

Theorem 4.1. Let u € C3(B,(0)) be a k-admissible solution of (4.1). Sup-
pose that f > 0 and f is Lipschitz continuous. Then

M
(4.2) |Du(0)| <(Ch+ 027,

where M = 4sup |u|, C is a constant depending only on n,k; Cy depends
onn,k,M,r and ||f||co.1. Moreover, if f is a constant, then C1 = 0.

Proof. Introduce an auxiliary function
G(z,8) = ug(z)e(u)p(z),
_ =P

where p(z) = (1 - 55)7F, o(u) = 1/(M —u)Y/?, and M = 4sup |u|. Suppose
G attains its maximum at z = x¢ and £ = ey, the unit vector in the x; axis.
Then at g, G; = 0 and {G;;} <0. That is

u
(43) wy = —;;(W’p + ¢pi),
(4.4)

0>8/Gy = wpdif +kuife'p+ur” pSusu; +u1pSy pij
+ur' Sy (wipj +ujpi) + 287 wii(u;’ p + opj)
202 .. .
= poLf +kuifo'p+uip(p” — i VS wiuj + uipSY pij
.. 2u ..
—u1 'S (wipy + uipi) — “L S pipy,

where we used the relations S,ij u;; = kf and S,ij uij1 = O f, which follows
by differentiating equation (4.1).
14



12 ..
By our choice of ¢, ¢ — 2% > 1—16M*5/2. Denote § = %;S}". Note that
the term kuy f¢'p is nonnegative. From (4.4) we obtain

M? M
(4.5) 0> —16M°pp|oy f| + pS}'uf — CS(WUI T 7“?%

where C' is independent of r, M. To prove (4.2), we assume that |Du(0)| >
CM/r, otherwise we are through. Then by G(xg) > G(0), we have ujp(xg) >
CM/r. Hence by (4.3) we have

S0/
(4.6) up < —%u% at xg.

Hence by (ix) above, S} > CS.

To control 01 f by S, by a rotation of the coordinates, we assume that
D?u is diagonal in the new coordinates y, and uy,y, > -+ > uy,y,. Then at
the point zg where G reaches its maximum,

¢ 9 Lo
uynyn S uxlxl S _%uxl S _4Mux1

by (4.6). From equation (4.1),
= Uy Or-1:0(X) + o (V). A = A(D?u).
By §2 (vi), we obtain
0 < ty,y, Ok-1:0(A) + Clog—1,n ()] 1.

Hence
Ok—1:n(N) = C|“ynyn|k_1 > CU%?_Z-
We obtain
u2k—2
S > C’u%k*2 > C]\;LA at .

Recall that in (4.6), we assumed that u,, > CM/r. Hence S > CM*~1 /p2k=2
and S~1/0; f| is bounded. Multiplying (4.5) by p?/S, we obtain (4.2). [

4.2. Harnack Inequality. From the interior gradient estimate, we obtain
a Harnack inequality for the k-Hessian equation. First we prove a lemma,
which also follows from the interpolation inequality (2.12) in [TW2].

Lemma 4.1. Suppose u € CY(Bg(0)) is a function which satisfies for any
B, (z) C Bg(0),

(4.7) |Du(z)] < G sup |ul.
B, ()
Then
Co
4.8 u(0)| < —/— u,
(45) o)1 < 5 [ 1

where Cy depends only on C1 and n.
15



Proof. There is no loss of generality in assuming that R = 1, [ B, lu| =1,
and u is a C! function defined in By y.(0) for some small ¢ > 0. Let K be the
largest constant such that |u(z)| > K(1—|x|)~" for some 2 € B;1(0), namely
K =sup(1l — |z|)"|u(x)|. Choose y € B1(0) such that |u(y)| = K(1 —|y|)™"
and |y| = sup{|z| € B1(0) | |u(z)| = K(1 — |z|)~™}. Then we have |u| <
2"|u(y)] = Kr~" in B,(y), where r = %(1 — |y|). Therefore by applying the
interior gradient estimate to u in B,(y), we get |Du(z)| < CKr~""!. Hence
lu(z)| > 2 Kr~™ whenever |z —y| < r/2C. It follows that fBr(y) lu| > K/C.
But by assumption, [ Br lu] < 1, we obtain an upper bound for K and
Lemma 4.1 follows. (]

Theorem 4.2. Let u be a non-positive, k-admissible solution to

(4.9) Sklu] = ¢ in Bg(0),

where ¢ > 0 1s a constant. Then we have

(4.10) sup (—u) < C inf (—u),
Br/2(0) Br/2(0)

where C depends only on n, k.

Proof. By Lemma 4.1,

sup (—u) < C / (—u).
Brys 3R/4

Since u is subharmonic, we have [GT]

/ (—u) < C inf (—u).
3R/4 Bry2

From the above two inequalities we obtain (4.10). O

The interior gradient estimate also implies the following Liouville Theo-
rem.

Corollary 4.1. Let u € C3(R™) be an entire solution to Si[u] = 0. If
u(z) = o(|z|) for large x, then u =constant.

4.3. Interior second derivative estimate.

Theorem 4.3. Let u € C*(Q) be a k-admissible solution of (4.1). Suppose
feCH(QxR) and f > fo > 0. Suppose there is a k-admissible function
w such that

(4.11) w>u in Q, and w=u on 0.
Then
(4.12) (w — u)*(x)|D*u(z)| < C,

where C depends only on n,k, fo, supq(|Dw| + |[Dul), and || f|l o -
16



Proof. Writing equation (4.1) in the form
Flu] = f,
where f = f1/*%(z,u), and differentiating twice, we get
Fiittiigg + (Fij)rstiijgtirsg = fog-
Suppose (D?u) is diagonal. Then
Wok—2ir(N) + ' op_1,008-1, i i =47 =5,

(FZJ)TS = _M/ak—Z;ij()\) if @ # j,r=j,and s =1,
0 otherwise,

where pu(t) = t'/*. Hence

(4.13)
n n
7 1 2 " I
Fiiiigg = fog + Z W Ok—2;i5Uijq — Z (1 ok—1.i0k—1,5 + 1V Tk—2:i|Wiigljjg-
ij=1 ij=1
Let

G(a) = (@) (5| Duluge,

where p = w —u, B =4, (t) = (1 — &)7V/8, and M = 2sup,cq |Dul>.
Suppose G attains its maximum at xg and in the direction £ = (1,0,--- ,0).
By a rotation of axes we assume that D?u is diagonal at zo with uyq > -+ >
Unpn. Then at xg,

(4.14) 0= (logG); = 5’” o
2 (T
2 U157 u2 .
(4.15) 0> Fy(logG)si = 534% - F] + -Fn[% - %] + Fii] ullllu = ﬁ]
11
Case 1: wuy > cuqq for some € > 0.
By (4.14) we have
(4.16) i __(Pi gPiy
U1l 2 P
Hence by (4.15),
p? )
(4.17) 0> pF 2 — (1+20)% Piy 4 py 2 —3%]+Fuu””
P ¥ ©? u11

By the concavity of F',
Fyuyg > fu1 > —C(1 + upy).
We have

12 ’
3907)}7“ Uy Uy 2+ UgFuuug + Fllu?z

2
Pii 2
e I

L
© ©? ©

/ SOI R
> F’L’Lu + o ugfga
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where by §2 (ix)
ZFMU% > Fjju?j > 9.7:71%1,
F =31 ,Fi 0=0(n,k,e). Hence

Fu[(p“ 3@1] >0fu%1—0.
14 ©?

Since p = w — u and w is k-admissible, we have
Fiipii > —Fyuig = —p' Sjfui = —kpl' f.
Inserting the above estimates to (4.17) we obtain

kBu' f
o)

-C.

2
(4.18) 0> Fu(log Gy > 6Fuif, — C}"% -

Note that ugy > cuq1, we have
k—1
F > Fon > 0p'ury -+ up—1 k-1 > 01uyy .

Multiplying (4.18) by p??¢?, we obtain G(zg) < C.
Case 2: upp < cuqq.
Since (u11,-** ,Unn) € Lk, we have ug, > 0 and so |ugk| < euir. By

the arrangement w11 > - -+ > Upy, we have uj; < euqq for all j = k,--- | n.

Noting that

akfl n
-z 2\ = >
3>\1"'5)\k—10k[ ] jz:: j =0

we obtain

lujj| < Ceuyy for j=k,--,n.
By (4.14),

i 1 )
(4.19) P L iy

1% By un
Applying (4.16) for i = 1 and (4.19) for i = 2,--- ,n to (4.15), we obtain

= ” . 2 9
0= {Z [oFa + F<% ~3%5)] ~ B0+ 2@&2;}

i=1
" U144 U
(4.20) +{ ZF” ullu B ZF 11z} — I+ I
i=1 H
As in case I we have
C kB
ST S R ALLCL C
p P
1 kou' f
Z EHFHU%I — P - C



provided p?u?, is suitably large. By (vii) in §2 we obtain

k /
I > 014 fuq ﬂ/;)tf -C.
We claim
(421) IQ Z fn/un.
If (4.21) is true then (4.20) reduces to
k, /!
(4.22) o>91uf11+f“—ﬁ;jf—c.

Multiplying the above inequality by p?¢ we obtain G(zg) < C.
To verify (4.21) we first note that by the concavity of F,

- Z :u Uk 1;i0k— 1]_‘_:u Ok—2:ij ulllujjl Z ,u )\))uiilujjl > 0.
by (9)\ O\j

Hence by (4.13),

2
U1

n n
N 2
uitly > fui+ E W op—ajui — (1+ 5) g Fii .
=2

ij=1

v

n
2 2\ 0p—1si
Since [ = 4, we need only
3 Ok—1;i
4.23 - = > 0.
( ) Ok—2;14 1wy,

But (4.23) follows from the following lemma.

Lemma 4.2. Suppose A € Ty, and \y > --- > \,. Then for any § € (0,1),
there exists € > 0 such that if

SN <eX¥ or [N <el for i=k4+1,---,n
we have

(4.24) A Sk_11 > (1— 6)Sk.

Proof. To prove (4.24) we first consider the case Sgp(A) < eAF. We may
suppose Sk(A) = 1. If (4.24) is not true,

Skfl;l < (1 — (5))\1_1 < El/k.

Hence

Sk;l < CSII:/(lkl 1) < Ce 1/(k— 1)

Noting that
Sk = Sk—1,1A1 + Sk;1,
we obtain (4.24).
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Next we consider the case |A\;| < eAj fori =k+1,--- ,n. Observing that
if A, << A1, we have Sp(A) << A¥ and so (4.24) holds. Hence we may
suppose |\;| << A\ for i = k+1,--- ,n. In this case both sides in (4.24)
= A1 M(1+0(1)) with o(1) — 0 as € — 0. Hence (4.24) holds. O

In Section 6 we will investigate the existence of nonzero solutions to
equation (4.1) with zero Dirichlet boundary condition. Assume that f €
CH(Q x R), f(x,u) > 0 when u < 0. Then by choosing w = —¢ for small
constant 0 in (4.12), we obtain a local second derivative estimate. Therefore
by the regularity theory for fully nonlinear, uniformly elliptic equations, one
also obtains local C%® estimate for the solution u. That is

Theorem 4.4. Let u € C*(Q) N C°(Q) be a k-admissible solution of (4.1).
Suppose u =0 on 0, f € CY' and f > 0 when v < 0. Then u satisfies a
priori estimates in C3 () N C%1(Q), namely for any Q' CC Q,

(4.25) lulles @y + lullgor gy < C,

where C' depends only on n, k, f, sup |u|, and dist(Y,09Q). If f1/* e C11(Q),
o0 € C3t and Q is uniformly (k — 1)-conver, then

HUHCLI(Q) <C.

Remark. Theorem 4.3 was established in [P] for the Monge-Ampeére equa-
tion, and in [CW1] for the k-Hessian equations. The condition (4.11) in
Theorem 4.3 is necessary when k > 3 [P, Ul], but may be superfluous when
kE = 2 [WY]. Instead of (4.11), Urbas [U2] established the interior second
derivative estimate under the assumption D?u € LP(2), p > 2k(n —1).

5. SOBOLEV TYPE INEQUALITIES

The k-Hessian operator can also be written in the form
(5.1) Sklu] = [D?uli,

see (2.5). Hence by direct computation, one has [R]
(5.2) > 08 u] =0 V3.
i
It follows that the k-Hessian operator is of divergence form
1 .
Selu] = > uisS{ [l

(53) oD I
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Denote by ®*(Q) the set of all k-admissible functions in Q, and by ®&(Q)
the set of all k-admissible functions vanishing on 9€2. Let

(5.4) ) = [ (-u)sifuds

1 -
k Ja
By (5.2), we can compute the first variation of Iy,

(5.5) (6T(u). ) = (K + 1) / (—h)Sulud

Q

for any smooth h with compact support. Hence the Hessian equation (3.1)
is variational, namely it is the Euler equation of the functional

(5.6) ﬂ@:lzﬁwﬁm+ém.

k(k+1)
The second variation is also easy to compute. Indeed by (5.2) we have
d? ;i
(57) Gl te) = e+ 1) [ oS

for any u € C%(Q), ¢ € C§°(Q), or any u, p € C%(Q2), both vanishing on 9.
In particular if u is k-admissible, then j—;]k(u +tp) > 0.

Denote
(5-8) lullgp = (], w e of,
One can easily verify that [ - |1 is a norm in @k [W2]. In this section we

prove Sobolev type inequalities for the functional Ij.

