FOGARTY’S PROOF OF THE FINITE GENERATION OF CERTAIN SUBRINGS

JAROD ALPER

Abstract. This is an expository note covering Fogarty’s geometric approach to proving finite generation of certain subrings, including invariants under linearly reductive group actions. We offer a very mild generalization which allows one to conclude that good moduli spaces are finite type.

1. Introduction

In [Fog87], John Fogarty proves the following remarkable result:

Proposition 1.1. [Fog87] Proposition p. 203 Let \(R \) be an excellent ring and \(\phi : X \rightarrow Y \) a surjective \(R \)-morphism. If \(X \) is irreducible and finite type over \(R \) and \(Y \) is normal and noetherian, then \(Y \) is finite type over \(R \).

This proposition has applications toward Hilbert’s 14th problem. Recall that a smooth, affine group scheme \(G \) over a field \(k \) is linearly reductive if the functor \(V \mapsto V^G \) from the category of \(G \)-representations to the category of \(k \)-vector spaces is exact. This is equivalent to requiring that representations are completely reducible. We have the following result from geometric invariant theory.

Proposition 1.2. ([GIT Theorem 1.1]) Let \(G \) be a linearly reductive group scheme over \(k \) acting on an affine scheme \(\text{Spec} A \). Then

1. If \(A \) is noetherian, then \(A^G \) is noetherian.
2. If \(A \) is finitely generated over \(k \), then \(A^G \) is finitely generated over \(k \).
3. If \(A \) is integral and normal, then \(A^G \) is integral and normal.
4. The morphism \(\text{Spec} A \rightarrow \text{Spec} A^G \) is surjective.

The usual proofs of (1) and (2) of are as follows. First, since taking invariants is exact, it is not hard to show that if \(I \subset A^G \) is an ideal, then \(IA \cap A^G = A \). This fact immediately implies (1). For (2), one usually reduces to the graded case. Namely, if \(a_1, \ldots, a_n \in A \) generate \(A \) as a \(k \)-algebra, one can choose a finite dimensional \(G \)-invariant vector space \(V \subseteq A \) containing each \(a_i \). This induces a surjection of \(G \)-algebras \(\text{Sym}^* V \rightarrow A \) and let \(I \) be the kernel. Then since taking invariants is exact, \(A^G = (\text{Sym}^* V)^G / I \cap (\text{Sym}^* V)^G \). Therefore, it suffices to assume that \(A = k[x_1, \cdots, x_n] \). In this
case, since \(A^G\) is a graded ring which is also noetherian by (1), it follows that \(A^G\) is finitely generated over \(k\).

If \(G\) is a linearly reductive group scheme over a field \(k\) acting on an integral noetherian normal affine scheme \(\text{Spec } A\), then by (1), (3) and (4), the morphism \(\text{Spec } A \to \text{Spec } A^G\) is surjective and \(\text{Spec } A^G\) is normal and noetherian. If in addition \(A\) is finitely generated over \(k\), then Proposition 1.1 directly implies that \(A^G\) is finitely generated. This gives an alternative proof of (2) in the special case that \(A\) is integral and normal provided that one has already shown (1), (3) and (4).

If \(G\) is a reductive group scheme over a field acting on an affine scheme \(\text{Spec } A\), then it is true that if \(A\) is finitely generated, then \(A^G\) is finitely generated (see [GIT, Appendix 1C]). Statements (3) and (4) are also true. However, it is not true that if \(A\) is noetherian, then \(A^G\) is noetherian. Nagata has given a counterexample in [Nag69]. We note that in [Fog87], Fogarty also establishes that the ring of invariants \(A^G\) for a reductive group action is finitely generated provided that \(A\) is finitely generated.

Fogarty’s proof of Proposition 1.1 easily extends to the mild generalization:

Proposition 1.3. Let \(R\) be an excellent ring and \(\phi : X \to Y\) a morphism of \(R\)-schemes. Suppose that

(a) \(\phi\) is surjective.
(b) \(X\) is finite type over \(R\).
(c) Each irreducible component of \(X\) dominates \(Y\).
(d) \(Y\) is normal and noetherian.

Then \(Y\) is finite type over \(R\).

