
Lecture 3. Submanifolds

In this lecture we will look at some of the most important examples of man-
ifolds, namely those which arise as subsets of Euclidean space.

2.1 Definition of submanifolds

Definition 3.1.1 A subset M of R
N is a k-dimensional submanifold if

for every point x in M there exists a neighbourhood V of x in R
N , an open

set U ⊆ R
k, and a smooth map ξ : U → R

N such that ξ is a homeomorphism
onto M ∩ V , and Dyξ is injective for every y ∈ U .

Remark. The meaning of ‘homeomorphism onto M ∩ V ’ in this definition
warrants some explanation. This means that the map ξ is continuous and 1 :
1, maps U onto M ∩V , and the inverse is also continuous. The last statement
is to be interpreted as continuity with respect to the ‘subspace topology’ onM
induced from the inclusion into R

N . Since open sets in the subspace topology
are given by restrictions of open sets in R

N , this is equivalent to the statement
that for every open set A ⊆ U there exists an open set B ⊆ R

N such that
ξ(A) = M ∩B.

Example 3.1.2 Consider the following examples of curves in the plane, which
illustrate the conditions in the definition of submanifold above: The home-
omorphism property can be violated if the function ξ is not injective, for
example if ξ(t) = (t2, t3 − t) for t ∈ (−2, 2):
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Even if ξ is injective, it might still fail to be a homeomorphism, as in the
example ξ(t) = (t2, t3 − t) for t ∈ (−1, 2):

This is not a homeomorphism since ξ((−0.1, 0.1)) is not the intersection
of the curve with any open set in R

2.
Finally, a smooth map ξ might fail to define a submanifold if the derivative

is not injective — in the case of curves, this means the derivative vanishes
somewhere. An example is ξ(t) = (t2, t3), which describes a cusp:

3.2 Alternative characterisations of submanifolds

Often the definition we have given is not the most convenient way to check
whether a given subset of Euclidean space is a submanfold. There are several
alternative characterisations of submanifolds, which are given by the following
result:

Proposition 3.2.1 Let M be a subset of Euclidean space R
N . Then the

following are equivalent:
(a). M is a k-dimensional submanifold;
(b). M is a k-dimensional manifold, and can be given a differentiable struc-

ture in such a way that the inclusion i : M → R
N is an embedding;
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(c). For every x ∈ M there exists an open set V ⊆ R
n containing x and

an open set W ⊆ R
N and a diffeomorphism F : V → W such that

F (M ∩ V ) = (R × {0}) ∩W ;
(d). M is locally the graph of a smooth function: For every x ∈ M there

exists an open set V ⊆ R
N containing x, an open set U ⊆ R

k, an permu-
tation σ ∈ SN , and a smooth map f : U → R

N−k such that

M ∩ V = {(y1, . . . , yN ) ∈ R
N | (yσ(k+1), . . . , yσ(N)) = f(yσ(1), . . . , yσ(k))}.

(e). M is locally the zero set of a submersion: For every x ∈M there exists
an open set V containing x and a submersion G : V → Z ⊆ R

N−k such
that M ∩ V = G−1(0).

Our main tool in the proof will be the Inverse function theorem:

Theorem 3.2.2 (Inverse Function Theorem) Let F be a smooth function
from an open neighbourhood of x ∈ R

N to R
N , such that the derivative DxF

is an isomorphism. Then there exists an open set A containing x and an open
set B containing F (x) such that F |A is a diffeomorphism from A to B.

For a proof of Theorem 3.2.2 see Appendix A.

Proof of Proposition 3.2.1: (b)=⇒(a) and (c)=⇒(a) are immediate, as are
(d)=⇒(c) and (c)=⇒(e).