5.1. Sobolev type inequalities. The following Theorem 5.1 was proved
in [W2]. The proof below is also from there. For convex functions, the
theorem was first established in [Ch2].

Theorem 5.1. Let u € ®5(9).
(i) If 1 < k < 5, we have

(5.9) [ullprrr) < Cllullgs ¥V p+1€ [k,
where C' depends only on n, k,p, and |Q|,
1 n(k + 1).
n — 2k

When p + 1 = k*, the best constant C is attained when € = R™ by the
function

(5.10) u(z) = [1 + |x|?]@-n)/2k,
(ii) If k=12,
(5.11) ull o) < Cllullgy
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for any p < oo, where C' depends only on n,p, and diam(S2).
(i) If 5 <k<mn,

(5.12) Jull ey < Cllag

where C' depends on n, k, and diam(§2).

Remark. Our proof of Theorem 5.1 reduces the above inequalities to rota-

tionally symmetric functions. When k£ = 5, we have accordingly the embed-

ding of ®&(€) in the Orlicz space associated with the function el

Proof. Step 1. When v is radial and Q = B;(0),
1 1/(k+1)
(5.13) [ullgr o) = C(/ r"_k]u’]kH) .
0 0

One can verify Theorem 5.1 for k-admissible, radial functions vanishing on
0B1(0). For details see [W2].

Step 2. We prove that Theorem 5.1 holds for general k-admissible func-
tions when © = B;(0). Indeed, let

T, = t{lullsf Nl g | e 25O,
Ty = nf{ullif/ulit ) | v e @F(©) is radial).

Suppose to the contrary that 7}, < T, ,. Choose a constant A € (T}, T} )
and consider the functional
k1

619 ) =) = [ Zhsl- ey [ Fw] T

where
|u|

Fu)= [ f(t)dt,
0
and f is a smooth, positive function such that

5P t| < 36
fO)=q [P o<t <M,
et—2 |t| > M + ¢,

where M > 0 is any fixed constant, d,& > 0 are small constants. We also
assume that f is monotone increasing when %(5 < |t| < 6, and eM~2 <
f(t) < |t|P when M < |t| < M + e. The introduction of £,¢ is such that
f is positive and uniformly bounded, so the global a priori estimates for
parabolic Hessian equations (Theorem 10.1) applies. Obviously F' is also
uniformly bounded and J is bounded from below. The Euler equation of
the functional is

(5.15) Sklu] = AB(u) f (u),
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where
k—p
P+l

s = |+ [ ()
Note that for a given u, 3(u) is a constant. By our choice of the constant
A, we have

(5.16) inf{J(u) | uedE(Q)} < -1 (f M>>1),
inf{J(u) | ue€ ®F(Q),uis radiall -0 as § — 0.
Consider the parabolic Hessian equation
(5.17) log Sefu] — u; = log{AB(u) f(u)} (1) € 2 x [0,00),
subject to the boundary condition
u(,t) =0 on 0 Vit >0.

We say a function u(z,t) is k-admissible with respect to the parabolic equa-
tion (5.17) if for any ¢ € [0,00), u(+,t) is k-admissible. Equation (5.17) is a
descent gradient flow of the functional J. Indeed, let u(x,t) be a k-admissible
solution. We have

d

I (u(,1) = —/Q(Sk[u] — ) logs';}[u] <0,

and equality holds if and only if u is a solution to the elliptic equation (5.15),
where (u) = \G(u) f(u).
Let ug € ®&(Q) be such that

J(up) < infq,g(Q)J(u) +¢e < —1.

By a slight modification (see Remark 5.1 below), we may assume that the
compatibility condition Sk[ug] = AB(uo)f(uo) holds on 02 x {t = 0}. In the
parabolic equation (5.17), S(u) is a function of ¢. By (5.16) and since F'(u)
is uniformly bounded, we have

C1 < B(u) < Cy,

for some positive constants C1,C5y independent of time ¢. Note that C7, Co
may depend on M but are independent of the small constants ¢ and J.
Therefore by Theorem 10.1, there is a global smooth k-admissible solution
u to the parabolic Hessian equations (5.17).

By the global a priori estimates and since (5.17) is a descent gradient
flow, u(-,t) sub-converges to a solution u; of the elliptic equation (5.15).
By the Aleksandrov’s moving plane method, see also [D] (p.327) for the
Monge-Ampére equation, we infer that u is a radial function. Therefore we
have

inf{J(u) | u€ ®F(Q),u is radial} < —1.
We reach a contradiction when ¢, are small.
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Step 3. Denote

Tp(Q) = inf{[lullgt/llull i g | v € 26(Q)}-
We claim that for any (k — 1)-convex domains Q1,9 with €1 C Qo,
(5.18) T, () > T,(5%).
Suppose to the contrary that T),(21) < T,(Q2). Let A € (T,(21), Tp(22)) be
a constant. Let J(u,2) be the functional given in (5.14). Then we have
(5.19) inf{J(u, ) | uedEQ)} < -1 (when M >> 1),

inf{J(u, ) | ued(Q)}—0 as §— 0.
Let u; € ®F(Q1) be the solution to (5.15) obtained in Step 2 which satisfies

J(ul, Ql) S —1.
Let
1
w(z)=—-M—¢— 551/2’“(32 — |z|?),

where R is chosen large such that Q1 C Bg(0). Recall that f(t) = et2
when [t| > M + ¢, and C; < (u1) < Cq, where Cy,Cy are independent of
e. By equation (5.15) we have Si[ui] < Ce. Hence Si[w] > Ce'/? > Sy[u]
when u; < —M — . Applying the comparison principle to u; and w in
{u1 < —M — ¢}, we obtain a lower bound for u;,
(5.20) uy > —M — Rk,

Hence when ¢ is sufficiently small, F(ui) = |u1[PT! + o(1) if €,§ is small,
though f(u1) may violate strongly. In particular we have

(5.21) B(ur) = (14 0(1)) [ |u1]p“] o

971
with o(1) — 0 as e,0 — 0.

Extending u1 to Q9 such that u; = 0 in Q9 — Q4 (S0 u is not k-admissible
in Q). Let ¢(z) = Sg[u1] in 1 and ¢(z) = 0 in Q2 — ;. Denote

k+1

Be) = [ (- A[ / 2 lep“]

Then, since u; = 0 outside 2,

k+1

E(u) = /Ql(—ul)Sk[ul] —)\[/Ql ’ul‘erl] rH

< /Ql(—m)Sk[uﬂ - A [(p_|_ 1) /Q1 F(m)} k+l

= J(u, ) < —1,
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where we have used, by the construction of f, the fact that F'(u) < zﬁ lu|PHL.
Let ug = ugm € @’5(92) be the solution of

Sklul = frn in Qo

where f,, be a sequence of smooth, positive functions which converges mono-
tone decreasingly to 1. By the maximum principle we have ||uz||f(q,) < C
for some C' > 0 independent of m. By the comparison principle we have
us < up <0in Q.

By our choice of A and by approximation and uniform boundedness of us,

we have
k+1

E(ug) = /QQ(—MW - /\[/92 \U2!p+1] "

+
p+1 1
> | <—u2>sk[u21—A{ / |u2|p+1]’°“—
QQ QZ 8
1
> _Z
- 8

provided m is sufficiently large.
Denote p(t) = Efu; + t(uz — u1)]. Then p(0) = E(u1) < —1 and p(1) =
E(ug) > —%. We compute

FO = [ (= w)sifm] - o+ | [ 2 ol - P = ).

Since wu; is a solution of (5.15), by (5.21) we have

/QQ(m —ug)Sklu] = /\ﬂ(ul)/ﬂl g P (ug — ug)

= Aoy [ | ] o [ =)

k—p
1
< (k+ 1))\[/ |u1\p+1} ’ / |ug [P (ur — ug)
Ql Q2

We obtain p/(0) < 0. Note that the functional E is linear in the first integral
and convex in the second integral, we have p”(t) < 0 for all t € (0,1).
Therefore we must have p(1) < p(0). We reach a contradiction. Hence
(5.18) holds.

Finally we remark that when k < 5 and p+ 1 = k*, the best constant in
(5.9) is achieved by the function in (5.10). This assertion follows from Step
2 by solving an ode. By the Holder inequality, one also sees that when k < 5
and p + 1 < k*, the constant in (5.9) depends on the volume || but not
the diameter of Q2. When k > &, The above proof implies the embedding

PE(Q) — L>(Q). Indeed, in Step 2 we have shown that the best constant
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T, is achieved by radial functions, and so the assertion follows from Step
1. O

Remark 5.1. For any initial function ug € ®5(9Q) satisfying J(ug) < 0, we can
modify wug slightly near 0€2 such that it satisfies the compatibility condition
Sk[uo] = NB(ug) f(ug) on 92 x {t = 0}. Indeed, it suffices to replace ug
by the solution g € ®§(2) of Sg[u] = g, where g(z) = (1 + a)Sk[ug] when
dist(z,0Q) > & and g(z) = AB(u)f(uo) when dist(z,0Q) < 16,. We
choose 01 a sufficiently small constant and a also small such that 3(ig) =

Bu).

5.2. Compactness. In this section we prove the embedding ®%(Q) — LP(1)
is compact when k£ < § and p < k*. First we quote a theorem from [TW4]

Theorem 5.2. Suppose Q is (k — 1)-convex. Then
(5.22) lullay (@) < Cllullas o)

forany 1 <1<k <n, and any u € ®F(Q). The best constant C is achieved
by the solution u € ®E(Q) to the Hessian quotient equation
Sklu]

(5.23) 0

=1 in Q.

Proof. The proof is based on the global existence of smooth solutions to
initial boundary problem of the parabolic equation [TW4]

Slu]
Sifu]
subject to the boundary condition u = 0 on 9 x (0,00). As above, a
solution to (5.24) is k-admissible if for any ¢, u(-,t) € ®*(Q). The a priori
estimation for the parabolic equation (5.24) is very similar to that for the
elliptic equation (3.1).

(5.24) u; — log =0 in 2 x [0, 00),

By constructing appropriate super- and sub-barriers, we also infer that for
any initial function u(-,0) satisfying the compatibility condition on Si[u] =
Si[u] on 99, the solution wu(-,t) converges to the solution u* of (5.23). Note
that u(-,t) € ®5(2) implies the boundary condition u = 0 on 9 x [0, c0).

With the above results for the parabolic equation (5.24), Theorem 5.2
follows immediately. Indeed, let

1 1
gl Al R ey A
For any ug € ®F(Q), modify u slightly near 9 such that S[ug] = S;[uo]

on 9Q. Let u(-,t) € ®5(2) be the solution to the parabolic equation (5.24).
Then

J(u) (—u)Si[u].

d _ Sh[u]
(1) = —/Q{Sk[u] - Siful}log T <.
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It follows that J(u*) < J(ug) for any up € ®E(Q). Replacing ug by uoHu*||<1>’5(9)/||u0”<1>’8(9)’
we obtain Theorem 5.2. O

Theorem 5.3. The embedding ®f(Q) — LP(Q) is compact when k < % and
p < k*.

By the Hoélder inequality, Theorem 5.3 follows from Theorem 5.2 and the
compactness of the embedding WH2(Q) — LP(Q) for p < 2.

Next we show that when k > 5, a k-admissible function is Holder contin-

uous.

Theorem 5.4. Suppose u € ®¥(Q) N L>®(Q) and k > 2. Then u € C{ (Q)
with o = 2 — 2 and for any x,y € ' CC Q,

k>
(5.25) () = uly)] < Clo —yl|*,
where C' depends only on n, k,Q, dist(Y',09), and [|u||r~q)-
Proof. Let
w(z) = o2

By direct computation, w is k-admissible and Si[w] = 0 when z # 0. For
any interior point xg € €, Applying the comparison principle to u and
(x) = u(zg) + Cw(x — xg), where C' is chosen large such that 4 > u on 0,
we obtain Theorem 5.4. O

5.3. An L estimate. As an application of Theorem 5.1, we prove an L*°
estimate for solutions to the k-Hessian equation. See Theorem 2.1 in [CW1].
The proof below is essentially the same as that in [CW1].

Theorem 5.5. Let u € C?(2) N C°(Q) be a k-admissible solution of

{ Sp(D?u) = f(z) n

(5.26) U= on 0.

Suppose [ >0, f € LP(Q), where p > n/2k if k < 5, orp =14ifk > 3.
Then there exists C > 0 depending only on n, k,p, ) such that
) . 1/k

(5.27) ol < |inf ol + Ol fll oo)-
Proof. By replacing the boundary function ¢ by inf ¢ and by the comparison
principle, we need only to prove (5.27) for ¢ = 0. Since the k-Hessian
equation is homogeneous, we may assume that || f||z»q) = 1.

First we prove (5.27) for k = 4. Multiplying (5.26) by —u and taking
integration, we obtain,

sty = 1 [ Fauteyde] < 1 Flsslulis

1q_1 1(1-3
12057 fullgp < €117 [ul g,

IN

27



where % + % =1 and B > 1 will be chosen large. Hence
lullgy < Cl0#I5).
By the Sobolev type inequality (5.11),

_1 _1
(5.28) lull iy < 1905 full oy < ClOI ?lullgg < ClOI,

where § = qik - %(1 + qik) > 0 provided S is sufficiently large. Hence

(5.29) u(e) < ~K}| < Zj0+.

