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Abstract. We apply the ‘non-collapsing’ technique, previously applied
by Brendle in the proof of the Lawson conjecture and by Andrews and
Li in the proof of the Pinkall-Sterling conjecture, to higher dimensional
hypersurfaces satisfying a linear relation between the principal curva-
tures, under the additional assumption that the hypersurface has two
distinct principal curvatures at each point. As special cases, the result
gives simple new proofs of results of Otsuki for minimal hypersurfaces,
and of Li and Wei for hypersurfaces with vanishing mth mean curvature.

1. Introduction

In classical differential geometry, the study of minimal surfaces is one of
the most basic subjects. The study of minimal surfaces in space forms, such
as the Euclidean space R3 or the sphere S3, is of particular interest. In 1970,
H.B. Lawson [L2] proved that for any positive integer g, there exists at least
one compact embedded minimal surface with genus g in S3. If g > 1 is not
a prime, such embedded minimal surface is not unique. He also conjectured
in [L3] that for g = 1, the Clifford torus is the only compact embedded
minimal torus in S3. This conjecture was proved by Simon Brendle [B2] in
2012 (see also the survey [B3]):

Theorem 1 (Brendle [B2]). If F : Σ → S3 is an embedded minimal torus,
then F is congruent to Clifford torus.

An important ingredient in Brendle’s proof was the first author’s work on
“non-collapsing” in mean curvature flow [A], in which a maximum principle
argument was used to compare the size of balls touching the hypersurface to
the mean curvature at each point. By modifying this argument to involve
the maximum principal curvature, Brendle made the argument applicable
to minimal surfaces, and used it to prove the rigidity statement. Soon after-
wards, the first and third authors [AL] extended the argument to embedded
constant mean curvature tori and proved that these must be surfaces of ro-
tation, confirming a 1989 conjecture of U. Pinkall and I. Sterling [PS]. The
results of Andrews-Li [AL] are:
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Theorem 2 (Andrews-Li [AL]). (1) Every embedded CMC torus Σ in
S3 is a surface of rotation: There exists a two-dimensional subspace
Π of R4 such that Σ is invariant under the group S1 of rotations
fixing Π.

(2) If Σ is an embedded CMC torus which is not congruent to a Clif-
ford torus, then there exists a maximal integer m ≥ 2 such that Σ
has m-fold symmetry: Precisely, Σ is invariant under the group Zm
generated by the rotation which fixes the orthogonal plane Π⊥ and
rotates Π through angle 2π/m.

(3) For given m ≥ 2, there exists at most one such CMC torus (up to
congruence).

(4) For given m ≥ 2, there exists an embedded CMC torus with mean
curvature H and maximal symmetry S1 × Zm if |H| lies strictly

between cot π
m and m2−2

2
√
m2−1

.

(5) If H ∈
{

0, 1√
3
,− 1√

3

}
, then every embedded torus with mean curva-

ture H is congruent to the Clifford torus.

The higher dimensional cases are also interesting, and in particular the
study of minimal hypersurfaces in space forms has attracted considerable
interest. There seems no prospect for results in high dimensions of a gener-
ality comparable to the two-dimensional case: Not only do the methods of
proof break down in higher dimensions, but there are many more examples
of constant mean curvature hypersurfaces known. Our results in this paper
are partly motivated by those of T. Ôtsuki [Ô1, Ô2] who proved that every
embedded minimal hypersurface with two distinct principal curvatures in
Sn+1 is congruent to the Clifford torus.

Theorem 3 (Ôtsuki [Ô1, Ô2]). A compact embedded minimal hypersurface
with two distinct principal curvatures in Sn+1 is congruent to product

Sm
(√

m

n

)
× Sn−m

(√
n−m
n

)
, 1 ≤ m ≤ n− 1.

In 2007, H. Li and G. Wei extended Ôtsuki’s result to hypersurfaces Σ
with Hm = 0, where Hm is the m-th elementary symmetric function of the
principal curvatures (also called the m-th mean curvature of Σ):

Theorem 4 (Li-Wei [LW]). If 1 ≤ m ≤ n = 1, there are no compact
embedded rotational hypersurfaces of Sn+1 with Hm = 0 other than

Sn−1

(√
n−m
n

)
× S1

(√
m

n

)
and the totally geodesic spheres.