Suppose (a) holds, and fix x ∈M . Choose ξx : Ux → Vx with x ∈M ∩ V
as given in the definition of submanifolds. Let y = ξ−1

x (x). Since Dyξx is
injective, we can choose a bijection σ : {1, . . . , N} → {1, . . . , N} such that
rows σ(1), . . . , σ(k) of Dyξx are linearly independent. Define π : R

N → R
k by

π(z1, . . . , zN ) = (zσ(1), . . . , zσ(k)). Then Dy(π ◦ ξx) is an isomorphism, so by
the Inverse Function Theorem there are open sets A ⊆ U and B ⊆ π(V ) ⊂ R

k

and a smooth map ηx : B → A which is the inverse of π ◦ ξx|A.
Define A = {ϕx = ηx ◦ π : x ∈ M}. Each of these maps is a home-

omorphism, since it has a continuous inverse ξ|A. For x2 �= x1 we have
ϕx2 ◦ ϕ−1

x1
= ϕx2 ◦ ξx1 , which is smooth. Therefore A is a differentiable atlas

making M into a differentiable manifold. Finally, the inclusion i : M → R
N

is a homeomorphism, and for any chart ηx as above, we have Id◦ i◦η−1
x = ξx,

which has injective derivative. Therefore i is an embedding, and we have es-
tablished (b). From the proof we can also establish (d), by taking f to be
components σ(k + 1), . . . , σ(N) of ξ ◦ η.

Finally, suppose (e) holds. Let x ∈ M , and let G : V → R
N−k be a

submersion as given in the Proposition. Let σ : {1, . . . , N} → {1, . . . , N}
be a bijection, such that columns σ(k + 1), . . . , σ(N) of DxG are indepen-
dent. Define F : V → R

N by F (z) = (zσ(1), . . . , zσ(k), G(z)). Then DxF
is an isomorphism, so there exists (locally) an inverse by the Inverse Func-
tion Theorem. Define f(z1, . . . , zk) to be components σ(k + 1), . . . , σ(N) of
F−1(z1, . . . , zk, 0). Then (d) holds with this choice of f . �
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This proposition gives us a rich supply of manifolds, such as:
(a). The sphere Sn = {x ∈ R

n+1 : |x| = 1};
(b). The cylinder (x, y) ∈ R

m ⊕ R
n : |x| = 1};

(c). The torus T
2 = (x, y) ∈ R

2 ⊕ R
2 : |x| = |y| = 1};

(d). The special linear group SL(n,R) consisting of n × n matrices with
determinant equal to 1 (what dimension is this manifold?);

(e). The orthogonal group O(n) consisting of n × n matrices A satisfying
AT A = I, where I is the n× n identity matrix (what dimension is this?)

Exercise 3.2.1 Consider the subset of R
4 given by the image of the map

ϕ : R → R
4 defined by

ϕ(t) = (cos t, sin t, cos(
√

2t), sin(
√

2t)).

Is this a submanifold of R
4?

Definition 3.2.1 A subset M of a manifold N is a k- dimensional subman-
ifold of N if for every x ∈M and every chart ϕ : U → V for N with x ∈ U ,
ϕ(M ∩ U) is a k-dimensional submanifold of V .

Exercise 3.2.2 Show that if M ⊂ N is a submanifold of N then the restric-
tion of every smooth function F on N to M is smooth.

Exercise 3.2.3 Show that the multiplication map ρ : GL(n,R)×GL(n,R) →
GL(n,R) given by ρ(A,B) = AB is smooth.

Exercise 3.2.4 Let M and N be manifolds, and χ : M → N a smooth map.
Suppose Σ is a submanifold of M , and Γ a submanifold of N .
(i). Show that the restriction of χ to Σ is a smooth map from Σ to N .
(ii). If the χ(M) ⊂ Γ , show that χ is a smooth map from M to Γ .

Example 3.2.1 The groups SL(n,R) and O(n). Each of these groups is con-
tained as a submanifold in GL(n,R). This implies that SL(n,R)× SL(n,R)
and O(n) × O(n) are submanifolds of GL(n,R) × GL(n,R). Therefore the
restriction of the multiplication map ρ on GL(n,R) × GL(n,R) to either
of these submanifolds is smooth, and has image contained in SL(n,R) or
O(n) respectively. Hence by the result of Exercise 3.2.2, the multiplication
on SL(n,R) and O(n) are smooth maps.
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3.3 Orientability

Definition 3.3.1 An atlas A for a differentiable manifold M is orientable
if whenever ϕ and η in A have nontrivial common domain of definition, the
Jacobian detD(η ◦ ϕ−1) is positive. A differentiable manifold is orientable
if there exists such an atlas. An orientation on an orientable manifold is an
equivalence class of oriented atlases, where two oriented atlases are equivalent
if their union is an oriented atlas.

