
Lecture 2. Smooth functions and maps

2.1 Definition of smooth maps

Given a differentiable manifold, all questions of differentiability are to be
reduced to questions about functions between Euclidean spaces, by using
charts compatible with the differentiable structure. This principle applies in
particular when we decide which maps between manifolds are smooth:

Definition 2.1.1 LetMn be a differentiable manifold, with an atlas A repre-
senting the differentiable structure on M . A function f : M → R is smooth
if for every chart ϕ : U → V in A, f ◦ ϕ−1 is a smooth function on V ⊂ R

n.
Let Nk be another differentiable manifold, with atlas B. Let F be a map
from M to N . F is smooth if for every x ∈ M and all charts ϕ : U → V in
A with x ∈ U and η : W → Z in B with F (x) ∈ W , η ◦ F ◦ ϕ−1 is a smooth
map from ϕ(F−1(W ) ∩ U) ⊆ R

n to Z ⊆ R
k.
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Remark. Although the definition requires that f ◦ ϕ−1 be smooth for every
chart, it is enough to show that this holds for at least one chart around each
point: If ϕ : U → V is a chart with f ◦ϕ−1 smooth, and η : W → Z is another
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chart with W overlapping U , then f ◦ η−1 = (f ◦ ϕ−1) ◦ (ϕ ◦ η−1) is smooth.
A similar argument applies for checking that a map between manifolds is
smooth.

Exercise 2.1.1 Show that a map χ between smooth manifolds M and N is
smooth if and only if f ◦χ is a smooth function onM whenever f is a smooth
function on N .

Exercise 2.1.2 Show that the map x 
→ [x] from R
n+1 to RPn is smooth.

Example 2.1.1 The group GL(n,R). On GL(n,R) we have a natural family
of maps: Fix some M ∈ GL(n,R), and define ρM : GL(n,R) → GL(n,R) by
ρM(A) = MA. The trivial chart ι given by inclusion of GL(n,R) in R

n2
is the

map which takes a matrix A to its components (A11, . . . ,A1n, . . . ,Ann). To
check that ρM is smooth, we need to check that ι ◦ ρM ◦ ι−1 is smooth. But
this is just the map which takes the components of A to the components of
MA, which is

ι−1 ◦ ρM ◦ ι (A11,A12, . . . ,Ann) =




n∑

j=1

M1jAj1,

n∑

j=1

M1jAj2, . . . ,

n∑

j=1

MnjAjn





Each component of this map is linear in the components of A, hence smooth.

Exercise 2.1.3 Show that the multiplication map ρ : GL(n,R)×GL(n,R) →
GL(n,R) given by ρ(A,B) = AB is smooth.

Definition 2.1.2 A Lie group G is a group which is also a differentiable
manifold such that the multiplication map from G × G → G is smooth and
the inversion g 
→ g−1 is smooth.

2.2 Further classification of maps

Definition 2.2.1 A map F : M → N is a diffeomorphism if it is smooth
and has a smooth inverse. F is a local diffeomorphism if for every x ∈M
there exists a neighbourhood U of x in M such that the restriction of F to
U is a diffeomorphism to an open set of N .

A smooth map F : M → N is an embedding if F is a homeomorphism
onto its image (with the subspace topology), and for any charts ϕ and η forM
and N respectively, η◦F ◦ϕ−1 has derivative of full rank. F is an immersion
if for every x in M there exist charts ϕ : U → V for M and η : W → Z for
N with x ∈ U and F (x) ∈ Z, such that the map η ◦ F ◦ ϕ−1 has derivative
which is injective at ϕ(x). F is a submersion if for each x ∈ M there are
charts ϕ and η such that the derivative of η ◦ F ◦ ϕ−1 at ϕ(x) is surjective.
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Example 2.2.1 Let G be a Lie group, and ρ : G×G→ G the multiplication
map. For fixed g ∈ G, define ρg : G → G by ρg(h) = ρ(g, h). This is a
diffeomorphism of G, since ρg is smooth and has smooth inverse ρg−1 .

Exercise 2.2.1 Show that if M is a manifold, and ϕ a chart for M , then
ϕ−1 is a local diffeomorphism.

Exercise 2.2.2 Consider the map π : Sn → RPn defined by π(x) = [x] for
all x ∈ Sn ⊂ R

n+1. Show that π is a local diffeomorphism.

Remark. The definitions above reflect the fact that the rank of the derivative
of a smooth map between manifolds is well-defined: If we change coordinates
from ϕ to ϕ̃ on M and from η to η̃ on N , then the chain rule gives:

Dϕ̃(x)

(
η̃ ◦ F ◦ ϕ̃−1

)
= Dη(x)

(
η̃ ◦ η−1

)
Dϕ(x)

(
η ◦ F ◦ ϕ−1

)
Dϕ̃(x)

(
ϕ ◦ ϕ̃−1

)
.

