Problem 3.1. (a) Show that there are ideals in \(\mathbb{Z}[x] \) which are not generated by a single element.
(b) Show that the element 6 in the ring \(\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\} \) does not factor uniquely. That is, write 6 as a product \(6 = ab \) and \(6 = a'b' \) in two distinct ways such that \(a, b, a', b' \) are irreducible, and both \(a \) and \(b \) are not units times \(a' \) or \(b' \). Conclude that there is an irreducible element of \(\mathbb{Z}[\sqrt{-5}] \) which does not generate a prime ideal.

Problem 3.2. Show \(\mathbb{Q}[x]/(x^2 + x + 1) \cong \{a + b\omega \mid a, b \in \mathbb{Q}\} \), where \(\omega = e^{2\pi i/3} \). Describe explicitly additional, multiplication and division on the right hand side.

Problem 3.3. Prove that \(x^5 - x^2 + 1 \in \mathbb{Q}[x] \) is irreducible. (Hint: consider \(\mathbb{F}_2 \))

Problem 3.4. Eisenstein’s criterion with a twist.
(a) Let \(a \) be any integer. Prove that a polynomial \(f(x) \in \mathbb{Z}[x] \) is irreducible iff \(f(x + a) \in \mathbb{Z}[x] \) is irreducible.
(b) Use this trick to prove that \(x^3 - 3x^2 + 9x - 5 \) is irreducible.
(c) Use this trick to prove that, for any prime \(p \), the polynomial \(x^{p-1} + x^{p-2} + \ldots + x + 1 \) is irreducible.

Problem 3.5. Consider the field extension \(\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}, \sqrt[3]{2}) \).
(a) What is the degree, \([\mathbb{Q}(\sqrt{2}, \sqrt[3]{2}) : \mathbb{Q}]\), of this field extension?
(b) Prove that this is a primitive field extension; that is, find an element \(\alpha \) such that \(\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, \sqrt[3]{2}) \).