From Sard’s theorem, the level set {u(z) < ¢t} has smooth boundary for
almost all . Therefore we may assume all the level sets involved in the proof
below have smooth boundary.

Denote u; = u+ K, Q1 = {u; < 0}. When K is large enough, we have
|| < 3|Q|. For j > 1 we define inductively u; and Q; by uj = u;_q +27%
and ; = {u; < 0}. Then similarly to (5.28) we have

lujll i,y < CI;F°
for some C independent of j. Therefore
Q1] < C20UFV |y,

where Qj+1 = {U](I') < *2_6(j+1)}.
Assume by induction that |Q;| < 1[€;_q| for all ¢ = 1,2,--- 4, then by
(5.29),

e 2-6G-D ¢
1% <2790 Doy | < S,

When K is large, we obtain |Qji1] < 3|Q;|. Therefore the set {z €
Qlu(r) < -K-372, 2797} has measure zero. In other words, we have

o
: )
|infu| < K + Zj:12
Therefore (5.27) is established for k = %.
When £ < 3, let w € @gﬂ be the solution to
Spyelw] = f7?* in Q.

By inequality (vi) in §2, Sg[w] > C’mkSi%n

comparison principle we also obtain (5.27).

[w] > C,rf. Hence by the

When k > &, multiplying (5.26) by —u and taking integration, we have

Jullstt = | / F@yu(@)de] < [l ullog

and (5.27) follows from (5.12). This completes the proof. O
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We will prove in Section 9 that the solution in Theorem 5.5 is Holder
continuous.

Theorem 5.5 was extended by Kuo and Trudinger to more general elliptic
equations [KT]. In their paper [KT], Kuo and Trudinger considered the
linear elliptic inequality

(5.30) Lu] = Zaij(x)uxirj <f in Q.
u < 0 on 09

Assume that the eigenvalues A\(A) € I';, where A = —{a;j(x)}, I'} is the
dual cone of I'y, given by
Ip={AeR" | A-u>0 Vpely}
Denote
pi(A) = inf{A - o | € Ty, o) > 1},
They proved the following maximum principle

Theorem 5.6. Let u € C2(Q)NC°(Q) be a solution of (5.30). Assume that
AA) € T} and p;(A) > 0. Then we have the estimate

f
sup u S C BTarTY N
o ”pk(A)HLq(Q)
where q =k if k > 5, and q > 5 if k < 5, where C depends only on n, k,q,
and 2.

Theorem 5.6 extended the well-known Aleksandrov maximum principle.

6. VARIATIONAL PROBLEMS

Consider the Dirichlet problem

Si(D?*u) = f(z,u) in €,
(6-1) { uk:O on 0f),

where f(z,u) € CH(Q x R) is a nonnegative function in Q x R. There
has been a huge amount of works on the existence of positive solutions to
semilinear elliptic equations, namely equation (6.1) with £ = 1. In this
section we show that there are similar existence results for the k-Hessian
equation. Materials in this section are taken from in [CW1, CW2], except
the eigenvalue problem in §6.2, which was previously treated in [W2]. We
note that the published paper [CW1] is a part of the preprint [CW2]. The
preprint [CW2] also contains the existence of solutions in the critical growth
case, presented in §6.4 below.
As shown in §5, a solution of (6.1) is a critical point of the Hessian func-
tional
—1
(6.2) s =7 [ usital - [ P
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where F(z,u) = ff f(z,t)dt. The functional J is defined on the convex cone
®k(Q). We don’t know the behavior of the functional near the boundary
of ®F(2), and so we cannot use the variational theory directly. To find
a critical point of J, we employ a descent gradient flow of the functional,
which was previously used by Chou [Ch1] for the Monge-Ampere equation.
That is a parabolic Hessian equation of the form

(6.3) 1(Sk[u]) —ue = p(f(w)).

We assume that p is a smooth function defined on (0, 00), satisfying p/(t) >
0, u’(t) <0 for all t > 0,

wu(t) — —oco ast — 0,
wu(t) — oo ast — +oo,

and such that u(Sg[u]) is concave in D?u. As we consider solutions in ®,
the boundary condition for (6.3) is

u=0 on 0N x [0,00).
Let u € ®&(Q2 x RT) be a k-admissible solution to (6.3). Then

64  Liwen = - /Q (Se() — Fu

dt
= =[S0 = (s = () <.

As before, we say a solution u is k-admissible with respect to (6.3) if for
any t > 0, u(-,t) is k-admissible. To simplify the notation, we will denote
u € ®F(Q x RY) if u(-,t) € ®E(Q) for all t € RY = [0, o0).

A typical example of p is p(t) = logt [Chl]. But for the k-Hessian
equation we have to choose a different p in our treatment below. For the a
priori estimates for the parabolic equation (6.3), we always need to assume
that f is strictly positive. But in studying the variational problem (6.1),
typically f vanishes when u© = 0. To avoid such situation, we add a small
positive constant to f, or modify f slightly near u = 0.

To study the variational problem associated with the k-Hessian equation,
similar to the Laplace equation, we divide the problem into three cases,
namely the sublinear case, the eigenvalue problem, and the superlinear case.

6.1. The sublinear growth case. We say f(z,u) is sublinear with respect
to the k-Hessian operator if

(6.5) lirzloo|u|_kf(x,u) —0

u—

uniformly for x € 2. Note that the power k is due to that the k-Hessian
operator is homogeneous of degree k.

Theorem 6.1. Let ) be (k—1)-convex with C*'-boundary. Suppose f(x,u) €
CH(QxR), f(z,u) >0 whenu < 0, f satisfies (6.5), and infgr ) J(u) < 0.
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Then there is a nonzero solution u € C%Y(Q) N C3*(Q) to (6.1), which is
the minimizer of the functional J.

Proof. We sketch the proof, as it was essentially included in the proof of
Theorem 5.1.

Replace f by f 4 ¢ for some small § > 0, so that f is strictly positive.
Observe that in the sublinear growth case, by the Sobolev type inequality
(Theorem 5.1), we have J(tu) — +oc as t — oo for any u € ®&(Q), u # 0,
and J is bounded from below. As the infimum of J is negative, one can
choose an initial function ug € ®§(Q2) such that J(ug) < inf, ok () J(u)+90.
By Remark 5.1, we may assume the compatibility condition Si[ug] = f on
0 at t = 0 is satisfied. In the sublinear growth case, one can construct
a sub-barrier u to the parabolic equation (6.3) such that u < ug. By the
comparison principle one gets a global uniform estimate, and also derivative
estimates up to the third order, for solutions to (6.3). Therefore there is a
global smooth solution to (6.3). By (6.4), the solution sub-converges to a
nonpositive solution u = us of (6.1).

We claim that all the solutions ug are uniformly bounded for § > 0 small.
Indeed, if ms = — inf us — oo, the function vs = us/mg satisfies the equation

Sklv] = mgk[f(x, mgsvs) + 0].

By (6.5), the right hand side converges to zero uniformly. Hence by the
comparison principle, one infers that inf vy — 0, which contradicts with the
fact that infvs = —1. Next by the assumption that inf J < 0, it is easily
seen that us does not converge to zero.

Sending 6 — 0, by the interior a priori estimates in §4, we conclude that
ug converges to a solution u € C%H(Q)NC3*(Q) of (6.1) which is a minimizer

A particular case in Theorem 6.1 is when f € CH1(Q) is a function of
x, independent of u [B]. Then for any initial ug satisfying the compatibility
condition, the solution u € ®§(Q x R*) of (6.3) is uniformly bounded and
converges to a solution u* of (6.1). By the convexity of the functional .J
(see (5.7)) and the uniqueness of solutions to the Dirichlet problem, u* is a
minimizer of the functional .J in ®%(€2).

6.2. The Eigenvalue problem. Similar to the Laplace operator, the k-
Hessian operator admits a positive eigenvalue A; such that

(6.6) Selu] = MNulf in Q,

u = 0 on 09,
has a nonpositive k-admissible solution when A = A;. The following theorem
was proved in [W2] for k < n and in [Lp] for & = n. Here we provide a proof

which uses Theorem 6.1.
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Theorem 6.2. Let Q be (k — 1)-convex with C3'-boundary. Then there
exists \1 > 0 depending only on n, k, 2, such that

(i) (6.6) has a nonzero k-admissible solution o1 € C1(Q) N C>*(Q) when
A=A

(i3) If (\*,¢*) € [0,00) x (CHL(Q) N C3*(Q)) is another solution to (6.6),
then A* = A1 and ¢* = cp1 for some positive constant c.

(117) If Q1 C Qa, then A\ (1) > A\1(Q2).

Proof. First consider part (i). Let p € (k — 3,k) and let ¢g > 0 be a large
constant. By Theorem 6.1, there is an admissible solution u, € ®&() to
the problem

Sklu] = colul?,
which is a minimizer of the associated functional. Namely J(u,) = inf J(u),
where

1 ¢
I = 7 [ st =~ [,

Let v, = u,/my, where my = sup |u,|. Then v, satisfies
Sk[v] = comB ™ |v]P.

If mgfk — 0 as p — k, the right hand side converges to zero uniformly,
which contradicts with the fact that infv, = —1. If mE™® — oo, then
mp — 0 uniformly, which implies J(u,) = inf J(u) — 0. But if we choose
co > 0 large, J(up) = inf J(u) — —oo as p — k. The contradiction implies
that m,, is uniformly bounded. Hence by the a priori estimates in §4, we
see that (comg_k,vp) sub-converges to (A1, ¢1), and (A1, 1) is a solution of
(6.6). By Theorem 4.4, p1 € CH1(Q) N C>®(9).

Next we consider (ii). If (A*, ¢*) is also a solution of (6.6), we may assume

that A* > A1 and ¢* < ¢ by multiplying a constant to ¢*. Denote a;; =

[e)
Ouj
and eigenfunction of the elliptic operator L = 3 aijal?j. By the concavity of

5’,1/ k [u], and noting that ¢* and v are negative in €2, we deduce that

[Sk [u]]l/ Mat u = 1. Then A\; and ¢; are respectively the eigenvalue

L(¢* — o1) > 87" 0% = /¥ [o1] = =) R0 + AR > AR (0% — 1)

in 2, which contradicts the fact that )\}/ ¥ is the first eigenvalue of L. Hence
*

we have \* = A\ and 1 = *.
Part (iii) was proved in Step 3 of the proof of Theorem 5.1. O

6.3. Superlinear growth case. We say f is superlinear with respect to
the k-Hessian operator if
(6.7) lim |u| 7% f(z,u) — oo

uU——00

uniformly for x € €.
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Theorem 6.3. Suppose that f(x,z) > 0 for z <0,

(6.8) 11%1_ f(x,2)/)2)% < AL,
(6.9) im f )/ > A,

where A1 is the eigenvalue of the k-Hessian operator. Suppose there exist
constants 0 > 0 and M large such that

0 -0
(6.10) / flx,s)ds < llc—i— .

When k < %, we also assume that there exists p € (1,k* — 1) such that

(6.11) ZEerf(x,z)/\z|p =0.

|z|f(z,2) V z< —M.

Then (6.1) has a non-zero k-admissible solution in C>*(Q) N C1(Q), a €
(0,1).

When k = 1, Theorem 6.3 is a typical result in semilinear elliptic equation.
The solution in Theorem 6.3 is a min-max critical point of the functional
J. As indicated before, we cannot use the variational theory directly, but
by studying a descent gradient flow, we can use the underlying idea in the
Mountain Pass Lemma. The main difficulty is to prevent blowup of solutions
near the boundary for both the elliptic equation (6.1) and the parabolic
equation (6.3), in the case 2 < k < §. It requires some new techniques.

Proof. For clarity we divide the proof into four steps.
Step 1. Let f5 ik be a smooth, positive function given by
f5,K(xa ’LL) =0+ 7751f(5,K(:E7 u)a

where 15, € C§°(f2) is a nonnegative function satisfying ns, (z) = 1 when
dist(x, 0Q) > 260; and ns, (z) = 0 when dist(z,0Q) < 1, and

R ) if |ul < 16,
fox(z,u) =< flz,u) if 6§ <|u| <K,
|ulP if |u| > 2K.

We will choose the constants §,9; > 0 small and K > 1 large.

Remark. Before continuing, let us explain why we make these modifications
when k > 2, which are not needed when considering semilinear elliptic equa-
tions (the case k = 1). The introduction of § is such that f is positive, so
that we can apply the C? a priori estimates for the parabolic Hessian equa-
tion (6.3). We modify f for large |u| (namely f = |u|P when |u| > 2K) is to
use the gradient estimate for the parabolic Hessian equation. The purpose of
introducing 7s, is to prevent the solution to the parabolic Hessian equation

blow-up near the boundary. In the following we choose §; = 9.
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Consider the functional

(6.12) Ts.xe () = 1<:41r1 [ (w)siful - /Q Fi.xc(x, ),

where Fs i (z,u) = fq? fsx(x,t). When 6 > 0 is sufficiently small, by as-
sumption (6.8), there exists a smooth, k-admissible function ug € CIJIS(Q)
with small L°°-norm, such that

(6.13) Skluol > fo,rc(x,u0).

Consider the parabolic Hessian equation (6.3) with initial condition u(-,0) =
sup, where s > 0 is a parameter. We choose the function p in (6.3) such
that

w(t) = logt if t<1/8,

(6.14) pt) = tYP i t> 8,
and
(6.15) (t = s)(u(t) — p(s)) > C(t — s)(t/7 — s'/7)

for all t,s > 0, where C' is an absolute constant, independent of s,¢. Then
equation (6.3) has a unique smooth solution us. By (6.11) and (6.14),
wu(f(w)) is of linear growth in w. Hence the solution exists for all time
t.