In [Alp08], this proposition is applied to prove the following generalization of Hilbert’s 14th problem:

Theorem 1.4. [Alp08, Theorem 4.13(xi)] Let \(\mathcal{X}\) be an Artin stack over an excellent scheme \(S\) and \(\phi : \mathcal{X} \to Y\) be a good moduli space. If \(\mathcal{X}\) is finite type over \(S\), then \(Y\) is finite type over \(S\).

We make an effort to isolate both the necessary algebraic facts and the properties of excellence that are needed in the proof.

1.5. **Summary of Fogarty’s proof of Proposition 1.3.** We adjoin elements of \(A\) to form a finitely generated sub-\(R\)-algebra \(A' \subseteq A\) such that the induced morphism \(\eta : Y \to Z = \text{Spec } A'\) is injective and birational. Since \(R\) is universally japanese, we may assume \(A'\) is normal. By an algebraic property of normal noetherian schemes (see Corollary 3.3), if it is shown that the image \(\eta(y)\) is open, then \(\eta\) is an open immersion and therefore finite type. Since \(\phi\) is surjective, the image is constructible so it suffices to show that it is closed under generalization which can be reduced to showing that for closed points \(y \in Y\) with \(z = \eta(y)\), \(\mathcal{O}_z \to \mathcal{O}_y\) is an isomorphism. Using that \(Z\) is universally catenary, \(\dim \mathcal{O}_y \geq \dim \mathcal{O}_z\). We then show via
a dimension argument that the induced map on completions $\hat{O}_z \to \hat{O}_y$ is
injective. It follows that $O_z \to O_y$ is injective and a normality argument is
used to conclude that it is an isomorphism.

We stress that Fogarty uses the irreducibility assumption on X only in
the conclusion that $\dim O_y \geq \dim O_z$ and this easily extends to the case
when the irreducible components of X dominate Y.

2. Excellent rings

Excellent rings were introduced by Grothendieck to capture the essential
properties of rings needed in the algebra behind certain useful facts in alge-
braic geometry. The class of excellent rings contains almost all noetherian
rings of interest. In particular, any field is excellent and \mathbb{Z} is excellent.

We recall the following properties of rings:

Definition 2.1. A ring A is **catenary** if for any primes ideals p and p' of
A with $p \subseteq p'$, there exists a saturated finite chain of primes ideals starting
from p and ending at p', and all such chains have the same length. A ring A is
universally catenary if A is noetherian and every finite generated A-algebra
is catenary.

Definition 2.2. An integral domain A is **japanese** if the integral closure of
A in a finite extension of the fraction field is a finitely generated A-module.
A ring A is **universally japanese** if every finitely generated A-algebra that is
a domain is japanese.

Definition 2.3. [Gro67, Definition IV.7.8.2] A noetherian ring A is excellent
if it satisfies the following condition:

1. A is universally catenary.
2. For all primes ideals p of A, the formal fibers of A_p are geometrically
 regular (that is, for all $q \subseteq p$ the fiber $\hat{A}_p \otimes_{A_p} k(q)$ is geometrically
 regular over $k(q)$).
3. For every finitely generated A-algebra B, the locus $\text{Reg}(B) = \{ p \subseteq
 B | B_p$ is regular} is open in $\text{Spec } B$.

Excellent rings are closed under localization, finitely generated extensions
and passing to quotients. Fogarty’s argument uses the following three prop-
erties of excellence:

Proposition 2.4. [Gro67 IV.7.8.3]

(i) An excellent ring is universally catenary.
(ii) An excellent ring is universally japanese.
(iii) If A is an integrally closed local excellent ring with maximal ideal m
and \hat{A} is the m-adic completion, then \hat{A} is integrally closed (and in
particular an integral domain).
3. Some algebra

The following lemma is useful in reducing proving finite typeness to integral schemes.

Lemma 3.1. [Fog83] Suppose B is a noetherian ring and A is a B-algebra.

1. A is finitely generated over B if and only if A_{red} is finitely generated over B.

2. Let $\text{Spec } A = \bigcup_i \text{Spec } A_i$ be the irreducible decomposition. Then A is finitely generated over B if and only if each A_i is finitely generated over B.

