
Lecture 14. Stokes’ Theorem

In this section we will define what is meant by integration of differential forms
on manifolds, and prove Stokes’ theorem, which relates this to the exterior
differential operator.

14.1 Manifolds with boundary

In defining integration of differential forms, it will be convenient to introduce
a slightly more general notion of manifold, allowing for the possibility of a
boundary.

Definition 14.1.1 A boundary chart ϕ : U → V for a topological space M
about a point x ∈ M is a continuous map from an open set U ⊆ M to a
(relatively) open subset V of R

n
+ = {(x1, . . . , xn) : xn ≥ 0 with ϕ(x) ∈

R
n−1 × {0}.

Here the open subsets of R
n
+ are the sets of the form W ∩ R

n
+ where

W ⊆ R
n is open.

Definition 14.1.2 A smooth boundary atlas A for a topological space M
is a collection of maps ϕα : Uα → Vα each of which is either a chart or a
boundary chart for M , such that ∪Uα = M and such that ϕα ◦ ϕ−1

β is a
smooth map between open sets of R

n
+ for each α and β.

Definition 14.1.3 A smooth manifold with boundary is a topological space
M equipped with an equivalence class of smooth boundary atlases, where
two boundary atlases are equivalent if their union is again a boundary atlas.

If M is a manifold with boundary, then the boundary ∂M of M is the
subset ofM consisting of all those points x ∈M for which there is a boundary
chart about x.

Proposition 14.1.1 If M is a smooth manifold with boundary of dimension
n, then ∂M is a smooth manifold of dimension n− 1, with atlas given by the
restriction to ∂M of all boundary charts for M .
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Proof. Let ϕ : U → V and η : W → Z be boundary charts for M , and let
U0 = ϕ−1(Rn×{0}∩V ) andW0 = η−1(Rn×{0}∩Z). Assume that U0∩W0 is
non-empty. Then the associated charts for ∂M are ϕ0 = ϕ|U0 and η0 = η|W0 .
The transition map η0 ◦ ϕ−1

0 is given by the restriction of the smooth map
η ◦ ϕ−1 to R

n × {0}, and is therefore smooth. �

14.2 Induced orientation on the boundary

SupposeMn is an oriented manifold with boundary — that is,M is equipped
with a smooth boundary atlas A such that ϕα ◦ ϕ−1

β is an orientation-
preserving map for all α and β.

Proposition 14.2.1 ∂M is an orientable manifold of dimension n− 1.

Proof. Let A be an oriented boundary atlas for M . Then the correspond-
ing atlas for ∂M is automatically oriented: Any pair of overlapping oriented
boundary charts for M map Rlsn+ to R

n
+, and the derivative of a transition

map on the boundary must have the form

D
(
η ◦ ϕ−1

)
=

[
D

(
η0 ◦ ϕ−1

0

)
∗

0 a

]

where a = 〈D(η ◦ ϕ−1)(en+1), en+1) > 0. Therefore η0 ◦ ϕ−1
0 is orientation-

preserving, and the atlas is oriented. �

Note that the orientation can be understood geometrically as follows: An
n-tuple of linearly independent vectors u1, . . . , un tangent to ∂M is called
positively oriented if the (n + 1)-tuple u1, . . . , un, ∂n+1 is oriented in M for
any boundary chart.

The orientation constructed on ∂M in the proof is called the induced
orientation on ∂M from the orientation on M (this is a matter of convention
— we could just as well have chosen the opposite orientation).