In this paper, we prove the following, imposing as in [Ô1, Ô2, LW] an
assumption on the number of distinct principal curvatures:
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Theorem 5. Suppose Mn is a compact embedded hypersurface in Sn+1 with
two distinct principal curvatures λ and µ, whose multiplicities are m and
n−m respectively. If for some positive number α,

λ+ αµ = 0,

then λ and µ are both constant and M is congruent to a Clifford torus

Sm

(√
1

α+ 1

)
× Sn−m

(√
α

α+ 1

)
, 1 ≤ m ≤ n− 1.

2. Hypersurfaces with two principal curvatures in Sn+1

Let Mn ⊂ Sn+1 be a compact hypersurface with second fundamental
form h and two principal curvatures λ and µ, whose multiplicities are m and
n−m respectively. The maximum and minimum eigenvalues of a symmetric
matrix are continuous, so λ and µ are continuous functions on M . Therefore
the matrix h−µg

λ−µ is continuous since λ 6= µ everywhere, and has trace equal

to m. Therefore m is continuous, hence constant.
In a neighbourhood of any point on M , we can choose an orthonormal

frame {ei : i = 1, · · · , n} for TU , and a normal vector field e0. Let ωA be
the dual forms of eA on Sn+1. The connection forms are given by

dωA = ωAB ∧ ωB
dωAB = ωAC ∧ ωCB + ΩAB

where ΩAB = −1
2R̄ABCDωC ∧ ωD and R̄ABCD are the components of Rie-

mannian curvature tensor of Sn+1. Let θA, θAB be the restriction of ωA, ωAB
to M . Since θ0 = 0, take its exterior derivative and we have

θi ∧ θi0 = 0.

Therefore, θi0 = hijθj , where hij are symmetric in i, j, and they are called
the components of the second fundamental form of M . We can choose {ei}
such that hij is diagonal, i.e., hij = λiδij . Moreover, in our case, since M has
only two distinct principal curvatures λ, µ with multiplicities m and n−m,
we can assume

λ1 = · · · = λm = λ, λm+1 = · · · = λn = µ.

Lemma 6. Under the assumptions above, if m ≥ 2, we have

ei(λ) = 0, ∀ i = 1, · · · ,m.

Proof. Let the hij,k denote the covariant derivative of hij with respect to ek.
The Codazzi equation gives us

hij,k = hik,j .

Therefore, hij,k are symmetric in i, j, k. From the definition of covariant
derivative, we have

hij,kθk = dhij + hkjθki + hikθkj = dhij + (λi − λj)θij .
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Take j = i, we have

hii,kθk = dhii = dλi = ek(λi)θk,

that is, hii,k = ek(λi), for any i and k. If λi = λj and i 6= j then hij = 0,
we have hij,k = 0, for any k. If m ≥ 2, for any 1 ≤ i ≤ m, we can choose
1 ≤ j 6= i ≤ m, thus λi = λj = λ,

ei(λ) = ei(λj) = hjj,i = hij,j = 0.

This completes the proof of the lemma. �

Using Lemma 6 and the equation λ+ αµ = 0 we deduce the following:

Corollary 7. If the multiplicities of λ, µ are both greater than 1, then

ei(λ) = ei(µ) = 0, ∀1 ≤ i ≤ n,
and M is congruent to the Clifford torus

Sm

(√
1

α+ 1

)
× Sn−m

(√
α

α+ 1

)
, 2 ≤ m ≤ n− 2.

The last conclusion follows since M is a compact isoparametric hypersur-
face with two constant distinct principal curvatures λ and µ.

From now on, we concentrate on the case when one of the principal cur-
vature, say λ, is simple. We assume M is a compact hypersurface in Sn+1

with second fundamental form h and two principal curvatures λ and µ of
multiplicity 1 and n− 1 respectively, related by the equation λ+αµ = 0 for
some α > 0.