Proof. For (i), it is clear that if A is finitely generated over B, then A_{red} is. For the converse, let $I = \sqrt{0}$ be the radical ideal in A. Since A is noetherian, I is nilpotent so by induction it suffices to assume $I^2 = 0$. Choose $a_i \in A$ for $i = 1, \ldots, n$ such that the image \overline{a}_i in A_{red} generate A_{red} as a B-algebra. Let (f_1, \ldots, f_m) be generators of the ideal I. We claim that $a_1, \ldots, a_n, f_1, \ldots, f_m$ generate A. Indeed, given $a \in A$, we can write $a = g(a_1, \ldots, a_n)$ for some polynomial g. Then $a' = a - g(a_1, \ldots, a_n) \in I$ and we can write $a' = a_1'f_1 + \cdots + a_m'f_m$. Write $a_1' = g_i(a_1, \ldots, a_n)$ for polynomials g_i. Then $a' = (g_1f_1 + \cdots + g_mf_m) = (a_1' - g_1)f_1 + \cdots + (a_m' - g_m)f_m = 0$ so $a = g + g_1f_1 + \cdots + g_mf_m$. We note that the noetherian hypothesis on B is not necessary for (i).

For (ii), one direction is clear. Let p_1, \ldots, p_n be the minimal primes of A and $A_i = A/p_i$. Then $p_1 \cap \cdots \cap p_n = (0)$. By induction on n, we may assume that $A/(p_1 \cap \cdots \cap p_{n-1})$ is finite type. Let $a_1, \ldots, a_m \in A$ be such that their images generate $A/(p_1 \cap \cdots \cap p_{n-1})$ and A/p_n. Because A/p_n is noetherian, we can find generators of $p_1 \cap \cdots \cap p_{n-1} \hookrightarrow A/p_n$. We claim $a_1, \ldots, a_m, f_1, \ldots, f_k$ generate A. Given $a \in A$, there is a polynomial g in a_1, \ldots, a_m such that $a - g \in p_1 \cap \cdots \cap p_{n-1}$. Write $a - g = b_1f_1 + \cdots + b_kf_k$ with $b_i \in A$. We can find polynomials h_i in a_1, \ldots, a_m so that $b_i - h_i \in p_n$. But $(b_i - h_i)f_i = 0$ so that $a = g + h_1f_1 + \cdots + h_kf_k$. □

The following lemma is essential in Fogarty’s argument and explains the relevance of the normality assumption.

Lemma 3.2. [Fog83] Lemma 3] Let A be a normal noetherian domain with fraction field K and B a ring between A and K with $\text{Spec } B \to \text{Spec } A$ surjective. Then $B = A$.

Proof. The result is clear if A is a field. Otherwise, if p is a height 1 prime of A, then A_p is a discrete valuation ring of K. By localizing $A \subseteq B \subseteq K$, we have the inclusion of rings

$$A_p \subseteq (A - p)^{-1}B \subseteq K$$
Since $\text{Spec } B \to \text{Spec } A$ is surjective, $(A - p)^{-1}B$ is not a field. The DVR A_p is a maximal subring of K and therefore $A_p = (A - p)^{-1}B$. Therefore

$$B \subseteq \bigcap_{\text{ht } p = 1} (A - p)^{-1}B = \bigcap_{\text{ht } p = 1} A_p = A$$

where the equality is Hartog’s lemma. Thus, $B = A$. \qed

Corollary 3.3. If $f : X \to Y$ is an affine morphism of integral schemes with Y noetherian and normal. Suppose $f(X) \subseteq Y$ is open and the induced map $\text{FF}(Y) \xrightarrow{\sim} \text{FF}(X)$ is an isomorphism. Then f is an open immersion. \qed

We isolate the algebra results needed in the proof.

Proposition 3.4. [Gro67, Proposition IV.5.6.5], [Mat80, Theorem 15.5-6] Let Y be an irreducible locally noetherian scheme, X an irreducible scheme, and $f : X \to Y$ a dominant morphism locally of finite type. Let ξ (resp. η) be the generic point of X (resp. Y) and $d = \dim f^{-1}(\eta) = \text{tr.deg}_{k(\eta)} k(\xi)$ be the dimension of the generic fiber. Let $x \in X$ and $y = f(x)$. Then

$$d + \dim \mathcal{O}_y \geq \text{tr.deg}_{k(y)} k(x) + \dim \mathcal{O}_x$$

If Y is universally catenary, there is equality. If $x \in f^{-1}(y)$ is closed, then

$$\dim \mathcal{O}_x = \dim \mathcal{O}_y + d$$

\qed

In fact, the equality in the first expression above characterizes universally catenary rings (see [Mat80, Theorem 15.6]).