In the proof of the Proposition above we ignored the case n = 1 — the
boundary of a 1-dimensional manifold is a 0-dimensional manifold (i.e. a
collection of points). What does it mean to define an orientation on a zero-
dimensional manifold? Our original definition clearly makes no sense in that
case. However the equivalent definition in Proposition 13.6.1 does make sense:
We will say a 0-manifold N is oriented if it is equipped with a function (i.e.
a 0-form) from N to Z2 = {−1, 1} (this corresponds to the remarks after the
proof of Proposition 13.6.1: The orientation bundle in this case is just N×Z2.
In this case we also have to allow boundary charts for 1-manifolds which map
to (−∞, 0] as well as [0,∞) (in higher dimensions we can always transform
charts into any half-plane via an orientation-preserving map to map into the
upper half-plane, but not if n = 1).
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14.3 More on partitions of unity

Now we want to extend our results on partitions of unity on manifolds to the
slightly more general setting of manifolds with boundary.

Proposition 14.3.1 Let M be a differentiable manifold with boundary. Then
there exists a partition of unity on M subordinate to any boundary atlas for
M .

The proof of this result is identical to our result on existence of partitions
of unity on differentiable manifolds, except that we have to include functions
with support Bn

r (0)× [0, r). These can be constructed easily from the smooth
compactly supported functions we already know.

14.4 Integration of forms on oriented manifolds

Now we can give some further meaning to differential forms by defining what
is meant by integration of differential forms on oriented manifolds. A key
point to keep in mind here is that none of our definitions depend on us having
a metric on the manifold, so we do not in general have any notion of volume
of surface area or length. Nevertheless the structure of differential forms is
exactly what is required to produce a well-defined notion of integration.

Let Mn be a compact, oriented differentiable manifold with boundary,
and let ω ∈ Ωn(M). Then we define the integral of ω over M , denoted

∫
M
ω,

as follows: Let {ρα : α ∈ I} be a partition of unity subordinate to an
oriented boundary atlas for M , so that for each α there exists an oriented
chart (either a regular chart or a boundary chart) ϕα : Uα → Vα for M , such
that suppρα ⊂ Uα.

Define
∫

M

ω =
∑

α∈I

∫

Vα

(
(ϕ−1

α )∗(ραω)
)
(e1, . . . , en) dx1 . . . dxn.

To put this into words: We write ω as a sum
∑

α ραω of forms which are
supported in charts. Each of these can be integrated over the chart by inte-
grating the smooth function obtained by plugging in the coordinate tangent
vectors for that chart. Then we add the resulting numbers together to get
the integral of ω.

We need to check that this does not depend on the choice of partition
of unity. Suppose {φβ : β ∈ J } is any other partition of unity for M , with
corresponding oriented coordinate charts ηβ : Wβ → Zβ . Then we have



132 Lecture 14. Stokes’ Theorem

∑

α

∫

Vα

(
(ϕ−1

α )∗(ραω)
)
(e1, . . . , en) dx1 . . . dxn

=
∑

α,β

∫

ϕα(Uα∩Wβ)

(
(ϕ−1

α )∗(ραφβω)
)
(e1, . . . , en) dx1 . . . dxn.

Fix α and β. Then by definition of the pull-back, we have for any form σ
(
(ϕ−1

α )∗σ
)
(e1, . . . , en) =

(
(η−1

β )∗σ
)

(D(ηβ ◦ ϕ−1
α )(e1), . . . , D(ηβ ◦ ϕ−1

α )(en)).

We apply the following useful Lemma:

Lemma 14.4.1 Let ω be an alternating n-tensor, and L a linear map. Then

ω(Le1, . . . , Len) = (detL)ω(e1, . . . , en).

Proof. We can assume that ω is non-zero. Consider the map from GL(n) to
R defined by

d̃et : L 
→ ω(Le1, . . . , Len)
ω(e1, . . . , en)

.

The denominator is non-zero by assumption.
The multilinearity and antisymmetry of ω imply d̃et is linear in each row,

is unchanged by adding one row to another, and has the value 1 if L = I.
These are the axioms that define the determinant, so d̃et = det. �

It follows that
(
(ϕ−1

α )∗σ
)
(e1, . . . , en) = det(D(ηβ ◦ ϕ−1

α ))
(
(η−1

β )∗σ
)

(e1, . . . , en).