The first and third matrices on the right are non-singular, so the rank of the
matrix on the left is the same as the rank of the second matrix on the right. I
will not dwell on this, because it is a simple consequence of the construction
of tangent spaces for manifolds, which we will work towards in the next few
lectures.

Example 2.2.2 We will show that the projection [.] from R
n+1\{0} to RPn

is a submersion. To see this, fix x = (x1, . . . , xn+1) in R
n+1\{0}, and assume

that xn+1 �= 0. On R
n+1\{0} we take the trivial chart ι, and on RPn we take

ϕn+1 : Vn+1 → R
n. Then ϕn+1 ◦ [.] ◦ ι−1(x) =

(
x1

xn+1
, . . . , xn

xn+1

)
, and

Dx

(
ϕn+1 ◦ [.] ◦ ι−1

)
v =

1
xn+1






1 0 . . . 0 − x1
xn+1

0 1 . . . 0 − x2
xn+1

...
... . . .

...
...

0 0 . . . 1 − xn

xn+1











v1
v2
...

vn+1






This matrix has rank n, so the map is a submersion.

Exercise 2.2.3 Show that the multiplication operator ρ : G × G → G is a
submersion if G is a Lie group.

Exercise 2.2.4 Let M and N be differentiable manifolds. Show that for any
x ∈M the map ix : N →M ×N given by y 
→ (x, y) is an embedding. Show
that the projection pi : M ×N →M given by π(x, y) = x is a submersion.

Example 2.2.3 We will show that the inclusion map ι of Sn in R
n+1 is an

embedding. To show this, we need to show that ι is a homeomorphism (this
is immediate since we defined Sn by taking the subspace topology induced
by inclusion in R

n+1) and that the derivative of η ◦ ι ◦ ϕ−1 is injective.
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Here we can take η(x) = x to be the trivial chart for R
n+1, and ϕ to be

one of the stereographic projections defined in Example 1.1.3, say ϕ−. Then

η ◦ ι ◦ ϕ−1(w) = (2w,1−|w|2)
1+|w|2 . Differentiating, we find

∂(η ◦ ι ◦ (ϕ−1)i)
∂wj

=
2

1 + |w|2
(
δji −

2wiwj

1 + |w|2
)

and
∂(η ◦ ι ◦ (ϕ−1)n+1)

∂wj
= − 4wj

(1 + |w|2)2 .

In particular we find for any non-zero vector v ∈ R
n

∣∣Dw(η ◦ ι ◦ ϕ−1)(v)
∣∣2 =

4
(1 + |w|2)2 |v|

2 > 0.

Therefore Dw(η ◦ ι ◦ ϕ−1) has no kernel, hence is injective.

Exercise 2.2.5 Prove that CP 1 
 S2 (Hint: Consider the atlas for S2 given
by the two stereographic projections, and the atlas for CP 1 given by the two
projections [z1, z2] 
→ z2/z1 ∈ C 
 R

2 and [z1, z2] 
→ z1/z2. It should be
possible to define a map between the two manifolds by defining it between
corresponding charts in such a way that it agrees on overlaps).

Exercise 2.2.6 (The Hopf map) Consider S3 ⊆ R
4 
 C

2, and define
π : S3 → CP 1 
 S2 to be the restriction of the canonical projection (z1, z2) 
→
[z1, z2]. Show that this map is a submersion.

There is a nice way of visualising this map: We can think of S3 as three-
dimensional space (together with infinity). For each point y in CP 1 the set
of points in C

2 which project to y is a plane, and the subset of this in S3 is
a circle. Thus we want to decompose space into circles, one corresponding to
each point in S2.

We can start with the north pole, and map this to a circle through infinity
(i.e. the z-axis, say). Then we map the south pole to some other circle (say,
the unit circle in the x-y plane). Next the equator: Here we have a circle of
points, each corresponding to a circle, so this gives us a torus (which is called
the Clifford torus):
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N

S

Equator

More generally, consider a circle which moves from south to north pole on
S2. At each ‘time’ in this sweepout we have a corresponding torus in space,
which starts as a thin torus around the unit circle, grows until it agrees with
the Clifford torus as our curve passes the equator, and continues growing,
becoming larger and larger in size with a smaller and smaller ‘tube’ down
the middle around the z axis as we approach the north pole. This can be
obtained by rotating the following picture about the z axis:

Next we should think about how the circles line up on these tori. The
crucial thing to keep in mind is that this must be continuous as we move over
S2. In particular, as we approach the south pole the circles have to approach
the unit circle, so they have to wind around the torus ‘the long way’. On the
other hand, as we approach the north pole the circle must start to lie ‘along’
the z axis. These two things seem to contradict each other, until we realise
that we can wind our curves around the tori ‘both ways’:

Note that each of the circles corresponding to a point in the northern
hemisphere intersects the unit disk D1 in the x-y plane exactly once, and
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each circle corresponding to a point in the southern hemisphere intersects
the right half-plane D2 in the x-z plane exactly once. We can parametrize
each circle throughD1 by an angle θ1 in such a way that the intersection point
with D1 has θ1 = 0, and similarly for D2. Points on the northern hemisphere
of S2 correspond to those circles which pass through a smaller disk D̃1 in D1,
and those on the southern hemisphere correspond to circles passing through
a disk D̃2 within D2.