Exercise 3.3.1 Show that every one-dimensional manifold is orientable.

Exercise 3.3.2 Show that every connected manifold has either zero or two
orientations.

Example 3.3.1 Hypersurfaces of Euclidean space A submanifold of dimension
n in R

n+1 is called a hypersurface. An orientation on a hypersurface M is
equivalent to the choice of a unit normal vector continuously over the whole
of M : Given an orientation on the hypersurface, choose the unit normal N
such that for any chart ϕ in the oriented atlas for M ,

det
[
Dϕ−1(e1), . . . , Dϕ−1(e2), . . . , Dϕ(en),N

]
> 0. (+)

This is continuous on M since it is continuous on overlaps of charts. Con-
versely, given N chosen continuously over all of N , we choose an atlas for M
consisting of all those charts for which (+) holds.

Exercise 3.3.3 Suppose F : R
n+1 → R has non-zero derivative everywhere

on M = F−1(0). Show that M is orientable.

Example 3.3.2 The Möbius strip and the Klein bottle. The Möbius strip is the
topological quotient of R × R by the equivalence relation ∼ which identifies
(s, t) with (s+1,−t) for every s and t in R.M can be given an atlas as follows:
We take a chart ϕ1 : (0, 1) × R/ ∼→ (0, 1) × R to be the inverse of the map
which takes (s, t) to [(s, t)], and ϕ2 : (−1/2, 1/2) × R/ ∼→ (−1/2, 1/2) × R

similarly. Then

ϕ1 ◦ ϕ−1
2 (s, t) =

{
(s, t) if s ∈ (0, 1/2)
(s+ 1, t) if s ∈ (−1/2, 0)

which is smooth on ((−1/2, 0) ∪ (0, 1/2)) × R. The other transition map is
similar.
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The Möbius strip is not orientable. I will not prove this rigorously yet.
Heuristically, the idea is that if we take an oriented pair of vectors at some
point (s, 0), and ‘slide’ them around the Möbius strip to (s + 1, 0), then if
there were an oriented atlas it would have to be the case that the vectors
obtained in this way were still oriented with respect to the original pair. But
this is not the case.

The Klein bottle is another non-orientable surface, given by making the
following identifications on the square:

Example 3.3.3 The real projective space RP 2 is another example of a non-
orientable surface. One way to visualise RP 2 is as the semisphere with points
on the equator identified with their antipodal points.

Some general nonsense: Definition 3.3.1 is one of many similar definitions
for special classes of manifolds. More generally, suppose we have a class of maps
M = {ϕ : U → V } between open subsets of a Euclidean space R

n, such that

(*) M is closed under composition: If ϕ : U → V and η : W → Z are in M, and
V ∩ W is non-empty, then η ◦ ϕ : ϕ−1(V ∩ W ) → Z is in M

then one can consider M-manifolds, by requiring the transition maps ϕ ◦ η−1 of an
atlas to be in the class M. Some examples are:

(1). The class of continuous maps. This gives rise to topological manifolds;
(2). The class of maps which are k times continuously differentiable. The resulting

manifolds are Ck manifolds;
(3). The class of maps for which each component has a convergent power series

(i.e. is a real-analytic function). This gives real-analytic manifolds;
(4). The class of maps between open sets of C

n which are holomorphic – that is,
each complex component of the map is given by a convergent power series in
the n complex variables. This defines complex manifolds;

(5). The class of maps of the form x �→ Mx + v where M is in some subgroup
G of the general linear group GL(n, R) — such as SL(n, R) (which gives
affine-flat manifolds), or O(n) (which gives Euclidean manifolds or flat
manifolds);

(6). The class of maps F which have derivative DF in a subgroup G of GL(n, R).

and so on...