Since Sklug] > 0, up is a sub-barrier for the solution us for small s > 0.
That is when s > 0 is small, one has 0 > wus(-,¢) > wo for all ¢. Hence
Js i (%, us) is uniformly bounded,

Js g 1)) > — /Q Fyse (o ))da > —

for all ¢, provided § > 0 is small.

On the other hand, when s > 1 is large, we have Jj5 i (sug) < —1. Hence
Js i (us(-,t)) < —1 for all t > 0 as (6.3) is a descent gradient flow. Let
(6.16) s =inf{5 | limyoods i (us(-,t)) < —1 Vs >3}

Then s* is positive. By the continuous dependence of the solution us in s,
and the monotonicity (6.4), we see that Js i (us«(-,t)) > —1 for all time ¢.
We also have

(6.17) sup |us< (-, t)| > C >0

for some C' > 0 independent of ¢. Indeed, if sup |us«(-,¢)| is small at some

time ¢, then sup |us(+,t)| is also small at ¢ for s > s*, close to s*. Hence by

(6.13), ug is a sub-barrier, and so by the comparison principle, sup |us(-, t)]

is small for all ¢ > ¢, which contradicts with the definition of (6.16).
Suppose for a moment that

(6.18) luge (-, )| < C
34



uniformly for ¢ € (0,00). The constant C' is allowed to depend on ¢ and K.
Then by the global regularity of the parabolic Hessian equation, we conclude
that ug«(-,t) sub-converges to a solution uj ;¢ to the equation

(6.19) Sklu] = fs5,x(z,u).

In Step 4 we show that ug 5 is uniformly bounded in § and K, and so it
sub-converges as § — 0, K — 0o to a solution u € C%1(Q)NC3(Q) in ®F(N)
of (6.1). From (6.17), u # 0.

Step 2. In the following we prove (6.18). For brevity we will write ug- as
u, dropping the subscript s*. Recall that J5 x(u(-,t)) > —1 for all time ¢.
Hence the set

(6.20) = {1 € (0,00) | S Jsse(u(-1)) < o)

has finite measure, where o > 0 is a small constant. For any t ¢ K, first
we show that

(6.21) [ (-utsositut0) < €,
Q
(6.22) /Fa,K(:v,U(',t)) <C,
Q
where C' is a constant independent of ¢,§ and K. Indeed, if ¢t ¢ K°, we have

[ (8410 = il Hu(Sula) ~ (el w)}
= [ du{Sulu) ~ fuucow)} =~ GIsklul0) <o
Q
Hence by (6.15),
/ {Suful = Sl ) Y (Sulul) 7 = (fo.xc ()7} < Co.
Denote o = (Sk[u])l/p, 8= (fg’K(a:,u))l/p. We obtain

/ la— 8P+ < c/(ap — ) B) < Co.
Q Q

We have
| [ue - < ¢ \UIIafBI(a”‘Wﬁ”‘l)dw
Q
< [ [la- mpﬂ] [ / |u|p+1} ”“[ / |u||ap+ﬁp} ’
<

o | [ o 7]
Q
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On the other hand,
(6.23)  Jsx(s*ug) = Jsr(u(-,0)) > Jsx(u(-,t))

1
= Pl Q(—u)Sk[u] /QF(;K(x u) > —1.
By (6.10),
1-—
<
Fsre(x,u) < dlu| + . 1’U\f6K($ u) +C.
Hence
1
1
>
> k+1/ /5\U|+k+lfu|f61<($ W)+ 0]
1
_ _ p_
a1 feue -2+ 5 [t - [ €+,

It follows that, by the Sobolev inequality (Theorem 5.1),

/ o) < C / ] [o® — 8P| + Js.x(s o) + / (C + 6ul)
Q Q Q

p—1
CUl/(pH)HUH};/ppH[/ |uHa|P+/ u\gp’] P +/(C’+5]u)
Q Q Q

p
Cal oD )2 [H ey + [ rum] + [+ dlu.

By the Sobolev inequality again, ||u|/;1 < CHu||q>g. We obtain

IN

IN

/ il fr.xc (@, 1) < Cres / ullal? + C
Q 0

with e,5 — 0 as 0,0 — 0. Inserting the estimate into (6.23) we obtain
(6.21) and (6.22).

Step 3. Now we use (6.21) and (6.22) to establish (6.18). If & > %, in
view of (5.12), (6.18) follows readily from (6.21). We need only to consider
the cases k < 5. Let My = supg, |u(-,t)|, M; = supq |u(-,t)|. If M, is not
uniformly bounded, there exists a sequence t; — oo such that M, — oo and
(624) M; < Mtj for all t < tj
Let )

—d, + Kd
w@) = =53 eg Mu
where d, = dist(z,99). We choose § small and K € (1,5~'/2) large such
that Si[w] > ¢ in Q — Qs, where Q5 = {z € Q | d; > J}. Then w = M;; on
0€s. Recall that fsx = 6 in Q — Q5. By the comparison principle we have

u(z,t) > w(x) for any x € Q — Q5, t € (0,¢;). It follows that M, < My,
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for t € (0,t;). By (6.11) and (6.14), the right hand side of the parabolic
equation (6.3) is of linear growth. Hence we have

My > My, @70 vt <ty
Hence M; > C My, for t € (t; —2,t;). Since the set K has finite measure,

we may assume that t; ¢ K9 for all j and M; < C’Mtj for all t < t;.

Suppose the maximum M;; of |u(-,;)| is attained at the point y;. By the
interior gradient estimate (10.10) below, we have

1
u(z,tj) < —thj V x € Br(y)),

where r = clMg and ¢; > 0 is independent of j, and

pt+k k—p
2k 2k
By (6.21) (where the constant C' is independent of §, K') and the Sobolev
inequality (5.9) and (5.11), we have

lu(s t)lLa(B, ;) < lult)lLa@) < Cllullgr) < €

where ¢ = k™ if K < § and ¢ > p + 1 is any sufficiently large constant if

k = 5. On the other hand, we have
+b
(-, t5) | La(B, () = Cr" M > CMIH.
Since p < k* — 1, we have ¢ + b3 > 0. Hence when M, is sufficiently large,

we reach a contradiction. Therefore (6.18) is proved.

Step 4. We have therefore obtained a solution us as to (6.19) which satisfies
(6.21) and (6.22), with the constant C' in (6.21) and (6.22) independent of
6, K. If k> %, by (5.12) we obtain

(6.25) sup lus x| < C
Q

for a different C' independent of §, K. Sending 6 — 0 and K — oo, we obtain
a solution u € C%1(Q) N C3(Q) in ®E(Q) of (6.1).

If k < %, denote ¢ = f5 x(c,us k). By (6.21) and (6.11), and the Sobolev
inequality, we have 1 € L5(Q) for some 3 > 55+ Hence applying Theorem
5.5 to equation Sk[u] = ¢ in Q we obtain again (6.25). In all the cases, we
obtain a solution to (6.1). O

Remarks.
(i) In Step 4 above, if k = 5, by the Sobolev embedding (5.11), the right

hand side of (6.19) belongs to L?(Q) for any § > 1. Write equation (6.19)
in the form

(6.26) >, i = 1Sulu) V=S¢
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where a;; = +[Sk[u]]"/ k*IS]ij [u]. By inequality (x) in Section 2, the deter-
minant |a;j| > C), > 0. Hence by Aleksandrov’s maximum principle,

-
Q

for some C' independent of §, K. We also obtain (6.25).

(ii) If f is independent of x and the domain {2 is convex, by the method of
moving planes, the maximum point of us x will stay away from the boundary.
Hence we can obtain (6.25) by a usual blow-up argument. We don’t need
to use Theorem 5.5.

1 n/k
|aij] fi dr<C

(iii) Let u; be a k-admissible function with small L® norm, uy be a k-
admissible function such that J(u2) < —1, where J is the functional in (6.2).
Let I' denote the set of paths in ®5(€2) connecting u; to ua. Let
(6.27) co = inf sup J(y(s)).

7€l se(0,1)
Then the assumptions (6.8)-(6.11) and the Sobolev inequality (Theorem

5.1) implies that ¢y > 0. The above proof implies that there is a solution
u € ®E(Q) to (6.1) such that J(u) = cp.

6.4. The critical growth case. In this section we extend Theorem 6.3 to
the critical growth case. Consider the problem

{ Sp(D?u) = [ul* "' + f(z,u)  in O,

(6.28) u=20 on 01},

where 1 < k < n/2 and f is a lower order term of |u|*" ~!. For simplicity we
will consider the case

(6.29) f(z,u) = Aul?,
where g € (k,k* — 1), A > 0. Denote

1 1
I = 7 [0Sl = 5 [

* )\
F —/ lu|1 dzz.
q+1Jg

(6.30) co= inf supJ(su).
ue@E(Q) s>0
By the Sobolev inequality (5.9), we have ¢y > 0.
We also denote

() = —

1
=1 oSl - 5 [ 1

(6.31) c¢® = inf sup J*(tu).
DE(Q) t>0

k*

The following theorem extends the existence of positive solutions to semi-
linear elliptic equations in [BN] to the k-Hessian equation. Our proof is
completely different, due to the lack of a gradient estimate near the bound-
ary for equation (6.40).
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Theorem 6.4. Suppose
(6.32) co < .

Then (6.28) has a non-zero k-admissible solution.

Proof. For any p € (q,k* — 1), by Theorem 6.3, there exists a solution
up € C3(Q) NCYH(Q) of

Sk(D*u) = Yp(x,u) =: [ulP + Alul?  in Q
(6.33) { u=20 on Of)
with
Ip(up) = cp,
where

Jp(u) = k‘;—I—l QuSk(DQU)d:U - /Q U, (z,u)de,
Uy (z,u) = ff Vp(z,t)dt, and

¢, = inf supdJ,(su) > 0.
P uE‘P]g(Q)s>g p(su)

From equation (6.33) we have

/ up S (D?*uy)dr = / uptp(z, up)dz,
Q Q

which, together with J,(u,) = ¢p, implies that

(6.34) [upllgr < € and [jup[| ppe1 ) < C

We want to prove that
My = sup |uy ()|
e
is uniformly bounded for p < k* — 1 and close to k* — 1. If this is true then
by the regularity in §4, there exists a subsequence of u,(x) which converges
to a solution ug of (6.28). Moreover, one can prove

J(ug) = pii}gl_l Jp(up) = lim ¢, > 0.

p—k*—1
Hence ug < 0 in .

Suppose to the contrary that there is a subsequence p; so that M; =:
M,; — oo as pj — k* — 1. Suppose the supremum M is attained at x;. Let

vi(y) = M; (R 'y + x;), y ey,
where R; = M;pjfk)/zk, Q= {y | Rj_ly—i—a:j € Q}. Then v;(0) = —1,
—1 <wv; <0 for y € €1, and v; satisfies
(6.35) Sk(D2v) = ¥;(y),
where N
P (y) = |vj[P7 + XM oy 2.
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Moreover,
(6.30) [ ultde =1 [ oty
Q Q;

6

/ | Sk (D2uj)da = M /Q [0;1S(D20;)dy,
J

where 0; = p; + 1 — 5:(pj — k) > 0. Hence |lv;]| p;+1 and HUqu)'S(Qj) are
uniformly bounded.

By passing to a subsequence we assume that z; — z, € Q. Denote
dj = dist(xj, 6(2) If

(637) dej — 0Q,

then for any R > 0, Br(0) C €; provided j is large enough. By the interior
gradient estimate (Theorem 4.1) and the interior second derivative estimate
(Theorem 4.2), we may suppose, by passing to a subsequence if necessary,

0j(y) = v in CR.(RY),
and v, satisfies the equation
Sp(D*v) = [v[F" "1 in R™
Note that to apply Theorem 4.2, we may choose the function w in (4.11) as

w = Ri%(\xp — R?) for large Ry. Hence

—/ Voo St (D*vsg )dx = / oo | dux
and so
(6.38) J*(Vso) = sup J*(tvs) > ™.

t>0

On the other hand, let i’j(y,u) = ff Jj(y,t)dt. We have

-~ ]. * .
Vj(y,u) = o lvee(y)]* in Lig(R")

k
as j — oco. Note that by equation (6.35),
-1 ~
k‘—|—1UJSk(D ’U]) \I’](y,v])ZO
By Fatou’s lemma we obtain
* . —1 I
T < tmg [ [k o 0iS(DP0y) = By, 0y)] da
-1
= lim ]*)OOM [k:—i-lupjsk( upj)_q/pj(x7upj)]dx
< lim; e < e <

which contradicts with (6.38). Hence M), is uniformly bounded.
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Next we consider the case that d;R; is uniformly bounded. We may
suppose

(6.39) d;R; — a > 0.

By the interior gradient estimate (Theorem 4.1), v; converges locally uni-
formly to a function v, and v, satisfies

(6.40) Sk(D%0s) = [U0o¥ 71 in Qg

in a weak or the viscosity sense (see §9 for definition of the weak solution),
where by a rotation of axes, Qs = {yn, > —a}. Moreover we have —1 <
Voo < 0 in Qo

We note that the argument in Case 1 doesn’t work at the current situation,
as we don’t have uniform gradient estimate near the boundary 9., we
don’t know whether voc = 0 on 0.