We can parametrize parametrize the boundary of D̃1 by an angle φ1

(anticlockwise in the x-y plane starting at the right) and that of D̃2 with
an angle φ2 (anticlockwise in the x-z plane starting at the right). Then the
angles θ1 and φ1 give the same point as θ2 = θ1 − φ1 and φ2 = π − φ1. This
describes the 3-sphere as a union of two solid tori D̃1 × S1 and D̃2 × S1,
sewn together by identifying points on ∂D̃1 × S1 with points on ∂D̃2 × S1

according to (φ, θ) ∈ ∂D̃1 × S1 ∼ (π − φ, θ − φ) ∈ ∂D̃2 × S1.

Exercise 2.2.7 Suppose we take two solid tori D1 × S1 and D2 × S1 and
glue them together with a different identification, say (φ, θ) ∈ ∂D1 × S1 ∼
(φ, θ + kφ) ∈ ∂D2 × S1 for some integer k. How could we decide whether
the result is or is not S3? [This is hard — the answer really belongs to
algebraic topology. The idea is to find some quantity which can be associated
to a manifold which is invariant under homeomorphism or diffeomorphism
(examples are the homotopy groups or homology groups of the manifold).
Then if our manifold has a different value of this invariant from S3, we know
it is not diffeomorphic to S3. Going the other way is much harder, since it is
quite possible that non-diffeomorphic manifolds have the same value of any
given invariant].

One of the important questions in differential geometry is the study (or classi-
fication) of manifolds up to diffeomorphism. That is, we introduce an equivalence
relation on the space of k-dimensional differentiable manifolds by taking M ∼ N if
and only if there exists a diffeomorphism from M to N , and study the equivalence
classes. Among the results:

• There are only two equivalence classes of connected one-dimensional mani-
folds, namely those represented by S1 and by R. In particular the different
differentiable structures on R introduced in Example 1.1.1 are diffeomorphi-
cally equivalent (the map x �→ x1/3 is a diffeomorphism between the two);

• The equivalence class of a compact connected two-dimensional manifold is
determined by its genus (an integer representing the number of ‘holes’ in the
surface) and its orientability (which will be defined later).

A more subtle question is the following: Given a topological manifold M , are all
differentiable structures on M related by diffeomorphism? If not, how many non-
diffeomorphic differentiable structures are there on a given manifold? The answer
is that in general there can be more than one differentiable structure on a mani-
fold: It is known that the spheres Sn generally have more than one differentiable
structure if n ≥ 7, and in particular John Milnor proved in 1956 that there are 28
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non-diffeomorphic differentiable structures on S7. Two-dimensional manifolds have
unique differentiable structures (this is a consequence of the classification theorem
mentioned above), and this is also known for three-dimensional manifolds (although
there is no classification of 3-manifolds known). In dimension four it is unknown
whether S4 has more than one differentiable structure, but it is known (through
work of Simon Donaldson in the 1980’s) that there are four-dimensional manifolds
with several (infinitely many) non-diffeomorphic differentiable structures.

John Milnor Simon Donaldson Henri Poincaré

A related question is whether a given topological manifold carries any differ-
entiable structures at all. Again the answer is no, and in particular it is known
that there are topological manifolds of dimension 4 which carry no differentiable
structure. In dimensions five and higher there are also non-smoothable topologi-
cal manifolds. In two and three dimensions any manifold carries a differentiable
structure.

One further famous problem: Poincaré asked in 1904 whether a 3-manifold which
has the same homotopy groups as S3 must be homeomorphic to S3 — equivalently,
if M is a simply connected compact 3-manifold, is M homeomorphic to S3? This is
the famous Poincaré conjecture, which remains completely open. Remarkably, the
analogous problem in higher dimensions — whether an n-manifold with the same
homotopy groups as Sn is homeomorphic to Sn — has been solved. Stephen Smale
proved this in 1960 for n ≥ 5 (similar results were also obtained by Stallings and
Wallace around the same time). The four-dimensional case was much harder, and
was proved by Michael Freedman in 1982 as a result of a truly remarkable theorem
classifying closed simply connected four-dimensional topological manifolds. Only
the three dimensional case remains unresolved!

Steven Smale Michael Freedman