Lemma 6 implies that ej(µ) = 0 for j = 2, · · · , n. By the equation we
also have ej(λ) = 0 for j = 2, · · · , n.

The following lemma provides useful information on the covariant deriva-
tives of the second fundamental form.

Lemma 8. Suppose {ei} is a local orthonormal frame such that the com-
ponents of second fundamental form hij are diagonal, i.e., hij = λiδij, and
λ1 = λ, λi = µ(i ≥ 2). Then hij,k are symmetric in i, j, k and

h11,1 = λ,1, hii,1 = µ,1, i = 2, · · · , n.
and hij,k = 0, for i, j, k are distinct and hii,j = 0, for i ≥ 1 and j 6= 1.

Proof. The covariant derivatives of hij are given by

hij,kθk = dhij + hkjθki + hikθkj = dhij + (λi − λj)θij .
The Codazzi identities imply that hij,k is totally symmetric. Therefore,

to compute hij,k, we need only consider the following three types:

hij,k hii,k hii,i

If i, j, k are distinct, then hij,k must be zero: At least two of i, j, k are
greater then 1, say i, j. In this case λi = λj = µ, i 6= j, and we have

hij,kθk = dhij = 0.
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that is hij,k = 0 for any k.
To calculate hii,k, we notice that hii,kθk = dhii = dλi, and therefore

hii,k = ek(λi).

Thus, for any i, j = 2, · · · , n, we have

h11,1 = e1(λ) h11,j = ej(λ) = 0

hii,1 = e1(µ) hii,j = ej(µ) = 0.

This completes the proof. �

Let ∇ be the Levi-Civita connection of M , and {ei : i = 1, · · · , n} a local
orthogonal frame such that e1 is the principal direction of λ. Then e1 is a
smooth vector field since m = 1 and λ 6= µ. Define an elliptic operator L by

L = aij(∇ei∇ej −∇eiej),

where a = e1 ⊗ e1 + α
n−1

n∑
i=2

ei ⊗ ei. That is, a is diagonal in the basis

{e1, . . . , en}, and a11 = 1, a22 = · · · = ann = α
n−1 . Note that L is smoothly

defined, since e1 is.
By the Gauss equation, we have

Rijkl = (hikhjl − hilhjk) + δikδjl − δilδjk.

Thus Ripjp = (λiλp + 1)(δij − δipδjp).

Proposition 9. A connected complete hypersurface M in Sn+1 with prin-
cipal curvatures λ 6= µ of multiplicity 1 and n − 1 respectively is a rotation
hypersurface: There exists a two-dimensional subspace Π of Rn+2 such that
M is invariant under the group O(Π⊥) of rotations fixing Π.

Proof. We begin by establishing expressions for the certain covariant deriva-
tives of the vector fields ei: The two identities

0 = g(∇kei, ej) + g(ei,∇kej)

and

ek(h(ei, ej)) = ∇khij + h(∇kei, ej) + h(ei,∇kej)
yield (since h is diagonal) the expressions for i 6= j

∇kei · ej(λi − λj) = ∇khij .

Choosing k, j > 1 and i = 1 we deduce that

∇kej · e1 = −∇ke1 · ej =
∇1hjk
λ− µ

.

The right hand side vanishes if j 6= k, and equals e1µ
λ−µ if j = k.

Next we establish an identity involving the second derivatives of µ, which
can be considered an analogue of a well-known identity for minimal hyper-
surfaces first proved by Simons [S]:
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Lemma 10. Under the conditions of the proposition,

(1) 0 = ∇2µ(e1, e1) +
e1µ (2e1µ− e1λ)

λ− µ
+ (λ− µ)(1 + λµ);

and for i > 1,

(2) 0 = ∇2µ(ei, ei) +
(e1µ)2

λ− µ
.