Proposition 3.5. [Mat80, Theorem 8.4] Let A be a ring, I an ideal, and M an A-module. Suppose A is I-adically complete and M is separated for I-adic topology. If M/IM is generated over A/I by $\bar{\omega}_1, \ldots, \bar{\omega}_n$, and $\omega_i \in M$ is an arbitrary inverse image of $\bar{\omega}_i$, then M is generated over A by $\omega_1, \ldots, \omega_n$.

We recall that a module M is I-adically separated if $\bigcap_n I^nM = 0$. The above proposition can be viewed as a version of Nakayama’s lemma for separated (but not necessarily finitely generated!) modules over complete rings.

4. **Proof of Proposition 1.3**

Proof. We may suppose $Y = \text{Spec } A$ with A noetherian and integrally closed in its fraction field K. By replacing $\text{Spec } R$ with the scheme theoretic image of $Y \to \text{Spec } R$, we may assume $R \subseteq A$. By using Lemma 3.1 we may assume R is an integral domain. Let $L = \text{Frac}(R)$. Let $\text{Spec } B \to X$ be a finite type morphism with B an integral domain such that the composition $\text{Spec } B \to X \to Y$ is dominant. The composition $\text{Spec } B \to \text{Spec } A \to
Spec R yields the inclusions of function fields $L \hookrightarrow K \hookrightarrow \text{Frac}(B)$. Since $L \hookrightarrow \text{Frac}(B)$ is a finitely generated field extension, $L \hookrightarrow K$ is as well. Therefore we may adjoin finitely many elements to form a finitely generated sub-R-algebra $A_0 \subseteq A$ with the same fraction field.

Let $U \to X$ be a surjective finite type morphism with $U = \text{Spec} B$ an affine scheme. There is a cartesian diagram

$$
\begin{array}{ccc}
U \times_Y U & \longrightarrow & U \times_R U \\
\downarrow & & \downarrow \\
Y & \longrightarrow & Y \times_R Y
\end{array}
$$

Since U is finite type over R, there are a finite number of elements $f_1, \ldots, f_n \in A$ such that $(1 \otimes f_i - f_i \otimes 1)$ defines the closed subscheme $U \times_Y U \hookrightarrow U \times_R U$.

Let A_1 be the finitely generated sub-R-algebra obtained by adjoining the elements f_i to A_0. We claim that the induced map $\eta : \text{Spec} A \to \text{Spec} A_1$ is geometrically injective. Suppose $y_1, y_2 : \text{Spec} k \to \text{Spec} A$ are geometric points with $\eta(y_1) = \eta(y_2)$. In particular, for all i, $f_i(y_1) = f_i(y_2)$ (where $f_i(y_1)$ is the image of f_i under $y_1^\# : A \to k$). Let $u_1, u_2 : \text{Spec} k \to U$ be lifts of y_1, y_2. To show that $y_1 = y_2$, it suffices to show that the geometric point $(u_1, u_2) : \text{Spec} k \to U \times_R U$ factors through the closed subscheme $U \times_Y U$ but this is clear since $(1 \otimes f_i - f_i \otimes 1)(u_1, u_2) = 0$ for all i (indeed, the diagram

$$
\begin{array}{ccc}
k & \overset{(u_1, u_2)^\#}{\longrightarrow} & B \otimes_R B \\
\downarrow & & \downarrow \\
(y_1, y_2)^\# & \longrightarrow & A \otimes_R A
\end{array}
$$

implies that $(1 \otimes f_i - f_i \otimes 1)(u_1, u_2) = (1 \otimes f_i - f_i \otimes 1)(y_1, y_2) = f_i(y_1) - f_i(y_2) = 0$).