We also know, since the charts are oriented, that the determinant on the
right-hand side is positive. The change of variables formula therefore gives

∫

ϕα(Uα∩Wβ)

(
(ϕ−1

α )∗(ραφβω)
)
(e1, . . . , en) dx1 . . . dxn

=
∫

ϕα(Uα∩Wβ)

|det(D(ηβ ◦ ϕ−1
α ))|

(
(η−1

β )∗σ
)

(e1, . . . , en) dx1 . . . dxn

=
∫

ηβ(Uα∩Wβ)

(
(η−1

β )∗σ
)

(e1, . . . , en) dx1 . . . dxn.

Consequently
∑

α

∫

Vα

(
(ϕ−1

α )∗(ραω)
)
(e1, . . . , en) dx1 . . . dxn

=
∑

β

∫

Zβ

(
(η−1

β )∗(φβω)
)

(e1, . . . , en) dx1 . . . dxn,

so the integral of ω is well-defined.
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14.5 Stokes’ theorem

Now we are in a position to prove the fundamental result concerning integra-
tion of forms on manifolds, namely Stokes’ theorem. This will also give us a
geometric interpretation of the exterior derivative.

Proposition 14.5.1 Let Mn be a compact differentiable manifold with
boundary, and let ω ∈ Ωn−1(M). Then

∫

M

dω =
∫

∂M

ω

where the integral on the right-hand side is taken using the induced orientation
on ∂Ω, integrating the restriction of ω to ∂M (i.e. the pull-back of ω by the
inclusion map).

In particular, if M is a compact manifold without boundary, then the
integral of the exterior derivative of any (n− 1)-form is zero.

Proof. Let {ρα} be a partition of unity on M , with each ρα supported in a
chart ϕα : Uα → Vα. We can write

∫

M

dω =
∑

α

∫

M

d(ραω)

=
∑

α

∫

Vα

((ϕ−1
α )∗(d(ραω)))(e1, . . . , en)dx1 . . . dxn

=
∑

α

∫

Vα

d
(
(ϕ−1

α )∗(ραω)
)
(e1, . . . , en) dx1 . . . dxn.

For each α there are two possibilities: The chart ϕα is either a regular chart
or a boundary chart.

In the first case, Vα is an open set in R
n. Write ω in components in the

chart ϕα:

ω =
n∑

j=1

ωjdx
1 ∧ ˆdxj ∧ . . . ∧ dxn.

Then the integrand in the corresponding integral becomes

n∑

j=1

∂(ραωj)
∂xj

.

Applying Fubini’s theorem and the fundamental theorem of calculus, and
noting that ρα = 0 on the boundary of our domain, we find that the resulting
integral is zero.

In the second case the value of the corresponding integral is
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n∑

j=1

∫

Vα

∂(ραωj)
∂xj

dx1 . . . dxn =
∫

Rn−1×{0}

∫ 0

−∞

∂(ραωn)
∂xn

dxn dx1 . . . dxn−1

=
∫

Rn−1×{0}
ραωndx

1 . . . dxn−1

=
∫

∂M

ραω.

Note that verifying the last line here involves checking that the orientation
on ∂M is correct. Summing over α and noting that

∑
α ρα = 1, we obtain

the result. �

Turning the result of Stokes’ theorem around, we can interpret the exterior
derivative in the following way: Let ω be a k-form in a manifold M . Fix
linearly independent vectors v1, . . . , vk+1 in TxM , and choose any chart ϕ
about x. Write vj = vl

j∂l in this chart. For r small we can define smooth
maps xr from the k-dimensional sphere Sk into M , by

xr(ziei) = ϕ−1(ϕ(x) + rzivk
i ek).

Using Stokes’ theorem, we can deduce

dω(v1, . . . , vk+1) = lim
r→0

1
rk+1|Bk+1|

∫

Sk

(xr)∗ω

where |Bk+1| is the volume of the unit ball in R
k+1. In this sense the exterior

derivative measures the ‘boundary integral per unit volume’ of a form (where
‘volume’ is measured in comparison to that of the parallelepiped generated
by v1, . . . , vk+1, not using any notion of measure or metric on the manifold).