Proof. Applying the Gauss and Codazzi equations we find the following:

∇i∇jhkl = ∇i∇khjl
= ∇k∇ihjl +Rikj

phpl +Rikl
phjp

= ∇k∇lhij + hijh
2
kl − hjkh2

il + hilh
2jk − hijh2

kl

+ gijhkl − gjkhil + gilhjk − gklhij .

Substituting k = l = 1 and i = j = 2 gives

(3) ∇2∇2h11 = ∇1∇1h22 − (λµ+ 1)(λ− µ).

We next compute the left hand side: We have

∇2h11 = e2λ = 0,

and so

∇2∇2h11 = e2 (∇2h11)−∇∇2e2h11 − 2∇2h(e1,∇2e1)

= − (∇2e2 · e1)∇1λ− 2(∇2e1 · e2)∇1µ

=
e1µe1λ

λ− µ
− 2

(e1µ)2

λ− µ
.(4)

Finally we compute

∇1∇1h22 = e1 (∇1h22)−∇∇1e1h22 − 2∇1h(e2,∇1e2)

= e1e1µ

= ∇2µ(e1, e1).(5)

The identity (1) follows after substituting the identities (4) and (5) into (3).
The identity (2) follows more directly: Since eiµ = 0, we have

∇2µ(ei, ei) = ei(∇iµ)−∇∇ieiµ = −(e1µ)2

λ− µ
.

�

Now we identify at each point of M a plane Π: Let p = µx − ν and
q = (e1µ)x− (λ−µ)e1, and define Π to be the span of p and q. We compute

eip = eiq = 0 for i > 1;

and

e1p = q,
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while

e1q = −λ(λ− µ)p− 2e1µ− e1λ

λ− µ
q

+

[
∇2µ(e1, e1) +

e1µ(2e1µ− e1λ)

λ− µ
+ (λ− µ)(1 + λµ)

]
.

The term in the last bracket vanishes by Lemma 10, so that derivatives of
vectors in Π along M are in Π. Since M is connected, Π is constant.

Finally, we observe that at each point x of M the tangent space to the
(n− 1)-sphere given by the orbit of the action of O(Π⊥) is orthogonal to x,
p and q, hence to x, ν and e1, and so coincides with the span of {e2, . . . , en}.
Therefore the action of O(Π⊥) is tangent to M at each point and preserves
M , so M is rotationally symmetric. �

From Lemma 10 we can deduce the following Simons-type identity for the
class of hypersurfaces we are considering:

Proposition 11. Let M be a complete hypersurface in Sn+1 with two prin-
cipal curvatures λ, µ of multiplicity 1 and n − 1 respectively, satisfying the
equation λ+ αµ = 0. Then

Lλ =
2

1 + α

|∇λ|2

λ
+

1 + α

α
λ(α− λ2).

Proof. This follows from equations (1) and (2) using the relations λ = −αµ
and e1λ = −αe1µ, since Lµ = ∇2µ(e1, e1) +

∑n
i=2

α
n−1∇

2µ(ei, ei). �

3. Interior ball curvature

In this section, we use the non-collapsing argument previously employed in
[A,B2,AL]. Let Mn be an embedded hypersurface in Sn+1 ⊂ Rn+2 given by
an embedding F , with two principal curvatures λ and µ of multiplicity 1 and
n−1 respectively, satisfying the equation λ+αµ = 0 for some α > 0. Noting
that λ 6= µ and therefore µ 6= 0 everywhere, we choose the direction of the
unit normal in such a way that λ > 0 > µ everywhere. The hypersurface
bounds a region Ω in Sn+1, which we choose in such a way that the unit
normal vector ν of Mn is pointing out of Ω. For any point x ∈ Mn, the
arguments in [AL] and [ALM] show that the existence of a ball in Ω of
boundary curvature Φ which touches at x is equivalent to the inequality

k(x, y) :=
2 〈ν(x), x− y〉
|x− y|2

≤ Φ(x), for all y ∈M.