Let Dj = {y € R | v;(y) < —3}. By (6.34) and (6.36) we have [|vj||1»;, <
C and so mes(D;) < C. Applying Theorem 5.5 to the equation (6.35) and
noticing that inf v; = —1, we have

(6.41) mes(D;) > Cy

for some C7 > 0 independent of j. Let v} be the (usual) rearrangement of v;.
Namely v;f is a radially symmetric, monotone increasing function, satisfying
{vj < a}| = [{v; < a}| for any a € R, where |- | denotes the Lebesgue
measure in R™. Let v* = limj_o v;. Then v* # 0 because of (6.41). By

J
Fatou’s lemma,

/ v*|¥ dy
]Rn

IN

T
]Rn
= hmj—»OO/R |Uj|pj+1dy <C.

Therefore v*(r) = o(+) as r — oo. It follows that for any given £ > 0, there

exists 6 = 6. > 0, with § — 0 at € — 0, such that
§-mes{y e R" | [v*(y)|*" >0} <e.
Hence
(642)  6-mes{y | o;()F > 5} = 8- mes{y | [}(y)|F >0} <e

for sufficiently large j.
Denote

Tiy) = viy) + 7,

Qs =A{y Q| v;(y) <0}
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We have

sup J*(tv; | Qj5) = sup / [_
t>0 t>0 Qj,g

v

gkl \ LA
sup/ [ijk(D vj) — —|vj] ]dy.
Qj,5

t>0

/ o " =/ [0 + 81/
Qjs Qjs

/ 5, + V% 51 4 ¢

Qs

k*

IA

*

*

* * ~ * TR
Lo @ ()T cong
Q.5 Qj.5

75

< @se [

Qj.s

IN

where we have used the fact that
which follows from (6.41). We obtain

« —th o 7 1/k*y |~ (k*
sup J*(tv; | €j5) > sup ———U;Sk(D0;) — - (1 +Ce™/™ ) [;]" | dy.
>0 >0 Jo,, Lk +1 k

Hence we obtain

sup J*(tv; | Q55) > (1 — Cel/F e,
t>0
On the other hand, since f(z,u) = A|u|? is a lower order term of |u|¥ ~!
and mes(€2; ) are uniformly bounded for fixed J, we see that when M; is
large enough,

sup Jj(tvj, Qj5) > sup J*(tvj, Q55) —e; > (1 — Cel/F e — £j
>0 >0

with €; — 0 as M; — oo, where

Qj.5

-1 ~
{k: n 1uSk(D2u) — ¥ (z,u)|dx.

For any subdomain D C (1;, since

we have

Jj(Uj,D) = Sup Jj(ij,D) > 0.
t>0
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Hence

Ti(vj, Q) = Jj(05,Q55) = (1= CV/F )" — e
We reach a contradiction with (6.32) when ¢ and ¢; are sufficiently small.
This completes the proof. ([l

The technique in the treatment of the case (6.39) is new. Moreover, it
also applies to the case (6.37). By carefully examining the argument, one
sees that the function f in (6.29) can be replaced by a more general f(z,u),
provided

limg o f(z,)[t| ™% =0,
limg o f(z,t)[t| ™% T = 0.
In the case the constant ¢y in (6.30) should be replaced by

co= inf sup J(3(5)),
€T se0,1]
where T' denotes the set of all paths in ®%(£2) connecting U = 0 to a function
up satisfying J(up) < 0.
The verification of (6.32) can be carried out in a similar way as [BN], and
the computation is also similar. Let

1 n—=2k
n — 2k ghtt 2k
6.43 = CF b
(6.43) wlo) = b () T
where C¥ is the binary coefficient. Then w, satisfies the equation
(6.44) Sp(D*u) = [ulf"~! in R",

and the constant ¢* in (9.3) is attained by w. when 2 = R™.

Lemma 6.1. Suppose there exists a ball By(xo) C 2 and
(k+1)(nk —n+2k) 1
k(n — 2k)

q > max{k,

so that
(6.45) fz,u) > ANul?  for z € By(xo)
for some A > 0, then ¢y < c*.
Proof. Let
B = / wf*d:c = —/ wESk(D2wa)de‘.

B is independent of €. By a translation we may suppose xg is the origin.
Let () be a radial cut-off function so that ¢ = 1 in B, 5(0) and ¢ = 0
outside B,(0). We may choose ¢ so that u. =: pw. € ®F for £ > 0 small.
Direct computations show that

/ u’g*d:v =B+ O(a(n_%)/%),
Q
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/ (—ue)Sk(D?u.)dx = B + 0(5("_2’9)/2’“)’
Q
If f(x,u) satisfies (6.45), we have

1 n_ n—2k q
/F(:n,ue)dw > C’/ luc| T de > Ce2 207
Q Q

where F(z,u) = ff f(z,t)dt. Ifq > W—l, we have %—%q <
n—2%k

o5~ Hence if ¢ is small enough we have cy < c*. O

We refer the reader to [CGY] for more details on radially symmetric
solutions to the k-Hessian equations in the critical growth case.

7. HESSIAN INTEGRAL ESTIMATES

In this section we establish some local integral estimates for k-admissible
functions [TW2]. The main estimates include (7.2) and (7.5) below. Our
estimates are based on the divergence structure of the k-Hessian operator.
As shown as the beginning of Section 5, the k-Hessian operator can also be
written as

1) Selul = 1Dl
= % Z Uijsjij [u]
= 20, 7))

As before we denote by ®*(2) the set of all smooth k-admissible functions

in Q, and by ®%(2) the set of all smooth k-admissible functions vanishing
on 0f).

7.1. A basic estimate. Here we establish the following basic estimate.

Theorem 7.1. Let u € ®F(Q). Suppose u < 0 in Q. Then for any subdo-
main Q' CC Q,

72) [ sn<e( [ ),

where C is a constant depending on n,k,Q and €.

Proof. Tt suffices to consider the case Q = Bgr(y), Q@ = B,(y), for some

y € R" and r < R. Let n € C*(Q) satisfy 0 <n <1, =11in B,(y), and

n =0 when |z —y| > (R+ 2r)/3. Let u € C*°(£2) be the unique k-convex
solution of the Dirichlet problem

Sl = nSlu]+6" i ©,

v = 0 on 0N
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Then Sku + g\x — y|?] > Sk[u]. By the comparison principle, we have
Sle—y|> +u <T<0inQ, so that

/W[S/\UH—C(&

Let ¢ € C§°(f2) be a cut-off function. Then, by integration by parts,

[esm = ¢ [esimpyi=y [asimpig

< puax(D(a) [ s
k suppD?2¢
n—k+1 ~
= T max (1D*¢| |a]) / Sk—1[u].
suppD2(¢

Choose ¢ = 1 in B(gyp2(y), ¢ = 0 for [z —y| > (BR +1)/6, |D*(| <
C(R —r)~2. By the Harnack inequality (4.10), we have

~ ~ 1

@) < [ il Vo=l = 5(R+0).

Hence by sending § — 0, we obtain

N Sk[u] SC'/QSk—l[U]/Q(—U)

for some constant C' depending on n, k,r, R. By iteration we obtain (7.2).
O
7.2. Local integral gradient estimates. First we prove

Theorem 7.2. Let u € ®*(Q), k =1,--- ,n, satisfy u < 0 in Q. Then for
any sub-domain ' CC 2, we have the estimates

(73 /’DW&MSO(AWQW

foralll=0,---  k—1,0<¢g< ( ~ ), where C' is a constant depending on
Q,, n,k,l and q.

Corollary 7.1. Let u € ®*(Q). ThenV ' cC Q,

(7.4) |wwwmsoéww

for g < 2% where C depends on n,k,q,Q, and Q'.

Inequality (7.4) follows from (7.3) by taking { = 0. When k = 1, (7.4)
can be found in [H]. Corollary 7.1 asserts that a k-admissible function is in
the local Sobolev space VV&)(?(Q) When k£ > n/2, we have ¢ > n, and by
the Sobolev imbedding theorem, u € C}? (2) with o € (0,2 — 7). But recall

that in Theorem 5.4 we have shown that u € Cf} () with a =2 — .
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To prove Theorem 7.2, let us denote, for a real n x n matrix A = [a;j],
not necessarily symmetric,

(75) SiA) = Mk,
A = (AL
ij

Then for any vector field g = (g1, -+ ,gn), 9: € CY(Q), i = 1,--- ,n, it
follows that

Sy (Dg)Dig; = kSk(Dg).
Now we introduce a broader class of operators, namely, the p-k-Hessian
operators, given for k =1,--- ,n, p > 2, u € C%(Q), by
(7.7) Skplu] = [D(|Du|p_2Du)]k.
where

_ _ Du® Du
2 _ 2 2
D(|Du|P~*Du) = |DulP <I+ (p— 2)]DU|2)D u.

When k =1, it is the well-known p-Laplacian operator,
(7.8) Sy p[u] = div (|DulP~2Du).
One can verify by direct computation that the p-k-Hessian operator is in-

variant under rotation of coordinates.

Let us call a function u € C?(Q), p-k-admissible in Q if S ,[u] > 0 for all
I =1,---,k. We then have the following relation between k-admissibility
and p-k-admissibility.

Lemma 7.1. Ifu is k-admissible, then u is p-l-admissible forl =1,--- k—1

and p —2 < ;L(Ef:]g

Proof. At a point y € Q, where Du(y) # 0, we fix a coordinate system so
that the x; axis is directed along the vector Du(y) and the remaining axes
are chosen so that the reduced Hessian [Diju],-,jzg,.,. n is diagonal. It follows
then that the p-Hessian is given by

(p—1)Djyu  ifj=1,i>1,

_ _ Diu ifi=1,7>1
) P=21) .0 — p—2 1j ) J )
(7.9)  D;(|DulP~*Dju) = |Dul Diu if j=1i>1,
0 otherwise.
Hence by calculation, we obtain for [ = 1,--- ,k — 1 at the point y, setting
)\i = Dmu(y)a 1= 17 RN
(7.10)

|Dul'C2)S) [u] = (p— DXior_1a (V) +o1a (V) = (p—1) Y o1-2.5(A) (Dirw).
i=2
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From the k-admissibility of u, we have
Sklu] = Mop_1:1(X) + o ( ZUk 21i(A)(Diw)? > 0
so that using Newton’s inequality, in the form

(7‘11) Ok;1 l(n — k) Or;1

Op—1:1 ~ k(n—1)o1—11’

we have, for p — 1 < f((::,g, the inequality

1 ~ ~ Ok:1
—|Du|'CP g Tl > Ao (\) + o u)?
p—1| | plu]l = Aor11(N) P l11 Z l2lz (Diru)
> 2 MZ% 211 (Diru)? 20121 1u)?
il O'k 1 1 VA ’L 1 1
1 n
2
= O1-1;10k—2;1i — Ok—1;101-2;1i | (Di1u
— Z2< Z ) D
1 n
= Z <0l—1;1z‘0k—2;1i - Uk—l;liUl—2;1i> (Dju)?
Tk-11 4
> 0.
Note that when applying Newton’s inequality to the last inequality, the
coefficient in (07-1,1i0%—2;1i — Ok—1;1i01—2;1;) is better than we need. O
Let A = (A1, -+ ,A\n) € T'k. Suppose A\ > -+ > \,,. Let u = %/\Zx? By

Lemma 7.1, we have Aj,u > 0 for p <2 + ( ) . Hence

(7.12) Z)\ + - ))\ > 0.

Proof of Theorem 7.2. Setting
k(n —1)
I(n—k)
we obtain from Lemma 7.1 and the formula (7.10), for 2 < p < p* and
u € dF(Q),

pt=1+ k<n, <k,

1(2—p) _ p*—p p—2 1(2—p*) .
[ Dul**7 Sy p[u] P 5 Silu] + e 51Dyl Sip+[u]
pr—p
>
= p* — QSZ [UL

and hence, for ¢ = (p — 2)I < nT(Lk:kl), we have the estimate

*

p*—2
7.13 Dul1S;u] < Sy .
(7.13) IDuf'Sifu] < Z=Si,fu
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Theorem 7.2 will follow by estimation of S;,[u] in LL (). For any non-
negative cut-off function n € C3(Q), we obtain

(7.14) [ sl = [ wsip(Dur2Du0)

1 Iy
= 3 / Sy’ D;(|DulP"2Dju)
Q

1 .
= —Z/QDUPQ_QS;]DI'??DJ‘U.

From (7.9), we have
Sliiju = \Du|(l_l)(p_Q)Slij(DQU)Dju
— |Dul0-DC-D §I D0,
so that, by substituting in (7.14), we obtain

1 _ i
/QUSz,p[U] = —Z/QIDUW 287 DinDju

1
7 [ Dl Dnlsi sl

IN

and hence, replacing 1 by n' and using (7.13), we obtain

/Q | Du|Si[u] < C max | Dy /Q Dl 18 [u).
Consequently,
(7.15) [ 1pultatsifa) < (Cmax Dyl)! [ 1D,
so that the estimate (7.3) is reduced to the case [ = 0. To handle this case,

we take [ =1 in (7.15) with

n(k —1)
=q(1 _,
¢=q(1) <= —
If u is k-admissible for & > 2, we have

Solu] = %((Au)2 —|D*ul?) > 0

and hence
(7.16) |D?u| < Au.
Therefore we obtain from (7.15)

/17|Du|q|D2u| ngaX|D77|/ | D14
Q Q

so that

/nD(|Du|1+q) §C’maXDn|/ | Du|'™.
Q Q
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Thus by an appropriate choice of 77, we obtain for any subdomain ' CC €,

where do = dist(Q,09Q), C is a constant depending on k,q and n. The
estimate (7.3) now follows by interpolation. [J

From Theorem 7.2 we may derive corresponding estimates for the k-
admissible function themselves.