This is easy to understand in the case of a 0-form (i.e. a function). Then
the ‘boundary integral’ becomes ‘difference in values at the endpoints’, while
‘per unit volume’ means ‘per unit time along a curve with velocity v1’. So this
just recaptures the usual notion of the directional derivative of a function in
terms of difference quotients.

Example 14.5.2 (The case of 1-manifolds)
Let f be a 0-form on a compact 1-manifold M . Note that M is a union of

circles {S1
i } and closed intervals Ii with endpoints x+

i and xi
−. An orientation

on M amounts to choosing a direction (‘left’ or ‘right’) on each component
of M , and the induced orientation on ∂M (i.e. the endpoints x±i ) is given by
assigning an endpoint the value 1 if the orientation direction of M points out
of M there, −1 if it points inwards. Each of the closed interval components Ii
of M therefore has one endpoint with orientation +1 (say x+

i ) and the other
with orientation −1. Stokes’ theorem becomes

∫

M

df =
∑

i

f(x+
i ) − f(x−i ).
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Example 14.5.3 (Regions in R
2)

Let V be a vector field on an bounded open set U in R
2 with smooth

boundary curves. We can write V = V iei. There is a corresponding 1-form
ω defined by

ω(v) = 〈V, v〉
for all vectors v. Explicitly, this means ω = ωidx

i where ωi = ω(ei) =
〈V, ei〉 = V i. The exterior derivative is then

dω =
∂V i

∂xj
dxj ∧ dxi = (

∂V 2

∂x1
− ∂V 1

∂x2
)dx1 ∧ dx2,

which we recognize as the curl of the vector field V times dx1 ∧ dx2. The
integral of dω over U is then

∫

U

dω =
∫

U

curlV dx1dx2

and the integral of ω around the boundary is
∫

∂U

ω =
∫

∂U

〈V, T 〉

where T is the unit tangent vector to ∂U , taken to run anticlockwise on those
parts of the boundary that lie on the ‘outside’ of U , and clockwise on parts
that are ‘inside’ U . Stokes’ theorem tells us that these two are equal. This
recaptures the classical Stokes’ theorem in the plane.

Example 14.5.4 (Vector fields in space).
The same argument as above applies if V is a vector field in R

3 and M
is a two-dimensional submanifold with boundary: There is a corresponding
1-form ω defined as above, and this can be restricted (i.e. pulled back by the
inclusion map) to M . The exterior derivative of the resulting form is the curl
of V in the normal direction to M , times the volume form on M . So applying
out general Stokes’ theorem in this case gives that the flux of the curl of the
vectgor field V through the surface M is equal to the circulation of V around
the boundary of M , which is the classical Stokes’ theorem.

There is another way to associate the vector field V with a form: If V =
V iei is a vector field, then we can take ω to be a 2-form defined by

ωij = εijkV
k

where ε is the alternating tensor, defined by

εijk =






1 if (i, j, k) is an even permutation of (1, 2, 3),
−1 if (i, j, k) is an odd permutation of (1, 2, 3),

0 otherwise.

Explicitly this gives
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ω = V 3dx1 ∧ dx2 − V 2dx1 ∧ dx3 + V 1dx2 ∧ dx3.

Taking the exterior derivative gives

dω =
3∑

i=1

∂V i

∂xi
dx1 ∧ dx2 ∧ dx3.

This is just the divergence of the vector field V times the volume form.
Stokes’ theorem then says that the integral of dω over a region U (i.e. the
integral of the divergence of V over U) is equal to the integral of the 2-form
ω over ∂U . The latter is equal to the integral of 〈V,n〉 over ∂U , where n
is the outward-pointing unit normal vector. This is just the classical Gauss
theorem (or divergence theorem).