where ν(x) is the unit normal vector of M at x as a hypersurface of Sn+1.
In particular, the largest ball in Ω which touches M at x has boundary
curvature equal to k̄(x) := sup{k(x, y) : y ∈M \ {x}}. If the supremum is
achieved at some ȳ ∈ M \ {x}, then there is a ball of boundary curvature
k̄(x) in Ω which touches at both x and ȳ. Note that this ball is simply
the intersection of the ball B(P, k̄−1(x)) in Rn+2 with Sn+1, where P =
F (x)− k̄−1(x)ν(x) and B(P, r) denotes the ball centred at P with radius r.
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Proposition 12. Let M be a compact embedded hypersurface in Sn+1 which
has two principal curvature λ 6= µ of multiplicity 1 and n − 1 respectively,
satisfying λ + αµ = 0 for some α > 0. Then on M̃ = {x : k̄(x) > λ(x)},
the function k̄ is a viscosity subsolution of the equation

Lk̄ − 2
(e1k̄)2

k̄ − λ
+

1 + α

α
(λ2 − α)k̄ ≥ 0.

Proof. We explain below the meaning of viscosity solution (see also [ALM]).
By Proposition 9, M is a rotational hypersurface, invariant under the ac-
tion of the group of rotations O(Π⊥) fixing a two-dimensional subspace Π.

Choose a three-dimensional subspace Π̃ containing Π. Then M is given by
the action of O(Π⊥) on a curve γ = M ∩ Π̃ in the two-dimensional sphere

S = Sn+1 ∩ Π̃. The vector e1 is tangent to γ at any x ∈ γ, and Π̃ is the
span of x, ν(x) and e1(x) at any such point.

We fix any x̄ ∈ M̃ and suppose ȳ is chosen to maximize k(x̄, ȳ), so that

k̄(x̄) = k(x̄, ȳ) (note that the assumption x̄ ∈ M̃ ensures that the supremum
is attained at some ȳ 6= x̄). Since k and λ are invariant under the isometric

action of O(Π⊥) on M , we can rotate so that x̄ ∈ Π̃. Therefore also ν(x̄)

and e1(x̄) are in Π̃. The ball B(P, k̄(x̄)−1) touches M at both x̄ and ȳ.

In particular we have P = x̄ − k̄(x̄)−1ν(x̄) = ȳ − Φ(x̄)−1ν(ȳ) ∈ Π̃. We

also know that p = µ(ȳ)ȳ − ν(ȳ) ∈ Π ⊂ Π̃, and k̄(x̄) ≥ λ(ȳ) > µ(ȳ), so it

follows that ȳ ∈ Π̃ and therefore ȳ ∈ γ. The identity P = x̄− k̄(x̄)−1ν(x̄) =
ȳ − k̄(x̄)−1ν(ȳ) also gives the useful identity

(6) ν(ȳ) = ν(x̄) + k̄(x̄)(ȳ − x̄).

Let ~l = ȳ−x̄
|ȳ−x̄| , d = |ȳ − x̄|, and let R~l be the reflection in the hyperplane

perpendicular to ~l, given by R~l(v) = v − 2〈v,~l〉~l. Then by equation (6) we
have

(7) R~l(ν(x̄)) = ν(x̄)− 2〈ν(x̄),~l〉~l = ν(x̄) + k̄(x̄)d~l = ν(ȳ).

We conclude that R~l maps Tx̄M isometrically into TȳM . Furthermore, since

x̄ and ȳ are both in Π̃, and e1(x̄) is in Π̃, we have that R~l(e1(x̄)) ∈ Π̃, and
therefore e1(ȳ) := R~l(e1(x̄)) is an eigenvector of h(ȳ) with eigenvalue λ(ȳ).
It follows also that ej(ȳ) := R~l(ej(x̄)) = ej(x̄) defines an orthonormal basis
for the eigenspace of h(ȳ) with eigenvector µ(ȳ).

To prove the proposition we must show the following: If ϕ : U → R is a
smooth function on an open neighbourhood U of x̄ in M̃ , and ϕ ≥ k̄ on U
with equality holding at x̄, then ϕ satisfies(

Lϕ− 2
(e1ϕ)2

ϕ− λ
+

1 + α

α
(λ2 − α)ϕ

) ∣∣∣
x̄
≥ 0.