Theorem 7.3. Let u be a nonpositive k-admissible function in Q, k < n/2.
Then for any subdomain Q' CC ), we have

(7.18) s <e( [ |u|>l+q

foralll=0,--- k—1,0<¢g< ( 2,2, where C' is a constant depending on
Q,0, n,k,l and q.

Proof. With n > 0, € C3(9), we estimate

/nz(—u)qSl[u] = q/ nz(—u)q_lslijDiuDju—1/(—u)q5’lijDiuDjn2
Q lJo lJo
n—101+1 _
< M2TED [ i Dl
)
2(n—1+1
SAED [ sl ipg

IN

<q+1><7—l+1> [ s i

l 1
+ /’D ‘ q+1Sl i

(k l+1)

Now, for any p < , we have

2/p p(g—1) 1-2/p
i sio < ([ psepa) ([ pen s

so that if ¢ < ( 2,2, we may choose p so that ¢* = pg]_—;) < "(ﬁilﬂ;l)v and
the estimate (7. 18) follows from Theorem 7.2 by induction on I. O

8. HESSIAN MEASURES

In this section we extend the notion of k-admissible functions to non-
smooth functions. We assign a measure ugfu] to a k-admissible function u
and prove the weak continuity of ux. The proof of the weak continuity of
in [TW2] involves delicate integral estimates and is based on the estimates
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in §7. Here we provide a simpler proof, using ideas from [TW1, TW5]. As
an application we prove the existence of a weak solution to the Dirichlet
problem of the k-Hessian equation.

8.1. Non-smooth k-admissible functions. Observe that a C? function
w is k-admissible if and only if for any matrix A = {a;;} with eigenvalues in
the cone

E={ANeR" | A A<S0V AeT},
there holds

(8.1) > aiDiu <0.

Note that a matrix A with eigenvalues in I'; must be negative definite. From
(8.1) we can extend the notion of k-admissibility to non-smooth functions
as follows.

Definition 8.1. A function u in € is k-admissible if
(i) it is upper semi-continuous and the set {u = —oo} has measure zero; and
(i1) for any matriz A = {a;;} with eigenvalues in I'},

(8.2) /QuaijDingo <0 VeelCR),p>0.

Note that when k = 1, I'; contains only the vector —(1,---,1), and (8.2)
becomes [, u(—Ag) < 0 for any ¢ > 0,€ C5°(Q2). The above definition
implies that an upper semi-continuous function u is k-admissible if it is sub-
harmonic with respect to the operator L = 3 aile-zj for any matrix A with
eigenvalues in I'}.

From (8.2) we see that if u is k-admissible, so is its mollification u., given
by

83)  uele) = /Q u(z — ey)p(y) dy = /Q e o(E = Yyuy),

€

where p is a mollifier, namely p is a smooth, nonnegative function with
support in the unit ball B;(0), and fBl(O) p = 1. Observe that if u is k-
admissible, it is also subharmonic. Hence its mollification u. converges to u
monotone decreasingly. Therefore by Corollary 7.1, a k-admissible function
is locally in the Sobolev space VVZZCq(Q) for any ¢ < n"—_’ﬁc

Lemma 8.1. Let u; be a sequence of k-admissible functions which converges
to u almost everywhere. Suppose w is upper semi-continuous and the set
{u = —oo} has measure zero. Then u is k-admissible and u; converges to u
pointwise.

Proof. The first assertion follows readily from the definition. The second
one is due to that « is upper semi-continuous and u; is subharmonic and so

it satisfies the mean value inequality below. O
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Recall that a k-admissible function v is subharmonic, it satisfies the mean
value inequality

1

(&4 uly) < 1B ()| B, )

u Y By(y) C Q.

Therefore if u; and u are k-admissible and {u;} converges to u almost every-
where, u; is locally uniformly bounded in L'(9). Conversely, if a sequence
of k-admissible functions {u;} is uniformly bounded in L .(f2), then by
Corollary 7.1, the set {u = —oco} has measure zero.

We also have the following comparison principle for k-admissible func-
tions.

Lemma 8.2. Suppose u and v are k-admissible and v is smooth in €. Sup-
pose Sg[v] = 0 in Q and for any point y € 0, lim,_, [v(x) — u(z)] > 0.
Then v > u in €.

Proof. If there is an interior point z¢ € € such that v(z¢) < u(xg), by adding
a positive constant § = 1 (u(zg) — v(z0)) to v we may suppose that for any
y € 09, lim,_y[v(z) —u(z)] > 6 > 0, so that v > w in a neighborhood
of the boundary 0€2. Therefore for € > 0 small, we have v > wu. near 95,
where u. is the mollification of u. By the comparison principle for smooth
k-admissible functions, we conclude that v > wu., which is in contradiction
with v(zo) < u(xo) < us(zo). O

Lemma 8.3. Suppose u,v are two k-admissible functions. Then w =
max(u,v) is also k-admissible.

Proof. Let ue, ve be the mollification of u and v, respectively. Then it suffices
to show that w. = max(ue,v.) is k-admissible. For brevity we drop the
subscript . Since the function w is semi-convex (i.e., w + C|z|? is convex
for sufficiently large constant C'), w is twice differentiable almost everywhere
and the eigenvalues of D?w lies in I'. Let w. be the mollification of w. By
integration by parts in (8.3), we have

Dwei(z) > /Q D2w(z — £'y)p(y) dy.
Hence for any matrix A with eigenvalues in I'},
aij Dijwer (z) < /Q ai Diw(z — 'y)p(y) dy < 0.
Hence w,/, and so also w, is k-admissible. O
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8.2. Perron lifting. Let u be a k-admissible function in 2 and w € 2 be
a subdomain of ). The Perron lifting of u in w, u*, is the upper semicon-
tinuous regularization of the function 4,

(8.5) u®(x) = lim sup 4,
=0 B, (2)
where
@(x) = sup{v(z) | v is k-admissible in Q@ and v < u in Q — w}.
Obviously we have u“ > 4, and @ and u“ coincide in €2 except possibly on
ow.
Lemma 8.4. Assume 0w is C>' smooth. Then u® is a solution of
(8.6) Splw] =0 in w,
w=u on Jw,

in the semse that there is a sequence of smooth k-admissible functions w,
which satisfies Silwe] =0 in w and we. — u on W pointwise.

Proof. Let u. be a mollification of u, as given in (8.3). Let ue j = u-+277|x|?,
Then Sy [u. ;] > C27Fi. That is, U, j is a smooth sub-solution to the Dirichlet
problem

Splw] =C27% in w,
W= U j on Ow.

Hence from [G], there is a unique global smooth solution w.; € C3(w),
monotone in j. By (3.5) we have sup, |Dw, ;| < supg, |[Dwe;|. On the
boundary dw, we have u. ; < we ; < U ;, where %, ; is the harmonic exten-
sion of . ; in w. Hence

sup | Dwe j| < sup |Due ;| < sup |Du.| + C277.
Oow Ow Ow

Therefore by passing to a subsequence, w, ; converges as j — 0o to a solution
we of (8.6) which satisfies the boundary condition w. = u. on dw.

Let uf = w. in w and v¥ = u. in Q@ — w. It is easy to see that u
is the Perron lifting of u. in w. The proof of Lemma 8.3 implies that
is k-admissible. Since u. is monotone decreasing in e, so is u¥. By the
comparison principle (Lemma 8.2), we have v > u“ in Q. Hence ug :=
lim. o u? > u”.

On the other hand, let u§ be the upper semicontinuous regularization of
ug. Then by Lemma 8.1, u§ is k-admissible in €. Obviously u§ = u in
2 —w. Hence by definition of u*, ug§ < u*. We obtain ug > u“ > ug > uo.
Hence

lim u = u®.

e—0
Lemma 8.1 implies the convergence is pointwise. The interior gradient esti-
mate implies that u* is locally uniformly Lipschitz continuous in w. O
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Below we will consider the Perron lifting in an annulus w; = B,1¢(z9) —
B,_t(xg). Let us fix r and let ¢ vary. Then u** is monotone in ¢, namely

lim vt (z) < u?’(z) < lim u*(z) V€ Q.
t—0— t—ot

It follows that [|u“t|11(q), as a function of ¢, is monotone and bounded.
Hence, [[u“t||11(q) is continuous at almost all ¢. It follows that for almost
allt >0

(8.7) lim u** (z) = u**(x).

s—t

Lemma 8.5. Suppose uj;, u are k-admissible and u; — u a.e. in €. Suppose
(8.7) holds at t. Then we have ui* — u** a.e. in 2 as j — oo.

Proof. Since u;-“ and u“* are locally uniformly Lipschitz continuous in wy,
by passing to a subsequence, we may assume that u;f’t is convergent. Let
w' = lim ;" and w be the upper semicontinuous regularization of w'. Then
by Lemma 8.1, w is k-admissible and w = u in 2 — @w;. Hence by the
definition of the Perron lifting, we have u“* > w.

Next we prove that for any § > 0, w > u**=%. Once this is proved, we
have u** > w > u**=%. Sending 6 — 0, we obtain u** = w by (8.7).

To prove w > u*t=9, it suffices to prove that for any given € > 0, u;-’t >
u — & on Owy_g for sufficiently large j. By the interior gradient estimate,
u;‘.’t is locally uniformly Lipschitz continuous in w;. If there exists a point
zo € 0B, 5/ such that u(zo) > u;"(2o) + ¢ for all large j, by (8.4), there is
a Lebesgue point 1 € Bj4(wo) of u such that u(z1) > uj" (z1) + 3¢ for all
large j. It follows that the limit function w’ is strictly less than u a.e. near
1. We reach a contradiction as w’ = lim; o0 u‘j‘-’r > limj_o0 uj = u. O

8.3. Weak continuity. Denote ui[u] = Silu|dz. It is a nonnegative mea-
sure if u is a 2 smooth, k-admissible function. First we prove the following
monotonicity formula.

Lemma 8.6. Let u,v be two smooth k-admissible function in €. Suppose
u=wv on IQ and u(zx) > v(x) for x € Q, near 0. Then

(8.8) A&MSA&M

Proof. We may assume that 92 is smooth, otherwise it suffices to prove
(8.8) in {u — ¢ > v} and send § — 0. We have

d ij -
dt/QSk[u—Ft(v—u)} = /QSk [u+t(v —u)](v — u)j

B /<v—mﬁﬁfw+wv—wk
o0

It is easy to see that the integrand on the right hand side is nonnegative. [
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Lemma 8.7. Let uj € C?(Q) be a sequence of k-admissible functions which
converges to a k-admissible function u in Q almost everywhere. Then puy[u;]
converges to a measure | weakly, namely for any smooth function ¢ with
compact support in €,

(8.9) /Qsoduk[uj'] H/Qsodu-

Proof. For any open set Q' € €, by Theorem 7.1, p[u;](Q) is uniformly
bounded. Hence there is a subsequence of jx[u;] which converges weakly
to a measure u. We need to prove that p is independent of the choice of
subsequences of {u;}.

Let {u;},{vj} be two sequences of k-admissible functions. Suppose both
sequences {u;} and {v;} converge to u almost everywhere in ). Suppose
that

(8.10) pielus] — p, pi[vj] — v

weakly as measures. To prove that u = v, it suffices to prove that for any
ball B,(zg) € Q, p(By) = v(B,), or equivalently, for any small ¢t > 0,

(811) H(Br—2t) < V(Br+2t)7
(812) U(Byo1) < (Bryo).

Let £; be a sequence of small positive constants converging to zero. Let
noo— Lo p2 ) o= 1o p2 )
U; = 5¢€5]2|° +u; and 95 = 5¢5]2]* + v;. Then

k
Skli] = Sklug] + > CrichSp—ilu] > Ce.
i=1
By Theorem 7.1, Sy_;[u;] is locally uniformly bounded in L(Q2). Hence by
(8.10), plij] — p weakly. Therefore we may assume directly that Sy[u;] >
€5 > 0 and Sk[v]’] > €5 > 0.

We prove (8.11) and (8.12) in two steps. In the first one we assume that
uj,v; € C*(Q), u € C%Q), and uj,v; — u locally uniformly in Q.

Let 9; = v; +d;[|z — x0|> —7?]. Since |u; —v;| converges to zero uniformly,
there exists d; — 0 such that 0; < u; in Br_%t and 0; > u;j on 8BT+%t. Let
A={zx e Q| vj(x) <uj(x). Then Br_%t(xo) CACB
Lemma 8.6,

/BT%(IO) Sklus] < /ASk[uj]g/ASk[@j]
= /Ask[”ﬂ +0(35) < /B+ Selv;] + O(5;).

T+%t(x0). Hence by

Sending j — oo we obtain (8.11). Similarly we can prove (8.12).
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The second step essentially repeats the first step. From the first step
we see that for any continuous k-admissible function u, we can assign a
measure fi[u] such that if a sequence of smooth k-admissible functions u;
converges to u uniformly, then g [u;] converges to py[u] weakly as measure.
In partlcular it means puy.[uf] and p.[vf] are well defined, where we denote by
uz, ; and u? the Perron hftlng of uj,v; and u in wy = Byyy(x0) — Br—t(20).
By Lemma 8.5, we have

ué,v§—>ut in Q.