Since R is universally Japanese (Proposition 2.4(ii)), if A_2 is the integral closure of A_1 in K, A_2 a finitely generated R-algebra. Let $Z = \text{Spec} A_2$ and $\eta : Y \to Z$. Since $\eta \circ \phi : X \to Z$ is a finite type morphism of noetherian schemes and since ϕ is surjective (this is the only place the surjectivity assumption is used), $\eta(Y)$ is constructible. Since η is dominant, $\eta(Y)$ has non-empty interior U. In summary, η is a geometrically injective, birational morphism with dense constructible image. If $\eta(Y)$ is open, Corollary 3.3 would imply that η is an open immersion and therefore finite type. To show that $\eta(Y)$ is open, it suffices to show that for all closed points $y \in Y$, any generization of $\eta(y)$ is contained in $\eta(Y)$. Indeed, it certainly suffices to check that $\eta(Y)$ is closed under generization. If $z = \eta(y)$ and z' is a generization of z. Then $\eta^{-1}(\{z'\})$ is closed and any closed point $y' \in \{y\}$ is in $\eta^{-1}(\{z'\})$ so that z' is a generization of $\eta(y')$.

Let $y \in Y$ be a closed point with $\eta(y) = z$. If $O_z \to O_y$ is an isomorphism, then any generization of z is contained in $\eta(Y)$. Therefore, we have reduced
to show that $O_z \to O_y$ is an isomorphism for all closed points y with $z = \eta(y)$.

We first show that $\dim O_y \geq \dim O_z$. There exists an irreducible component X_i of X and closed point $x_i \in X_i$ with $\phi(x_i) = y$. In the diagram,

$$
\begin{array}{ccc}
X_i & \to & Z \\
\downarrow & & \downarrow \\
Y & \to & Z
\end{array}
$$

the morphisms $X_i \to Y$ and $X_i \to Z$ are dominant. The scheme Z is universally catenary since R is excellent. Proposition 3.4 now gives the inequalities

$$\dim O_y + d \geq \dim O_x = \dim O_z + d$$

and it follows that $\dim O_y \geq \dim O_z$.

We will now show that $\hat{O}_z \to \hat{O}_y$ is injective. Since η is injective, $m_z O_y$ is m_y-primary (so $\sqrt{m_z O_y} = m_y$ and there is some k with $(m_z O_y)^k \subseteq m_y$).

Therefore, \hat{O}_y is m_z-adically complete. Since $\phi \circ \eta$ is finite type, $k(z) \hookrightarrow k(y)$ is a finite field extension. By applying Proposition 3.5, $\hat{O}_z \to \hat{O}_y$ is finite. Therefore $\dim \hat{O}_y = \dim \hat{O}_z$. Since R is excellent and O_z is integrally closed, \hat{O}_z is an integral domain. It follows that $\hat{O}_z \to \hat{O}_y$ is injective. Indeed, if $g \in \ker(\hat{O}_z \to \hat{O}_y)$ is non-zero, then $\dim \hat{O}_y \leq \dim \hat{O}_z / g < \dim \hat{O}_z$, a contradiction.

We can now conclude that $O_z \to O_y$ is an isomorphism. The m_z-adic completion of $O_z \to O_y$ is the injective morphism $\hat{O}_z \to \hat{O}_y$. Since $O_z \to \hat{O}_z$ is faithfully flat and $\hat{O}_y = O_y \otimes_{O_z} \hat{O}_z$, $O_z \to O_y$ is injective. It remains to show that $O_z \to O_y$ is surjective. Faithfully flatness also implies that for any ideal $I \subseteq O_z$, $(I \hat{O}_z) \cap O_z = I$. Let $a/b \in O_y$ with $a, b \in O_z$. Since \hat{O}_y is integral over \hat{O}_z, there exist $\alpha_0, \ldots, \alpha_{n-1} \in \hat{O}_z$ with

$$
(a/b)^n + \alpha_{n-1}(a/b)^{n-1} + \cdots + \alpha_1 (a/b) + \alpha_0 = 0
$$

which gives

$$
a^n + \alpha_{n-1}a^{n-1}b + \cdots + \alpha_1 ab^{n-1} + b^n = 0
$$

This implies

$$
a^n \in \left(\sum_{i=1}^{n} (a^{n-i}b^i) \hat{O}_z \right) \cap O_z = \sum_{i=1}^{n} (a^{n-i}b^i)O_z
$$

Therefore a/b is integral over O_z and since O_z is integrally closed, $a/b \in O_z$. This establishes that $O_z = O_y$ and finishes the proof. \qed
REFERENCES

(Alp) DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, 2990 BROADWAY, NEW YORK, NY 10027, U.S.A.

E-mail address: jarod@math.columbia.edu