Let xi, yi be geodesic normal coordinates for M around x̄ and ȳ respectively,
chosen in such a way that ∂i

∣∣
x̄

= ei(x̄) and ∂i(ȳ) = ei(ȳ) for i = 1, . . . , n.
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We observe that since ϕ(x) ≥ k̄(x) = supy k(x, y), we have ϕ(x) ≥ k(x, y)
for all x ∈ U and all y, with equality holding at (x̄, ȳ). Since both ϕ and k

are smooth, it follows that ∂ϕ
∂xi

= ∂k
∂xi

and ∂k
∂yi

= 0 for each i at (x̄, ȳ), while

D2ϕ
∣∣
x̄
(v, v) ≥ D2k

∣∣
(x̄,ȳ)

((v, w), (v, w))

for any v ∈ Tx̄M and any w ∈ TȳM . It follows that

Lϕ
∣∣
x̄
≥ aij

(
∂xj + ∂yj

)(
∂xi + ∂yi

)
k
∣∣
(x̄,ȳ)

,

where we denote by ∂xi and ∂yi the coordinate tangent vectors at x̄ and ȳ
respectively. We now proceed to compute the right hand side: The first
derivatives are as follows:

(∂xi + ∂yi ) k
∣∣
(x̄,ȳ)

=
2

d2

(
(∂xi − ∂

y
i ) · νx + (x− y) · (hx)pi ∂

x
p − k(x− y) · (∂xi − ∂

y
i )
)

=
2

d2

(
(∂xi − ∂

y
i ) ·

(
νx + kd~l

)
− d(hx)pi ∂

x
p ·~l
)
.

Here the y derivatives vanish, while the x derivatives yield e1ϕ = e1k =
2(k−λ)∂x1 ·~l

d and eik = 0 for i > 1. We differentiate again, multiply by aij and
take the sum, yielding

aij
(
∂xj + ∂yj

)(
∂xi + ∂yi

)
k
∣∣
(x̄,ȳ)

=
2

d2
aij
(
−∇phxijd~l · ∂xp − 2(hx)pi ∂

x
p · (∂

y
j − ∂

x
j )

+(hx)pi d
~l · (hxpjνx + gpjx)

+
(
−hxijνx − gijx+ hyijνy + gijy

)
· (νx + kd~l)

−k(∂xi − ∂
y
i ) · (∂xj − ∂

y
j ) + 2∂jk(∂xi − ∂

y
i ) · d~l

)
.

Now we observe that aij∇phij = ∇p(aijhij) = 0 since ∇aij is off-diagonal in

i and j while hij is diagonal, and aijhij = 0. We also note that νx+kd~l = νx,

and that νx · ~l = −kd
2 , ~l = −d

2 , aijhxikg
klhxlj = λ2 + αµ2 = 1+α

α λ2, aijgij =

1 + α, and aijhxij = aijhyij = 0. The last identity uses the fact that both hx

and hy are diagonal, hx11 = λ(x), hy11 = λ(y), and hxii = µ(x) and hyii = µ(y)
for i > 1. Finally we observe that since ∂yi = R~l(∂

x
i ), we have for each i

∂yi − ∂
x
i = −2~l · ∂xi ~l

Thus ∂yi = ∂xi for i = 1, . . . , n, while ∂y1 − ∂x1 = − e1k
k−λd

~l. From this we find

aij
(
∂xj + ∂yj

)(
∂xi + ∂yi

)
k = −1 + α

α
kλ2 + (1 + α)k + 2

(e1k)2

k − λ

=
1 + α

α
(α− λ2)ϕ+ 2

(e1ϕ)2

ϕ− λ
.

This completes the proof. �
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4. Proof of Theorem 3

We can now prove Theorem 5, which follows directly from Corollary 7
and the following theorem.