By the interior gradient estimate, ug-, 1);» are locally uniformly Lipschitz con-
tinuous in wt But u] and v; may not be C? in w;. To avoid such situation,
we replace u§ (and v%) in w; by the solution of Sk[u] = ¢} in w; satisfying
the boundary condltlon u}

/
£5-

Let 0} = v} +d;|z — xo|? —r?]. Since |uf, — v§| converges to zero uniformly
in Br+%t — Brigt, there exists §; — 0 such that 17; < “E on BBP%t
0% > uf on OB, 1, Let A’ be the component of {u} < 9%} which contains
0B, _1,. Let &’ A’ be the boundary of A’ in the annulus B, 3, — B, 1, Let

2 4 4
A be the domain enclosed by '’ A’. Then B, ., CAC BH_;t. Hence as
2 2

above,

/Br_m(mo) Sklus] < /Sk[uz]g/sk[@;f]
< /Sk ]+ 0(5;) < /szt Sklvj] + O(65).

Sending j — oo we obtain (8.11). Similarly we can prove (8.12). O

= u; (and v} = v;) on duwy, for sufficiently small

and

Therefore for any k-admissible function u, we can assign a measure i |u]
to u, and py is weakly continuous in u.

Theorem 8.1. For any k-admissible function u, there exists a Radon mea-
sure ug[u] such that

(i) pr[u] = Sk[u]dz if u € C%(Q); and

(1) if {u;} is a sequence of k-admissible functions which converges to u a.e.,
then pyluj] — pilu] weakly as measure.

As an application, we compute the k-Hessian measure for the function

jz =y k> /2,
()= { logle—yl  k=nf2
—|z—yZF k< n/2.

We have



where wy, is the area of the unit sphere, and 9§, is the Dirac measure at y.

8.4. The Dirichlet problem. As another application of Theorem 8.1, we
consider the Dirichlet problem

(8.13) Sglu] = v in Q,
u = @ on Of.
When « is not smooth, the Hessian operator Si[u] in (8.13) is understood as

ur[u], and u is called a weak solution. The following theorem was included
in [TW2]. Here we give a different proof.

Theorem 8.2. Let 2 be a (k—1)-convex domain with smooth boundary. Let
p be a continuous function on Q) and v be a nonnegative Radon measure.
Suppose that v can be decomposed as

(8.14) v=u1+1

such that vq is a measure with compact support in Q, and vo € LP(Q) for
somep > 5 if k < 5, orp=1ifk > 5. Then there exists a k-admissible
weak solution u to (8.13).

Proof. Let v; be a sequence of smooth, positive functions which converges to
v weakly as measure. By the decomposition (8.14), we may assume that v;
is uniformly bounded in LP(Nj, ), where N5 = {z € §, dist(z,0) < 6}. Let
©; be a sequence of smooth functions which converges monotone increasingly
to ¢. Let u; be the solution of

(8.15) Sglu] = v; in Q,
u = ¢; on 0.

If u; is uniformly bounded in L (), by Corollary 7.1, {u;} contains a conver-
gent subsequence which converges to a k-admissible function u. By Lemma
8.7, u is a weak solution to (8.13). Therefore it suffices to prove that u; is
uniformly bounded in L!(€) and the limit function u satisfies the boundary
condition u = ¢ on Jf).

For § > 0, let ns € C3°(€2) be a nonnegative function satisfying ns(z) = 1
when dist(z, 9Q) > ¢ and ns(x) = 0 when dist(z,0Q) < 3§/4. Let

Vjs = Vjns + 0,
1/}5 =v;(1 —n5) + 9.

Then both v;; and VJ,-75 are smooth, positive functions. Let u;s be the
solution of the

(8.16) Sklu] = vjs in Q,

u = j on Of.
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Let u; s be the solution of the

Sklu] = vjs in
u = 0 on Of.
By Theorem 5.5, we have

1/k
1 gl (0 < ClI) sl oy — 0
uniformly in j, as 6 — 0. By the concavity of S;/k[u],
1/k 1/k 1/k
S/ luzs + v 5] 2 5y ) + 5" [

Hence ujs + u} 5 is a sub-barrier to the Dirichlet problem (8.15). Hence it
suffices to prove that for any given § > 0, u; 5 is uniformly bounded in L!(9)
and us = limu; s satisfies the boundary condition us = ¢ on 0f2.

For any fixed § > 0, we claim that u; = w; s is uniformly bounded in Nj/,
(in the following we drop the subscript §). Indeed, if this is not true, for a
fixed, sufficiently small ¢ € (0,%6), let D, = {x € R" | dist(z,) < £} be
the e-neighborhood of Q. Let n = K(pp, (z) + K'p},_(x)), where pp,(x) is
the distance from x to dD.. Then 7 is k-admissible when K’ is large and
d, < 01 for some 61 > 0 depending only n, %k and 0€. If u; is not uniformly
bounded in N9, by the Harnack inequality (Theorem 4.2), uj(z) — —oo
uniformly for x € {z € Q | dist(z,02) = 2¢}. Choose K large such that
n < uj on 02 and u; < n on O€).. Let

0A; ={z € D. | pp.(x) € (0,2¢),n(x) = uj(z)}.
Then 0A; C Ngjp. Let A; be the domain enclosed by 9A;. By Lemma 8.6,

5@ 2 vis(a) = [ Siluwl = [ il — o

as K — oo. But the left hand side is uniformly bounded. The contradiction
implies that u; is uniformly bounded in Nj/5. Since u; is sub-harmonic, by
the mean value inequality (8.4) it follows that u; is uniformly bounded in
L},.(Q).

To show that u = limu; satisfies the boundary condition u = ¢ on
01}, extend ¢ to a harmonic function in §2. Since u is sub-harmonic, by
the comparison principle we have u < ¢ in . Hence for any y € 0f),
lim, yu(z) < @(y). Next we prove that lim, ,u(z) > ¢(y) V y € Q. Let
w; be the solution to the Dirichlet problem

Splw] =K in Q
w=p; on O

Since u; is uniformly bounded in Ns/, we can fix a sufficiently large K,

which may depend on ¢ but is independent of j, such that the solution
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wj < —K on 2N ONs/p. Recall that vjs = 6 < 1 in Ngjp. By the com-
parison principle we have w; < u; in Ns/5. But when K is fixed, we have
limj o lim, ., w;(x) = ¢(y) uniformly. O

The uniqueness is a more complicated issue. It is proved in [TW3] that
if v € L', the solution in Theorem 8.2 is unique.

9. LOCAL BEHAVIOR OF ADMISSIBLE FUNCTIONS

In this section we prove a Wolff potential estimate and give a necessary
and sufficient condition such that a weak solution is Hdélder continuous.
Results in this section are due to D. Labutin [Ld].

9.1. The Wolff potential estimate. Given a Radon measure y on §2, we
denote

1
" (u(Bux)\ F dt
Wi (z,r) is called Wolff potential.

Lemma 9.1. Let u <0 be k-admissible in Br(0). Then

|:Nk[u](39R/10)} *

(9.2) < C inf (—u).

Rn—2k dBr/»

If furthermore pylu] = 0 in (Bsr/s — Barys) U (Biir/i0 — Boryio), then

1
. . plul(Br)\ *
. — < - -
(9-3) égi Y 8ng/2 U= C< Rn-2k )

where C' is independent of R and u.

Proof. First we prove (9.2). Let ¢ be the solution of Sg[¢)] = 0 in Br —
EgR/lo, ¢ =0 on 0Bg, and ¢ = u on dBgg/19- By replacing u by 1 in the
annulus Br — Bgg/19, We may assume that v =0 on dBg and p[u] = 0 in
Br — Bgp /10- By the Harnack type inequality,
(9.4) sup (—u) < C inf (—u).
dB19R /20 9B19R/20
Let ¢ be a radial k-admissible function satisfying Sk[¢] = 0 in Br— Bigg/20,
@ =0o0n 0BR, and ¢ = inf@BmR/zo u on dBgr /0. Then by the comparison
principle we have u > ¢ in Bg — Bgp /10- By Lemma 8.6, it follows that
_ . k
pi[u)(Br) < pilel(Br) = Co xR inf  ul".

Bior/20
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We obtain by the Harnack inequality (9.4)

1
pi[u](Bog/10) ] .
[Rn—%/ <C_inf ul.

OB19R/20
Note that u is subharmonic, infsp,, , [u] < infop,yp ., [ul. We obtain (9.2).
To prove (9.3), let w be the solution of Sg[w] = pg[u] in B and w =
infpp, u on dBRr. The solution w should be obtained as the limit of the
solution w; to Sk[w] = uk[ue] in Br and w. = u. on dBR. Note that by
assumption, Sk[u] = 0 near OBR, so u is Lipschitz continuous near dBg. It
follows that w < u and so
inf u— inf »<inf w-— inf w.
dBr dBr/» dBr dBR/»
Therefore to prove (9.3), we may assume that u =constant on 0Bg. By
subtracting we may assume that v = 0 on 9f).
Let ¢ be a radial k-admissible function satisfying Si[¢] = 0 in Br — Bp/s,
¢ = 0 on 0Bp, and ¢ = supy By U Then by the comparison principle we
have u < ¢ in B — Br/y. It follows that

_ k
pi[u)(Br) > pilel(Br) = Co i R"2| sup ul".
OB 2
By the Harnack inequality, \supaBR/2 u| > Clinfyp, , u[. We obtain (9.3).
U

Theorem 9.1. Let u < 0 be a k-admissible function in Bog(0). Then we
have

(9.5) CT'WE (0, R) < —u(0) < C{W}(0,2R) + [supul},
R

where p = plul, and C is independent of w and R.

Proof. First we prove the left inequality, namely |u(0)| > C~'W} (0, R). For
any r € (0, %R), let w = By, /s — Bs,/4, let u® be the Perron lifting of u over
w, and let © be the Perron lifting of u* over By, /5. By (9.2) we have

[Mkm (B9r/10)] Lk

< C’( sup @ — sup 17)

n—2k
r 8397‘/8 8B’?'r/8

< C’( sup u — sup u)
8B3'r/2 8BB'P/4
Observing that

pru](By2) = pru?](By/2) < prlu”](Boyri0) = prlu)(Beri0),

we obtain,

B, 1/k
(9.6) {W] < C( sup u— sup u).
r 8B37"/2 8BS?"/AL
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For j =0,1,---, let R; = 279 R. We have,

s / 00 /
Jj=0 J

Hence letting = R; in (9.6) and summing up we obtain the first inequality
of (9.5).

To prove the second inequality, we may suppose ux[u] = 0 in Bog — Bpg.
Let Rj =277R,w = U?.;1(B5Rj/4_Bst/4)v and let u¥ be the Perron lifting
of u over w. Then u = u* in Bop —w, pi[u’] =0 in w. Since uilu] depends
on u locally, we have, for any r > 0,

purlu)(Br) < pr[u”](Bzr) < prl[u] (Bar).
Hence to prove the second inequality we may suppose directly that p[u] = 0
in w.
Let u; = uBRJ', the Perron lifting of u over Bg,. Then u; \ u pointwise.
In particular u; ™\, u at the origin. Hence to prove the second inequality it

suffices to show that for all s > 1,

B 1/k
(9.8) | 1nf u| < C’Z [W] + C| sup u|
7=0

and send s — oo.

By (9.3) we have

pr[u](Br, )] l/k'

inf u <| inf C
| gnf uf <, nf ul+ [ R 2F)

Rs

Applying (9.3) repeatedly, we obtain, for 0 < j < s,

[u)(Br,)]"/*
R :

| mf ul < | mf u|+CZ{

i=j

Letting j = 0, we obtain (9.8). Since uxlu] = 0 in Bsg/y — B3g/s, we have
|infop, u| < Clsupyp,, u| by the Harnack inequality. This completes the
proof. ([

9.2. Holder continuity of weak solutions. From Theorem 9.1 we ob-
tain a necessary and sufficient condition for a weak solution to be Holder
continuous.

Theorem 9.2. A k-admissible function u in € is Hélder continuous if and
only if there exists a constant € > 0 such that for any x € Q, r € (0,1), the
measure ug[u] satisfies
(9.9) pilu] (B, N Q) < Crt2kte,
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Proof. If u is Holder continuous with exponent a € (0, 1), from the first
inequality in (9.5) we obtain

JECL e

B
5D

Hence

We obtain (9.9) with & = ka.

Next assume that (9.9) holds. Consider the function v in Br(0). We
want to prove that |u(z) — u(0)| < Cr® for |z| < r = 1 R?. Replacing u by
the Perron lifting v, where w = Bg — Bp/2, we may assume that pu[u] = 0
in w. Let w; be the solution of Si[w] = 0 in B and w = u on dBg. Let wy
be the solution of Si[w]| = pg[u] in Br and w = 0 on 0Br. Then

wi 2 U 2> wi + wa.
Hence
u(z) — u(0) < wi(z) = [wi(0) + w2(0)] < [wi(z) — wi(0)] + w2(0)
By (9.9) and the second inequality in (9.5), we have wy(0) < CR?/*. By the
interior gradient estimate, wy is Lipschitz continuous. Hence
w(e) —wr (0)] < Slal < Clal/2.
We obtain
u(z) —u(0) < Clz|Y? + CRE/*.
Similarly we have u(0) —u(x) < C|z|'/2 + CR*/*. Hence u is Holder contin-

uous at the origin with exponent €/2k. O

From Theorem 9.2, we obtain
Corollary 9.1. Let u be a k-admissible solution (k < %) to
(9.10) Sklul = f.
Suppose f € LP(Q) for some p > o5+ Then u is Holder continuous.