Theorem 13. Let F : Mn → Sn+1(n ≥ 3) be a compact embedded hyper-
surface with two distinct principal curvatures λ, µ, whose multiplicities are
1 and n− 1 respectively. If for some positive number α,

λ+ αµ = 0,

then λ, µ are all constants, and M is congruent to the Clifford torus

S1

(√
1

α+ 1

)
× Sn−1

(√
α

α+ 1

)
.

Proof. By combining Proposition 11 and Proposition 12 we arrive at the
following:

Lemma 14. The function f = k̄/λ is a viscosity solution of the equation

Lf − 2

(f − 1)
(e1f)2 − 2

(f + 1)

λ(f − 1)
e1λ e1f −

2f(αf + 1)

λ2(1 + α)(f − 1)
(e1λ)2 ≥ 0

on the set U = {f > 1} in M .

Proof. If ψ is a smooth function which satisfies ψ ≥ f with equality at some
point x̄, then ϕ = λψ is a smooth function satisfying ϕ ≥ k̄ with equality at
x̄. Proposition 12 therefore implies that

Lϕ− 2
(e1ϕ)2

ϕ− λ
+

1 + α

α
(λ2 − α)ϕ ≥ 0

at the point x̄. Expanding this in terms of derivatives of ψ and using the
result of Proposition 11 we arrive at

Lψ − 2

(ψ − 1)
(e1ψ)2 − 2

(ψ + 1)

λ(ψ − 1)
e1λ e1ψ −

2ψ(αψ + 1)

λ2(1 + α)(ψ − 1)
(e1λ)2 ≥ 0

at the point x̄, which proves the Lemma. �

Corollary 15. k̄ = λ everywhere on M .

Proof. The inequality k̄ ≥ λ holds everywhere (compare [ALM]). If there
exists a point with k̄ > λ then the set U is a non-empty open set on which
f > 1, and on the boundary of U (if non-empty) we have f = 1. In
particular f attains an interior maximum on U . Lemma 14 and the strong
maximum principle for viscosity solutions of uniformly elliptic equations (see
for example [CC]) implies that f is a constant larger than 1. But at the point
of largest maximum principle curvature on M we have k̄ = λ, hence f = 1.
This is a contradiction, so k̄ = λ everywhere on M . �
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We now complete the proof, by showing that e1λ is identically zero, using
essentially the argument from [B2]: For any x ∈ γ we have k̄ = λ, and hence
the inequality k(x, γ(t)) ≤ λ(x) holds for all s and t (with respect to a local
arc-length parametrisation of γ, which we choose to have γ(0) = x). This
may be written as

Z(t) = λ(x)|x− γ(t)|2 − 2ν(x) · (x− γ(t)) ≥ 0.

We have Z(0) = 0, and differentiation gives

Z ′(t) = 2 (ν(x)− λ(x)(x− γ(t)) · γ′(t),
so that Z ′(0) = 0. Differentiating again gives

Z ′′(t) = −2 (ν(x)− λ(x)(x− γ(t)) ·
(
λγ(t)νγ(t) + γ(t)

)
+ 2λ(x)|γ′(t)|2,

so that Z ′′(0) = −2λ(x) + 2λ(x) = 0. It follows that Z ′′′(0) = 0 since
otherwise positivity of Z if violated. This gives

0 = Z ′′′(0) = −2e1λ(x).

Since x̄ ∈ γ is arbitrary and M is rotationally symmetric, λ is constant. By
the equation µ is also constant, and M is a Clifford product. �

Remark 1. If m = 1, choose α = n − 1, then our Theorem 3 implies
that any compact embedded rotational minimal hypersurface is either totally
geodesic, i.e. Sn, or the Clifford torus

S1

(√
1

n

)
× Sn−1

(√
n− 1

n

)
,

which was proved by T. Ôtsuki [Ô1, Ô2].

Remark 2. In [LW], H. Li and G. Wei extended Ôtsuki’s theorem to the
case when M is rotational and Hm = 0, where Hm is the normalized m-th
symmetric function of the principal curvatures. In fact, in this case, they
get a relation between λ and µ:

µm−1
(
mλ+ (n−m)µ

)
= 0.

Our theorem here gives a simple proof of their result.
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