From Theorem 9.1, one can also prove that a k-admissible function u
is continuous at z if and only if W/'(z,r) — 0 as r — 0. One can also
introduce the notion of capacity, and establish various potential theoretical
results, such as quasi-continuity of k-admissible functions and the Wiener
criterion for the continuity of k-admissible functions at the boundary, just as
in the Newton potential theory. We refer the reader to [TW3, Ld] for more
details. More applications of the Wolff potential estimate can be found in
[PV1, PV2].
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10. PARABOLIC HESSIAN EQUATIONS

This section includes the a priori estimates and existence of solutions for
the parabolic Hessian equations used before. We refer the reader to [Lg] for
more general fully nonlinear parabolic equations of parabolic type.

Consider the initial boundary value problem

(10.1) Flu] —u; = f(x,t,u) in Q x [0, 00)
u(-,0) = uo,
u=0 on 9N x [0,00)
where
(10.2) Flu] = p(Sk[]).

We assume that p is a smooth function defined on (0, 00), satisfying p/(¢) >
0, u’(t) <0 for all t > 0, and

(10.3) u(t) — —oco ast — 0,
(10.4) u(t) — 400 ast — +oo.

Furthermore we assume that p(ox(\)) is concave in A, which implies that
F[u] is concave in D?u. A natural candidate for y is u(t) = logt, such as in
(5.17). But we have also used different function p, such as in (6.3) (6.14).

We say a function u(z,t) is k-admissible with respect to the parabolic
equation (10.1) if for any given ¢t > 0, wu(-,t) is k-admissible. Equation
(10.1) is parabolic when u is k-admissible. Condition (10.3) is to ensure
that o, (\) > 0 so that the admissibility can be kept at all time.

Theorem 10.1. Assume uy € C*(Q) is k-admissible, and satisfies the com-
patibility condition

(10.5) Flugl=f on 09 x {t=0}.

Assume 0Q € C*t and Q is (k — 1)-convez, f € Citl(@T), and o satisfies
the conditions above. Let u be an k-admissible solution of (10.1). Then we
have the a priori estimate

(10.6) <C,

lulozi@p
where Qp = Q x (0,T], C depends on n,k, 0%, |]u0\|C4(§), supg,. [ul, and
1loag, -

To prove Theorem 10.1, one first establish an upper bound for supg,.. 1|
and supgy,. [u¢|, then prove supq,. [tz| is bounded. The estimates for supg),. (|u.|+
|u¢|) will be given in the proof of Theorem 10.2 below. The estimate for
sup |ug| is similar to that for the elliptic equation (3.1) and is omitted here.
We refer the reader to [Chl, W2] for details. See also [Lg].

Note that when applying Theorem 10.1 to equation (5.17), the a priori
bound for supg,. [u| is guaranteed by our truncation of [u[P, namely the
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function f(u) in (5.15). In equation (5.17), the right hand side involves
an integration ((u), which satisfies the estimate Cy < B(u) < Cy for two
absolute positive constants C',Cs. This integration does not affect the a
priori estimate for supg, |u|. See the proof of (10.11) below. Once u; is
bounded, 3(u) is positive and Lipschitz continuous in ¢.

Estimate (10.6) implies that equation (10.1) is uniformly parabolic. There-
fore by Krylov’s regularity theory for uniformly parabolic equation [K1], we
obtain higher order derivative estimates. By the a priori estimates, one can
then prove the local existence of smooth solutions by the contraction map-
ping theorem. In particular, if supg (o 7y |u| < oo for any 7" > 0, the smooth
solution exists at all time ¢ > 0.

In Step 3 of the proof of Theorem 6.3, we need a special interior gradient
estimate, namely (10.10) below, for solutions to equation (10.1) with x given
in (6.14). We provide a proof for it below. See also [CW1]. Estimate for
higher order derivatives and existence of solutions can be obtained similarly
as above.

Theorem 10.2. Let p be the function in (6.14). Assume ug € CHQ) is
k-admissible, and satisfies the compatibility condition (10.5). Assume that
fis C? inx and u, C! in t, and satisfies,

(10.7) fla,t,u) < Co(l+ul) V (z,t,u) € 2 xR.

Suppose u € Cﬁf(ﬁ x [0,00)) is a k-admissible solution of (10.1). Then we
have, for 0 <t < T,

(10.8) u(z,t) > —e“ 1 sup Jug(x)|,

Q
(10.9) [Veu(,0)] < Cao(1 + - ME/2)
(10.10) lug(z,t)| < C3(1 4 My),

where My = supy, |u|, r = dist(z,09). The constant Cy depends only on
n,k,p and Cy; Cy and C5 depends additionally on vy and the gradient of f.

Proof. Estimate (10.8) is obvious as the right hand side is a lower barrier.
To prove (10.9) and (10.10) we assume for simplicity that M; > 1. First we

prove (10.10). Let
Ut

M —u’
where M = 2M;. If G attains its minimum on the parabolic boundary of
Q:, we have uy > —C for some C' > 0 depending on the initial value ug.
Hence we may suppose G attains its minimum at an interior point in Q.
At this point we have

uy + (M — u)_luf <0,
th -+ (M —

G:

)71Utu‘7‘ == 07 ]: 1727"' y 1Yy
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and the matrix
{uije + (M —u)™? (uirwj + wjeu; + wguig) + 2(M — w) 2uujug}
= {uye + (M — ) uguy} > 0.
Differentiating the equation (10.1) we get
Fijuije — uge = fi + fue,
Fijurij — wpe = fr + futir,

where Fj; = -2 Flu]. We may suppose u; < 0 at this point. From the

Ouj
above formulae we obtain
(M —u)"'uf —Fijuije + fir + fuue

(M —u) g Fyjugg + fi + fuwe
ft + fuut-
Hence uy > —C' for some C depending on supg, f and infg, fu.

ININ A

Similarly let
Ut

If G attains its maximum on the parzi\lfo—lgcuboundary of Q¢, we have uy < C.
If it attains its maximum at some point in ();. At this point we have

uy — (M + u)_luf >0,

Ujp — (M+u)_1utuj =0, 7=1,2,---,n,

{uije — (M + u)  ugug;} < 0.

G:

Hence as above we obtain
(M + u)~tu? Fijuije — fi — fuwe

(M + u)_lutFijuij — fr — fuuy

(M 4 ) kugp Spu) — fir — fuus.

If Siu] < 10 at the point, by the equation (10.1) we have

ur = Flu] — f <C.

<
<

Otherwise we have u(t) = t'/? and so
1 1
"Sklu] = =u(Sku]) = =(ut + f).
wSklu] = Zu(Selu]) = 2 (ue + f)
It follows that

(M +u) uf < (M +u)  hug(ue + f)/p — fr — fuwe.

That is )
-k u kfu
i : < fu = ft — fuus.
p M+u ™ p(M+u)
We obtain u; > —C for some C depending on infg, f; and infg, fy.
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Next we prove (10.9). For simplicity let us take t = T'. The proof below is
similar to that of the interior gradient estimate in §4. Assume that B,.(0) C
Q. Consider

G(x7ta€) = p(m)gp(u)%,
where p(z) = 1 — |z|?/r2, o(u) = (M — u)~ /. Suppose
sup{G(z,t,&) | = € B,(0),t € (0,71, [¢] = 1}

is attained at (zo,to) (with tg > 0) and &, = (1,0,---,0). Then at the point
we have

0 = (logG)i:;+%+%,

0 > Fi;(logG) — (logG)y
Pij PipPj Pt Pij PiPj Pt U145 UL;UL 5 Ui
= Fy("7 = Sgh) = T By (= ) = T B -

P’ p ¢ P u uj u
Pij o PiPi\ Pt Qij  LPipiy P 1
2 Fz"(7—3 2 )= — + Fiy(— - o? )—g‘f‘u*l(Fijulij ut)
C . ¢ & 4 ¢ fi
> —=F+(— —3—=)Fnuj] + —(Fiju; —u) + —,
p2 ( 0 S02 ) 11%7 © ( 1] %y t) uy
where F = > Fj;. By our choice of ¢,
<,0// SO/Z 1

@ o 8(M —u)?
Note that Fjju;; > 0 and ¢’ > 0. We obtain

Fhu? C !
11“1 —ﬁf—g’ll/t_"ﬂ

0>

—32M2  p © up

Therefore we have either
CM?

(10'11) FllU% < 7‘7:,
or

2 2 ¢ J1 2
(1012) Fnul S CM (—ut - 7) S CM=.

¥ u1

In (10.12) we have used the estimate (10.10).
Recall that
/
U = —u1(% + £U1)~
We may assume that u; > CM/r, for otherwise (10.9) is readily verified.
Hence we have
¢ 2
uir < —%ul < a7 un
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From the proof of Theorem 4.1 we then have

S 2 ¢ S,

2%—2
LT

MFE-1’

Therefore in the case (10.11), we obtain pu; < CM and (10.9) follows. In
the case (10.12), we observe by equation (10.1) and estimate (10.10) that
Sk[u] < CMP at (zo,tp). Hence p'(Sy[u]) > CM~P+L. We therefore obtain

C’u?ki2
Fonz 50

Inserting into (10.12) we obtain wi(zg,t) < CM®TF/2k " Hence at the
center x = 0 we have

Situ] > C

p(o, to)
pe(0,1)
This completes the proof. O

|Du(0,t)] < i (o, to) < CMP+R)/2k,

11. EXAMPLES OF FULLY NONLINEAR ELLIPTIC
EQUATIONS

This is the notes for my lectures under the title Fully nonlinear elliptic
equations, given in a workshop at C.I.LM.E., Italy. So it is appropriate to
give more examples of fully nonlinear elliptic equations here.

(i) One of the most important fully nonlinear equations is the Monge-Ampére
equation

(11.1) detD*u = f(x,u, Du).

The Monge-Ampere equation finds many applications in geometry and ap-

plied sciences. A special case of the Monge-Ampere equation is the prescrib-
ing Gauss curvature equation

detD?u — h(x)
(1 + ‘Du|2)(n+2)/2 = ~T),

where « is the Gauss curvature of the graph of u.

(11.2)

(ii) A related equation is the complex Monge-Ampére equation
(11.3) detu,z; = f,

which plays an important role in complex geometry.

(iii) The k-Hessian equation

(11.4) Sklul = f(=),

studied in previous sections.
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(iv) The k-curvature equation
(11.5) Hylu] = f(z),

where 1 < k < n and Hi[u] = or(k), is a class of prescribing Weingarten
curvature equations, where k = (k1,--- ,ky,) are the principal curvatures
of the graph of u. The k-curvature equation is just the mean curvature
equation when k£ = 1, and the Gauss curvature equation when k = n.

Related to the k-Hessian and k-curvature equations are the Hessian quo-
tient and curvature quotient equations, that is

(11.6) Sl f(x),
(11.7) Z’;[[Z]] = f(),

where 0 <[ < k < n, and S, and Hj are respectively the k-Hessian and
k-curvature operator. A special case of (11.7) is the prescribing harmonic
curvature equation, that is when k =n,l =n — 1.

(v) The special Lagrangian equation
(11.8) arctan\; + - - -arctan),, = ¢

is a fully nonlinear equation arising in geometry. If u is a solution, the
graph (x, Vu(zx)) is a minimal surface in R” x R™. When n = 3 and ¢ = k,
equation (11.8) can be written as

(11.9) Au = det D?u.

(vi) In stochastic control theory there arises the Bellman equation

(11.10) Flu] = in‘f/{La[u] — fa(2)},
[e1S
or more generally the Bellman-Isaacs equation
(11.11) Flu] = sup inf { Lo slu] — fas(2)},
aclU BEV

where o, 3 are indexes and L, g are linear elliptic operators.

(vii) Another well-known fully nonlinear equation is Pucci’s equation [GT],
which is a special Bellman equation. For a € (0,1], let £, denote the
set of linear uniformly elliptic operator of the form L[u] = a;;(x)0;;u with
bounded measurable coefficients a;; satisfying a;;&¢; > a|€|?, Sa; = 1 for

all £ € R, x € Q. Pucci’s operators are defined by B

(11.12) Pflu] = sup Llu,
LeLqy

P, = inf L[u].

Tl = nf Ih
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By direct calculation [GT],

(11.13) Prlu] = alAu+ (1 —na)r(D*u),
Prlu] = aAu+ (1 —na)\,(D%u),

where A1 (D?u) and A, (D?u) denote the maximum and minimum eigenvalues
of D?u.

(viii) Equation (11.1) is the standard Monge-Ampeére equation. In many
applications one has the Monge-Ampere equation of general form,

(11.14) det{D?u — A(z,u, Du)} = f(x,u, Du),

where A is an n X n matrix. Similarly one has an extension of the k-Hessian
equation (11.3), that is

(11.15) Sp{MD?*u — A(x,u, Du)} = f.

Equation (11.14) arises in applications such as reflector design, optimal
transportation, and isometric embedding. Equation (11.15) is related to
the so-called k-Yamabe problem in conformal geometry.

Some of the above equations may not be elliptic in general, such as the
Monge-Ampere equation (11.1) and the k-Hessian equation (11.4). But they
are elliptic when restricted to an appropriate class of functions.
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